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Abstract 

Rapid deforestation i n  Mexico, when  cozrpled w i t h  poor access to current and consistent ecological information 
across the  col lntry  underscores the need for a n  ecological classification sys t em that can be readily updated and n e w  
data beconze available. In  this s tudy ,  regiorzal vegetation resources i n  Mexico were evaluated us ing  remotely sensed 
information. Mtllt i temporal Global Vegetation l n d e x  { G V I )  data from Advanced V e r y  High Resolution Radiometer 
images provided ecological infornzation at  regional scales b y  being interpreted as plzenological patterns ofvegetat ion 
product iv i ty  and  seasonality. Principal component analysis o n  G V I  lnonthly  composites identified spatial and 
temporal vegetation patterns,  reducing their variation to  f ive phenologically m e a n i n d u l  components .  S i x t y  land- 
cover and natural vegetation classes zuer: then derived via unsupervised classification f rom the  f ive principal 
components .  Addi t ional  phenoloipical i~zfontzation (e.g., onset and peak of greenness, periods of growth)  was  obtained 
for each class. These  data ,  along wltlz seasonality measures (e.g., szrnzmer us .  w in ter  peak ofgreenness)  were  used as 
criteriafor group ing  similar vegetation and land-cover types in to  a classification for Mexico. 

Introduction 

The natural landscape of Mexico has changed 
drastically in the last 30 years. Deforestation has reached 
unprecedented levels, a situation that is not likely to 
change significantly during thls decade. According to 
the Mexican National Forest Inventory, 6 million 

hectares of all types of forest land were converted to 
other uses between 1964 to 1984, representing a loss of 
25% from the total forested areas reported in the first 
national inventory (Inventario Nacional Forestal 1964, 
1991). The estimated annual deforestation rate was 
0.71%) between 1980 and 1990, and projections suggest 
a deforestation rate of 0.55% for the current decade 
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(Inventario Nacional Forestal 1991). Additionally, non 
official estimates indicate that the trend in Mexico is 
one of the highest among tropical ecosystems, with a 
deforestation rate approaching 10% m tropical forested 
regions (Myers 1993). Due to the high rate of landscape 
conversion, better decision making is needed for 
improved land-use policy development and 
implementation. 

Presently, efforts to slow the rate of deforestation by 
implementing new land-use regulations are limited by 
a lack of information, especially at the regional level. A 
recently erected environmental law (Ley Forestal 1990) 
mandates that land managers apply ecological 
principles to forested areas, watersheds and national 
parks, via management and conservation plans. The 
long and short-term effects of disturbance are being 
evaluated primarily on the basis of regional data. 

Regional ecological information for Mexico is not 
always available to decision makers. The most recent 
cartographic products related with natural resources 
in Mexico were obtained through visual interpretation 
of Landsat images from the 2970s. Mexican cartographic 
resources are, in general, outdated, inaccurate, and 
sometimes nonexistent (Hough 1993), and digital 
sources of illformation are just now becoming available 
(INEG1 1991). Because of the lack of map products, 
remotely sensed satellite data seem to be the most 
current source of information. Only such data can 
support regional landscape analysis at this time 
(Townshend et nl. 199:l). Remotely sensed data also 
provide statistically valid estimates of ecological 
parameters over large areal extents (Botkin et al. 1984). 

Multitemporal analysis of ecological attributes at 
the regional scale is essential in understanding the 
dynamics of natural landscapes. Analysis of spatial 
and temporal variations of landscape features, such as 
vegetation and climate, is necessary to understand 
modifications in landscape structure resulting from 
land-use change, deforestation, and perturbation effects 
in general. Since the effects of lai~dscape modification 
are revealed at several temporal and spatial scales over 
ecological gradients, it also is necessary to develop a 
framework analysis that integrates temporal variations 
and spatial heterogeneity of ecological landscape 
features. A landscape ecological classification defines 
such a framework, and is enabled when recurrent 
temporal and spatial patterns are stratified into 
ecologically meaningful landscape units. 

There are several sources of satellite data that allow 
an objective analysis of ecological variables at different 
scales, from ecosystems to landscapes (Wickland 1991). 
Among them, the Advanced Very High Resolution 
Radiometer (AVHRR) from the National Oceanic 
Atmospheric Administration (NOAA) has two desirable 
characteristics: it has a high temporal frequency and its 
products are available at several scales of observation. 
Because of the daily frequency of AVHRR observations, 

there is a high probability of obtaining at least one 
cloud-free image in every part of the world each week 
or two using a composting technique (Oaring et al. 
1989). Image composting allows the comparison of 
images collected over a sequential period (e.g., 7,14, or 
30 days) where the maximum measurement (e.g., 
normalized difference vegetation index, NDVI) is 
retained to represent the conditions observed during 
that particular period (Holben 1986). 

AVHRR images are available at three grid cell sizes: 
(1) Global Vegetation Index (GVI), with a cell size of 16 
krn at the equator (GVI is a NDVI composite); (2) Global 
Area Coverage (GAC), with 1.1 by 4.4 km at nadir; and 
(3) Local Area Coverage (LAC), with 1.1 by 1.1 km cell 
size at nadir (Kidwell 1990). Different cell sizes in 
AVHRR products allow analysis of temporal trends of 
ecological variables associated with these observations 
at different spatial scales (Malingreau and Belward 
1992), though each of these scales might be too coarre 
for local analysis. 

The primary characteristics of AVHRR and its 
relationships with ecological variables have been 
discussed elsewhere (Box et a!. 1989; Cihlar et al. 1991; 
Goward and Dye 1987; Goward 1989; Goward et al. 
1991; Hastings and Emery 1992; Holben 1986; Roller 
and Colwell1986). The most important AVHRR-derived 
variable for ecological applications is the NDVI, which 
has been shown to be well suited for vegetation analysis. 

Previous work has shown that multitemporal NDVI 
images are useful for analyzing spatial vegetation 
patterns from regional to continental scales (Goward et 
al. 1985,1987; Justice et al. 1985; Townshend et al. 1987; 
Tateishi and Kajiwara 1991; Tucker et al. 1985), and for 
assessing vegetation dynamics (Nelson et al.  1987, 
Nelson 1986). In addition, when a stratification 
according to some ecological criterion is needed, 
vegetation dynamics can be described using AVHRR 
(Eidenshink and Hass 1992). Practically, the imaging 
frequency and compositing process makes it possible 
to describe regional vegetation o n  a seasonal 
(phenological) basis (Lloyd 1991). 

Environmental applications of AVHRR include land- 
cover mapping vegetation dynamic studies, tropical 
forest monitoring, fire risk assessment, vegetation 
production and biophysical parameter estimation 
(Ehrlich ct al. 1994). However, multitemporal analysis 
of vegetation activity using remotely sensed data has 
become one of the main applications of AVHRR images. 
Using NDVI-AVHRR images, land-cover classes can 
be separated in a multitemporal space according to 
phenological, seasonal, and latitudinal variations in 
vegetation (Ehrlich et al. 1994). 

Principal component Analysis (PCA) and Time Series 
Analysis are used frequently to capture the seasonal 
variation in multitemporal datasets (Townshend et al. 
1985; McGwire et al. 1992, Eastman and Fulk 1993, 
Reed el ul. 1994). PCA can be used to reduce the 



dimensionality of the multitemporal dataset, i.e., 
reducing the number of variables ("dimensions") in 
the analysis. However, the real potential of PCA lies in 
its ability to identify the true number of linearly 
independent vectors in the original matrix (Davies 
1986). