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Abstract

Rapid deforestation in Mexico, when coupled with poor access to current and consistent ecological information
across the country underscores the need for an ecological classification system that can be readily updated and new
data become available. In this study, regional vegetation resources in Mexico were evaluated using remotely sensed
information. Multitemporal Global Vegetation Index (GVI) data from Advanced Very High Resolution Radiometer
images provided ecological information at regional scales by being interpreted as phenological patterns of vegetation
productivity and seasonality. Principal component analysis on GVI monthly composites identified spatial and
temporal vegetation patterns, reducing their variation to five phenologically meaningful components. Sixty land-
cover and natural vegetation classes were then derived via unsupervised classification from the five principal
components. Additional phenological information (e.g., onset and peak of greenness, periods of growth) was obtained
for each class. These data, along with seasonality measures (e.g., summer vs. winter peak of greenness) were used as
criteria for grouping similar vegetation and land-cover types into a classification for Mexico.

Introduction

The natural landscape of Mexico has changed
drastically in the last 30 years. Deforestation has reached
unprecedented levels, a situation that is not likely to
change significantly during this decade. According to
the Mexican National Forest Inventory, 6 million

hectares of all types of forest land were converted to
other uses between 1964 to 1984, representing a loss of
25% from the total forested areas reported in the first
national inventory (Inventario Nacional Forestal 1964,
1991). The estimated annual deforestation rate was
0.71% between 1980 and 1990, and projections suggest
a deforestation rate of 0.55% for the current decade
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(Inventario Nacional Forestal 1991). Additionally, non
official estimates indicate that the trend in Mexico is
one of the highest among tropical ecosystems, with a
deforestation rate approaching 10% 1n tropical forested
regions (Myers 1993). Due to the high rate of landscape
conversion, better decision making is needed for
improved land-use policy development and
implementation.

Presently, efforts to slow the rate of deforestation by
implementing new land-use regulations are limited by
a lack of information, especially at the regional level. A
recently erected environmental law (Ley Forestal 1990)
mandates that land managers apply ecological
principles to forested areas, watersheds and national
parks, via management and conservation plans. The
long and short-term effects of disturbance are being
evaluated primarily on the basis of regional data.

Regional ecological information for Mexico is not
always available to decision makers. The most recent
cartographic products related with natural resources
in Mexico were obtained through visual interpretation
of Landsat images from the 1970s. Mexican cartographic
resources are, in general, outdated, inaccurate, and
sometimes nonexistent (Hough 1993), and digital
sources of information are just now becoming available
(INEG1 1991). Because of the lack of map products,
remotely sensed satellite data seem to be the most
current source of information. Only such data can
support regional landscape analysis at this time
(Townshend et al. 1991). Remotely sensed data also
provide statistically valid estimates of ecological
parameters over large areal extents (Botkin et al. 1984).

Multitemporal analysis of ecological attributes at
the regional scale is essential in understanding the
dynamics of natural landscapes. Analysis of spatial
and temporal variations of landscape features, such as
vegetation and climate, 1s necessary to understand
modifications in landscape structure resulting from
land-use change, deforestation, and perturbation effects
in general. Since the effects of landscape modification
are revealed at several temporal and spatial scales over
ecological gradients, it also is necessary to develop a
framework analysis that integrates temporal variations
and spatial heterogeneity of ecological landscape
features. A landscape ecological classification defines
such a framework, and is enabled when recurrent
temporal and spatial patterns are stratified into
ecologically meaningful landscape units.

There are several sources of satellite data that allow
an objective analysis of ecological variables at different
scales, from ecosystems to landscapes (Wickland 1991).
Among them, the Advanced Very High Resolution
Radiometer (AVHRR) from the National Oceanic
Atmospheric Administration (NOAA) has two desirable
characteristics: it has a high temporal frequency and its
products are available at several scales of observation,
Because of the daily frequency of AVHRR observations,
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there is a high probability of obtaining at least one
cloud-free image in every part of the world each week
or two using a composting technique (Oaring et al.
1989). Image composting allows the comparison of
images collected over a sequential period (e.g., 7, 14, or
30 days) where the maximum measurement (e.g.,
normalized difference vegetation index, NDVI) is
retained to represent the conditions observed during
that particular period (Holben 1986).

AVHRR images are available at three grid cell sizes:
(1) Global Vegetation Index (GVI), with a cell size of 16
km at the equator (GVIis a NDVI composite); (2) Global
Area Coverage (GAC), with 1.1 by 4.4 km at nadir; and
(3) Local Area Coverage (LAC), with 1.1 by 1.1 km cell
size at nadir (Kidwell 1990). Different cell sizes in
AVHRR products allow analysis of temporal trends of
ecological variables associated with these observations
at different spatial scales (Malingreau and Belward
1992), though each of these scales might be too coarce
for local analysis.

The primary characteristics of AVHRR and its
relationships with ecological variables have been
discussed elsewhere (Box et al. 1989; Cihlar et al. 1991;
Goward and Dye 1987; Goward 1989; Goward et al.
1991; Hastings and Emery 1992; Holben 1986; Roller
and Colwell 1986). The most important AVHRR-derived
variable for ecological applications is the NDVI, which
has been shown to be well suited for vegetation analysis.

Previous work has shown that multitemporal NDVI
images are useful for analyzing spatial vegetation
patterns from regional to continental scales (Goward et
al. 1985, 1987; Justice et al. 1985; Townshend et al. 1987;
Tateishi and Kajiwara 1991; Tucker et al. 1985), and for
assessing vegetation dynamics (Nelson et al. 1987,
Nelson 1986). In addition, when a stratification
according to some ecological criterion is needed,
vegetation dynamics can be described using AVHRR
(Eidenshink and Hass 1992). Practically, the imaging
frequency and compositing process makes it possible
to describe regional vegetation on a seasonal
(phenological) basis (Lloyd 1991).

Environmental applications of AVHRR include land-
cover mapping vegetation dynamic studies, tropical
forest monitoring, fire risk assessment, vegetation
production and biophysical parameter estimation
(Ehrlich et al. 1994). However, multitemporal analysis
of vegetation activity using remotely sensed data has
become one of the main applications of AVHRR images.
Using NDVI-AVHRR images, land-cover classes can
be separated in a multitemporal space according to
phenological, seasonal, and latitudinal variations in
vegetation (Ehrlich et al. 1994).

Principal component Analysis (PCA) and Time Series
Analysis are used frequently to capture the seasonal
variation in multitemporal datasets (Townshend et al.
1985; McGwire et al. 1992, Eastman and Fulk 1993,
Reed et al. 1994), PCA can be used to reduce the



dimensionality of the multitemporal dataset, i.e.,
reducing the number of variables ("dimensions") in
the analysis. However, the real potential of PCA lies in
its ability to identify the true number of linearly
independent vectors in the original matrix (Davies
1986). These linear vectors are interpreted as series of
new and uncorrelated "components,” which are
combinations of the original variables (monthly NDVI
values).

Principal components are usually computed from
eigenvectors of the covariance matrix between variables.
This results in orthogonal representations of variation
(using and orthogonal rotation method) since the
covariance matrix is symmetric. Although other
methods of rotation can be used (Richman 1986),
orthogonal rotations capture the periodicity inherent
in the data (Goodman 1979). The components define
linear combinations of original variables where their
respective eigenvectors are proportional to the fraction
of the variance of the original dataset accounted for by
each component. Usually, the first component accounts
for the majority of the variability; subsequent
components explain residual (but still significant)
variance, capturing all of the details in their modes of
variation.

Because the resulting components reflect a
combination of monthly NDVI values, their meaning is
more complex than the original variables. Although
the resulting interpretation of principal components
derived from multitemporal NDVI analysis remains a
matter of judgment, these can be related to seasonal
vegetation activity, and their modes of variation can be
mapped. Further, the spatial representations (images)
of each component represent a series of latent images
or trends that would be nearly impossible to detect by
direct examination of the data (Eastman and Fluke
1993).

In this context, PCA assumes a meaningful
interpretation of the components obtained. Previous
studies are consistent in giving (at least for the first
component) interpretation to PCA results. Generally,
the first component is a measure of the non-seasonal
and locational variability of vegetation, while the other
components obtained can be quantitatively related to
the "green up"” or "brown down" of vegetation (Ehrlich
et al. 1994). A classification into land-cover classes,
using the components obtained with PCA, integrate
the phenological variations of vegetation, while
classifications using the original bands do not
necessarily do so. However, the amount of seasonal
variability captured by PCA depends on the number of
months represented in the multitemporal dataset, year
of observation, variability in the vegetation activity,
and noisiness of the scenes (e.g., subpixel cloud
contamination, sensor anomalies, etc.). In short, PCA is
highly scene dependent, and results should be analyzed
in the proper context.

The objective of this paper is to show how the
application of remotely sensed data (specifically GVI
images) can be used for multitemporal landscape
analysis in Mexico using PCA. The application of PCA
in multitemporal analysis of vegetation activity results
in valuable phenological information that can be
represented in several ways, including land-cover
classifications. Although a previous land-cover
classification for Mexico was developed using AVHRR
composites (December and May) from NOAA-11
(Evanset al. 1992), this study constitutes one of the first
attempts to capture the seasonal component in a
vegetation/land-cover classification for Mexico. A
recent effort using GVI data and PCA for Mexico
showed that the seasonal component of vegetation can
be captured (Turcotte et al. 1993) though the modes of
variation were not analyzed in the phenological context.

The identification of recurrent multitemporal and
spatial patterns in GVI images (and other AVHRR
products) should result in improved sources of
vegetation information for an ecological classification.
The application of this technique to this specific dataset
does not attempt to obtain a definitive classification for
the country, but rather to illustrate how phenological
information can be interpreted in an ecological sense.
Better multitemporal vegetation information (than GVI)
will be available through AVHRR (i.e., the NOAA/
NASA Pathfinder AVHRR Land dataset) and other
platforms (i.e., EOS) in the future, but this and other
contributions using PCA techniques should help
"standardize" the methods of approach.

Methods

Sources of Information

A subset of GVI (NDVI) monthly averaged
observations (January to December) was extracted for
Mexico from the global dataset developed by the
Construction Engineering Research Laboratory (CERL)
Environmental Laboratory in Champaign, IL (CERL,
undated). The CERL-Global dataset contained monthly
composited data for 45 months from April 1985 to May
1989; these were averaged into 12 monthly values.
Although these monthly composited data may, at times
for some portions of the globe, be contaminated by
continuous cloud cover or spurious sensor artifacts,
our examinatios of the 4-year averaged data did not
show this to be problematic for Mexico. The NDVI is
calculated from channels 1 and 2 of daily GAC data; its
values are scaled (minimum value of 0 and maximum
of 65) to represent the data, from no vegetation
productivity to maximum vegetation productivity, in
8-bits (Kidwell, 1990). The cell size in all GVI images
contained in the CERL-Global dataset were arbitrarily
resampled to 4 minutes 48 seconds (0.08 decimal
degrees) per grid cell, though the source data were 8.64
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minutes per grid cell ) (Tateishi and Kajiwara 1991).

Data Analysis

The original GVI data were mapped by month to
obtain a phenological characterization associated with
the Mexican vegetation during 1985-89. With the
analysis of these data, the following phenological
metrics about vegetation could be mapped: (1)
maximum photosynthetic level, (or maximum monthly
GVI score) for each pixel; and (2) minimum
photosynthetic level (or minimum monthly GVI score)
for each pixel (see Lloyd 1991).

PCA was applied to the GVI dataset to determine
the statistical dimensionality of seasonal variations in
the landscape. PCA also can reduce the total variation
in the original 12 (monthly) GVI bands on an annual
basis and produce components that are highly related
with vegetation productivity and seasonality. The scree
test, which estimates variation accounted for each
component, was used as an aid in choosing the number
of components to retain in subsequent analyses. An
orthogonal rotated solution was applied to calculate
the respective principal component scores. Respective
component values were calculated for each resulting
principal component and used as a set of new ecological
variables for an unsupervised classification. The
principal component procedure was implemented using
the PRINCE algorithm in ERDAS software (ERDAS
1990).

For pattern identification, an unsupervised
classification approach was preferred because there
was no preconceived number or types of classes that
define the landscape units. Sixty preliminary
"greenness" classes were derived from the five principal
component values using an iterative self-organizing
data-analysis technique (ISODATA), which is a spatial
classificatory algorithm (ERDAS 1990). The ISODATA
algorithm was selected because it gives better results
than other methods (e.g., statistical clustering using
parallelepiped or minimum-distance methods) while
identifying clusters inherent in the data. The 60 classes
represent a stratification of the spatial and spectral
variation captured by the principal GVI components
across Mexico.

Original GVI values for each class were plotted by
month to visualize the temporal pattern obtained with
PCA. Each class had a characteristic "phenological
signature" that represented photosynthetic activity
during a correspondent period of growth. These
signatures can be used to obtain a phenological
classification of vegetation activity, according to Lloyd
(1991). Even when phenology in vegetation is associated
in an agricultural context (planting, fruiting, and
harvest), it also has been defined as the "study of the
timing of recurring biological events, the causes of
their timing (due to biotic and abiotic forces), and
interrelationships among species." Seasonality also can
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be defined in terms of the "occurrence of certain obvious
biotic and abiotic events or groups of events within a
definite limited period of the astronomic year" (Lieth
1974).

There are several phenological (timing of onset and
peak) and seasonal (summer-winter difference in
vegetation activity) variables that can be observed
directly using multitemporal NDVI signatures for each
class. The onset of greenness is observed at the month
when there is a significant departure of previous GVI
values (generally indicating an acceleration of the
photosynthetic activity); the peak of greenness is
determined when the maximum GVI value is reached
for that class. Senescence in vegetation also can be also
observed when greenness declines, and the end of the
growing season can be identified when declining GVI
values reach levels similar to those observed at onset.
The duration of thie growing season (in months) was
identified by comparing the occurrence of onset and
senescence dates in the signatures.

Three categorical maps (onset, peak, and duration
of growing season) were obtained by reclassifying the
unsupervised classes according to this phenological
information. A more complete phenological
characterization was then obtained by masking the
onset, peak, and duration maps with the original GVI
values. Vegetation index values for the "onset month"
give the photosynthetic activity level at the beginning
of the growing season, while GVI values at "peak
month" give the photosynthetic level at the peak of the
growing season.

Each of these variables was combined into a raster
data base that describes the vegetation phenology
variation in Mexico. A correlation analysis among all
phenological factors was performed on the raster data
to explore redundancy in the phenological set. Pearson's
correlation coefficients were obtained using ARC/
INFO's correlation command (ESRI 1995). Correlation
coefficients were squared to obtain an estimate of the
proportion of variance that can be explained by each
phenological factor as a function of each other.

The 60 unsupervised classes were interpreted and
labeled using vegetation types and land-cover
categories reported in the "Land Use and Vegetation”
map prepared by the Instituto Nacional de Estadistica
Geografia e Informatica (INEGI 1980). This map at the
scale of 1:1 million, was derived from visual
interpretation of photographic Landsat products dating
from the late 1970s. Obviously, there are several
difficulties with this approach in labeling unsupervised
classes. One problem is caused by the difference in
dates between the GVI data and the creation of the
map. Another problem surfaced because the patches
corresponding to particular vegetation types in the
INEGI map did not always match with the distribution
of any particular class or set of classes in the GVI-
derived data. In this case, the classes were named



according to the most similar vegetation and land-
cover category.

Results and Discussion

Spatial and temporal trends in GV1

The 12 monthly-averaged GVI images captured the
annual and spatial variation of vegetated features in
the landscape of Mexico during the period 1985-89
(Fig. 1 ). In addition, a summarization of original
monthly GVI data shows maximum and minimum
photosynthetic activity (Figs. 2a & 2b), which aids in
interpreting the patterns elucidated by the satellite

images.

These maps show predictable patterns in the
vegetation, according to GVI variations: (1) the desert
ecosystems in Baja California and northeastern Mexico
never show much photosynthetic activity; (2) the
tropical regions in the Yucatan Peninsula are highly
photosynthetic for much of the year; (3) the conifer
forests running along the "Sierra Madre Occidental"
(western side of the county), which are largely pine
forests, have relatively high GVIscores throughout the
year but especially in the summer months; (4) the
agricultural regions of central Mexico reach peak
greenness during the summer months; (5) the deciduous
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Figure 1 Multitemporal variation in vegetation activity. Monthly global vegetation index (GVI)
from January to December.
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vegetation in central Mexico also shows a phenological
pattern similar to agriculture, and reaches maximum
photosynthetic values during summer months; and (6)
maximum photosynthetic activity is similar between
tropical and temperate forests, though minimum
photosynthetic activity is substantially higher in the
tropical regions (Figs. 1, 2a & 2b).

Principal Components Analysis

A scree test in the PCA indicated that five principal
components could be retained while explaining 94.7%
of the variation in GVI. Thus PCA thereby reduced the

dimensionality of 12 monthly GVI images into five
phenologically meaningful components.

Scores for the five principal components were plotted
by month to show the structure of each principal
component (Fig. 3). This graph shows the PC structure
in terms of the original varjables (monthly GVI's) that
are more associated with each principal component.
PClisrelatively constant across the year, whereas PC2
to PC5 have considerable seasonal variation. PC2 peaks
in August and has its minimum in March, whereas PC3
peaks in December and has its minimum in May. PC4
and PC5 are bimodel in nature (Fig. 3).

(a) Maximum Photosynthetic Level

{b) Minimum Photosynthetic Level

ooo01 T >o0405 ‘

‘

>0102 W >0506 |
. >0203 WM >06.07

B >o0304 | | >0708

Figure 2 Thenological variation derived from 12 monthly GVI scores (scaled from 0 tol). (a)
Maximum and (b) minimum photosynthetic activity, (c) vegetation productivity, (d)
vegetation scasonality, (e) onset and (f) peak of photosynthetic activity.
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The PCA also provided, with PC1 and PC2, the
capability to map indirect measures of vegetation
productivity and direct measures of vegetation
seasonality (Figs. 2¢ & 2d). PC1 values showed an
increasing trend in a north-south direction, highly
associated with the neotropical-tropical pattern of
vegetation distribution, i.e., very low values in the
northern part of the country and the Penninsula of Baja
California (where deserts and semideserts occur), and
considerably higher values in the Yucatan Peninsula
(where tropical vegetation occurs). As such, PC1 is
highly related to vegetation productivity, as has been
shown previously (Townshendetal. 1985; Goward and
Dye 1987).

The pattern observed for PC2 showed that the
country can be divided into two general areas according
to vegetation seasonality. The first, or summer season
growth zone (scores of > 0.3 in Fig. 2d), occurs in the
lowlands of central and northern Mexico, as well as in
the northern portion of the Yucatan Peninsula. In these
areas, the associated vegetation is highly deciduous
(deciduous selvas and agriculture). The second, or
winter season growth zone (score < 0.3 in Fig. 2d),
occurs in the extreme south, parts of the "Sierras,” and
in deserts of the northern portion of the country where
perennial vegetation (deserts, conifers, and rain forests)
dominates the landscape.

Classification of vegetation types

A classification based on five principal components
rather than on the original 12 months of GVI data
offers several advantages. First, the seasonal variation
in vegetation identified through PCA can be included
in the classification scheme. Vegetation types and land-

cover classes can be described in productivity and
seasonal components in addition to phenology.
Additionally, subsequent multivariate analysis, which
uses the components as a set of new ecological variables,
can be performed for an ecological classification without
temporal autocorrelation effects, and can be assumed
to be statistically independent, i.e., multicollinearity
effects on successive monthly observations are removed.
Since each component obtained with PCA is not only
orthogonal but also statistically independent, the
classification will not be temporally autocorrelated and
the differences among classes will be maximized with
respect to the new phenological information.

The unsupervised classification on the principal
components resulted in a definition of 60 land units
(classes) associated with different seasonal vegetation
patterns. In addition, since ISODATA is an algorithm
that takes into account the spatial context, i.e.,
classifying neighboring pixels, the definition of classes
primarily relies on the maximization of the variance
between classes that are in close proximity, and
minimizes the variation within the classes. Thus, the
land units identified using the components classified
with this algorithm are temporally and spatially
homogeneous.

To rank the vegetation types as they are separated
by each of the first three principal components, the
PCA coefficients scores and class means of each of the
60 classes identified with ISODATA were plotted in
the feature space plot created by PCA (Fig. 4). PC1
apparently corresponds well with the annual
accumulated NDVI (Townshend et al. 1985), which
differentiates the greenest features of the landscape
from less green features (for Mexico, it clearly

Jan Feb Mar Apr May Jun

Jul Aug Sep Oct Nov Dec

Figure 3 Principal component structure according to the variation in monthly factor scores

coefficients.
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differentiates selvas from deserts, Figs. 2a & 4). PC1
has been previously associated with annual integrated
NDVI values in North America, which, in turn, are
associated indirectly with functional ecological
variables such as gross and net primary productivity,
and actual evapotranspiration rates (Goward and Dye
1987).

PC2 is the primary component which captures the
temporal variation of natural vegetation (Figs. 2d & 4).
High PC2 values represent highly seasonal vegetation
types that reach peaks of greenness during from July to
September (e.g., low deciduous selva and rainfed

(a)

agriculture). Lower values are mostly associated with
seasonal vegetation that reaches peak of greenness from
November to April i.e., coniferous forests. Thus, the
maximum amplitude in PC2 variation is accounted for
by summer-winter differences in vegetation growth
(Fig. 4a).

PC3 to PC5 are seasonal components that
differentiate features that are not associated with the
"natural” seasonal variation identified by PC2. PC3
identifies areas that are associated primarily with
agricultural zones irrigated during the winter season
(Fig. 4b). PC4 and 5, though not shown graphically,
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Productivity E
- ]
PC1 I ]
5 ]
Low ]
Productivity .
Summer Growth
< PC2 >
Sarcocaulescent Chaparral Pinc Oak [} Secondary
D Desert - : Forest vegetation
Sarcophvllous Mesquite Pine Forest Subtropical
[ ] sarcophy (I vt b ]
I Crassicaulescent [ ] Oak F t ] .
Desert Grassland [] OakFores e Zl:ll\igzrcnmal
r_‘:l Microphyllous = ] Tamaulipan Mountainous [ | Perennial
Desert ~ Thornscrub ==l Mesophyllous (= Sclvas
E:l Agriculture - Submountainous D Deciduous - [rrigated
matorral Selvas
(b) High [
Productivity r
3
PC1 r
+ Irrigated
agriculture
Low
Productivity

Figure 4 Feature space plot evaluated for class means in (a) PC1 and PC2 and (b) PC I and PC3.
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identify agricultural areas that are irrigated in May.
In this analysis, landscape units represent primarily

ecosystems at the biome level due to the scale of GVI
observations. These 60 spectral classes also can be

Table 1 Land-cover and vegetation types reported on INEGI map associated with the unsurpervised classification of Mexico.

CLASS

LAND COVER

DESCRIPTION

OTHER TERMINOLOGY

Area
[10° ha)

% Mexico
area

20

Sarcocaulescent
desert

Sarcophyllous desert

Crassicaulescent
desert

Microphyllous
desert
Agriculture

Chaparral

Mesquite shrub

Grassland

Tamaulipan
thornscrub

Submountainous
matorral

Pine oak forests

Pine forests
Oak forests

Mountainous
mesophyllous
forests

Deciduous dry selva

Second growth
vegetation

Subtropical forests

Perennial selvas

Subperennial selvas

Irrigated agriculture

Desert vegetation, dominated by large sarcocaulescent trees (Bursera microphylla
and Jatropha cinereay with succulent plants (/dria columnaris), evergreen shrubs
(larrea tridentata), and deciduous shrubs (Jarropha cuneata).

Desert vegetation, dominated by leaf sarcophyllous succulent plants (Agave) and
perennials shrubs (I'ranseria sp, Yueca valida).

Desert vegetation, dominated by large cactus (stem-succulent) (Camegia gigantea,
Ferocactus wislizenii) cylindropuntia and platyopuntia, and perennial shrubs
(Cercidium microphyllum).

Desert vegetation, dominated by ephemeral herbaceous species (growing winter
season) and a low density of perennial plants. Larrea tridemtata and Franseria
dumosa.

Rainfed agriculture.

Plant community of shrubs and scrubs developed in a Mediterranean climate with
species resitant to fire (Quercus sp. Adenostoma sp ) and annual grasses
(Arctostaphylos sp and Cercocarpus sp).

Semidesert vegetation dominated by trees with small leaves, generally mesquite
(Prosopis sp), but Acacia sp and Cercidium sp are also common.

Annual grasses.

Semidesert shrubs and fow forest formations, with thomy and deciduous species
(Acacia sp, Cercidium sp, l.eucophyllum sp, Prosopis sp).

Semidesert shrubs and deciduous woodlands (Helietta parvifolia, Neopringlea
integrifolia, Cordia hoissieri, Acacia sp and Leucophyllum sp). Considered a

transition zone between semidesert matorrals, deciduous selvas?, and oak forest.

Conifer temperate forest dominated by species of pine (Pinus sp) and oaks
(Quercus sp). Characteristic species vary with the geographic region.

Conifer temperate forest dominated by pines.
Temperate forest dominated by oaks,

Temperate deciduous forest on mesic hillsides dominated by deciduous broad-
leaved species (kngelhardiia mexicana, Juglans  olachana,  Liquidambar
styraciflua, and Ostria virginiana) and with evergreen (Pinus sp) species
dominating the fower strata.

Selva in warm dry climates with highly deciduous (6-8 months of growing season)
and semideciduous species (Bursera sp, lLysiloma sp, Jacaratia mexicana,

Ipomoea sp, Pseudobombax sp, Cecropia sp. Cendrela sp, etc) and with a dense
thicket-like understory.

Vegetation that results from secondary succesion in areas which have been cleared
for agricultural or grazing purposes.

Subtropical thorny shrubs, matorrals, and forests that share characteristics of each.
Considered a transition zone between temperate fofést and matorrals.

Characteristic species are Ipomonea sp, Bursera sp, Eysenhardiia polystachia |
and Acacia sp.

Three-storied selva, in tropical climates, dominated almost exclusively by
perennial species with straight, unbranched, buttressed trunks rising 50-60 m from
the forest floor (Aspidosperma megalocarpon, Brosinum alicastrum. Dialum
guianense, Terminalia amazonia, Swietenia macrophylla, Vochysia guatemalensis,
Alchomea latifolia, Alibertia edulis, Belotia cambellii Bumelia persimilis, Bursera
simaruba). The second stratum contains a continuous canopy of branched trees of
25-40 m. The third stratum contains smal) trees 10-20 m tall.

Selva with a dominance of subperennial trees and a well-defined dry season, and
with less overdue precipitation. Superficially , it has similar composition as
perennial selvas, but has only two and ocassionally one layer of trees. "Dominant”
species are Astronium graveolens, Bernoullia flammea, Brosimum alicastrum,
Bumelia persimilis, Ceiba pentandra.

Irrigated agricultural lands.

Desert, cactus scrub, matorral
xerofilo

Desert, matorral rosetofilo
costero, matorral desertico
rosetofilo

Desert, matorral crasicaule,
cardonal

Semideserts, matorral desertico
microfilo, matorral espinoso

Woodland, savanna, mesquite-
grassland

Pastizal, zacatonal sabana

Thormn forest, thorm woodland,
matorral espinoso tamaulipeco

Thom woodland, matorral,
matorral submontano, selva
baja espinosa.

Boreal forest, bosque de
coniferas, pinar encinar

Conifer forest, pinar, bosque de
pino

Encinar, bosque semihumedo
de montana

Cloud forest,inontane rain
forest, temperate deciduous
forest, mountain mesic forest,
bosque mesofilo de montana

Deciduous seasonal forest,
tropical deciduous forest, selva
baja caducifolia, bosque
tropical deciduo

Semi-evergreen seasonal
forest,tropical deciduous forest,
bosque tropical subcaducifolio

Rain forest, tropical evergreen
forest,selva alta perennifolia,
bosque tropical perennifolio,
selva alta siempre verde, selva
ombrofila siempre verde

Montane rain forest, semi-
evergreen seasonal forest,
bosque tropical subcaducifolio,
bosque deciduo semihumedo

6,761

9,629

12,472

10,390

51.498

1,628

4,555

10,915

9,608

3,033

10,737

7,713
2,073

3,158

12,267

2,153

5,062

9.216

8.780

2,962

3

28

6

4Selva is a term in Spanish which distinguishes between the highly diverse communities of trees developing in the lowlands, in
contrast to bosque that describes the communities of trees in the highlands and mountains.
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specifically related to 20 vegetation and land-cover
classes defined apriori via the INEGI (1980) map. Thus,
statistically valid areal estimates (Table 1) and a map
depicting the distribution of the resulting vegetation
and land-cover classes can be obtained (Fig. 5).

The results of vegetation and land-cover mapping
(Fig. 5) shows that patterns of vegetation distribution
are highly consistent with those observed in
multitemporal GVI monthly variation and PCA.
Substantial differentiation can be obtained by
classifying contrasting phenological vegetation types
(e.g., conifers, rain forests and deserts), but vegetation
and land-cover classes are less evident when they occur
within similar phenological groups (i.e., semidesert
type). PC3 also allows the identification of highly
contrasting phenological zones such as irrigation areas
that probably would be less evident without
multitemporal information.

Results of the classification also show that most of

the Mexican landscape can be classified as "natural”
(69%) by summing the classes dominated by natural
vegetation. The remaining portion is classified as
cultural (agriculture, irrigation, and secondary growth),
most of which (28% of the total area of Mexico) is
predominantly agriculture. The highest proportion of
natural landscape categories is in deserts, deciduous
selvas, grasslands, and conifers, each of which occupies
only about 6 and 7% of the total area in Mexico (Table 1).

The characteristic GV1 variation of each class during
the year defines a multitemporal spectral signature for
each ecosystem or land-cover unit identified in this
analysis (Fig. 6). Ecological information that is not
evident without temporal analysis can be extracted
from these signatures, and when combined with PCA
which distinguishes the classes, allows the
characterization of the landscape in several ways not
previously possible (Figs. 2e, 2f & 4). Phenological
attributes such as peak and onset of greenness, levels
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Figure 5 Land cover and vegetation types.
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of minimum and maximum photosynthetic activity,
and beginning and duration of the growing season
along with seasonality measures, can be obtained for
specific locations (Fig. 2, Table 2). Subsequently, all of
these attributes can be used as multivariate variables
to classify landscape units in ecological terms.

However, not all of the phenological information
derived with this analysis is completely independent.
Correlation analysis among phenological variables
showed that phenological attributes can be redundant
in capturing their respective spatial patterns of
distribution (Table 3).

Squared correlation coefficients among phenology

variables showed that considerable variance (67%) can
be explained between vegetation productivity (PC1)
and maximum and minimum photosynthetic levels, as
well as with the photosynthetic level at peak. This
reinforces the idea of PC1 as a vegetation productivity
component. More than 80% of the variance in both
photosyntheticlevels at peak and onset can be explained
if the maximum GVI registered is used rather than
combining PCA and the unsupervised classification.
However, maximum GVI values during the year give
no indication of the months in which these occur.
Photosynthetic levels of vegetation activity,
particularly peak and onset of the growing season, are
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Figure 6 Spectral signatures for individual classes identified with ISODATA. Individual spectral
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Table 2 Phenological classification of vegetation activity using multitemporal GVI and principal

component analysis.

Phenological Characterization of vegetation in Mexico*
based on Multitemporal GVI imagery and PCA

Phytophenological attribute:

1) Minimum level of photosynthetic activity
2) Maximum level of photosynthetic activity
3) Beginning of growing season

4) Peak of growing season

5) Photosynthetic level at the beginning
of the growing season

6) Photosynthetic level at the peak of the
growing season

7) Annual vegetation productivity index

8) Seasonality index for natural vegetation

9) Seasonal indexes for nonnatural vegetation
(Agriculture)

NDVI definition:

Minimum GVI value

Maximum GVI value

Month at which “Onset” was
recorded

Month at which “Peak’ was recorded
Onset (GVI) value

Peak (GVI) value
PC1 value

PC2 value
PC3, PC4 and PC5 values

*Modified from Lioyd (1991)

Table 3 Pearson's correlation coefficients (squared) for phenological variables derived from
multitemporal GVI imagery and principal component analysis in Mixico.

| 2 3 4 5 6
Vegetation Productivity 1.00
Vegetation Seasonality 0240  1.00
Maximum photosynthetic level 0.672  0.058 1.00
Minimum photosynthetic level 0.672 0.017 0436 1.00
Photosynthetic level at onset 0.518 0.032 0.828 0.348 1.00
Photosynthetic level at peak 0.672  0.068 0.884 0.462 0.792 1.00

highly correlated with each other and with vegetation
productivity, but seem to be highly independent from
seasonality measures (Table 3). PC2 is completely
independent information about vegetation phenology.
None of the other phenological variables are correlated
with vegetation seasonality, indicating that PCA gives
real (not apparent) variation in seasonal vegetation
(Fig. 7). The correlations among the phenological
variables can be identified visually by their respective
spatial patterns (Fig. 2).

The probable causal factors of temporal and spatial
variations of individual classes, and consequently of
landscape units, can be established using additional
information such as climate and topographic variables.
If such associations were found, the spatial patterns of
landscape units could be predicted by a GIS database,
with the results of the multitemporal analysis used as a
valuable source of temporal and spatial vegetation
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patterns for Mexico. Such an analysis and GIS
implementation is currently in progress.

Conclusions

In this study, principal component analysis of
multitemporal GVI images of Mexico summarized the
vegetation variation in the landscape. Current
improvements in the acquisition and resolution of
multitemporal vegetation data, via remote sensing, will
continue to help alleviate the problem of lack of
ecological data for the country. With the application of
PCA on multitemporal (LAC, GAC or GVI) data, several
phenologically meaningful components can be obtained
that represent the total annual variation of vegetation
dynamics. Since PCA captures nearly all of the temporal
variation in the multitemporal GVI dataset, it seems
well suited for the seasonal vegetation analysis of the



landscape of Mexico. PCA also offers several
advantages in subsequent multivariate analysis (i.e.,
identifying classes) since the new variables obtained
are statistically independent. Variance reduction
techniques also can significantly reduce the CPU time
in calculations as well as disk space.

The new components derived from this analysis can
be interpreted as phenological variables and used to
characterize the landscape in terms of productivity,
seasonal variations in natural vegetation, and seasonal
variations in "non-natural” vegetation types (e.g.,
agricultural lands). Additionally, the interpretation of
multitemporal signatures for every class allows the

characterization of every landscape unit in phenological
attributes. The use of spatial classifiers in the definition
of spectral classes also allows the capture of spatial
heterogeneity of every landscape unit.

Since PCA (as with other variance-reduction
techniques) is highly scene dependent, this
interpretation of components and classes is valid only
for the landscape in Mexico as described here. However,
similar interpretations can be obtained for other regions.
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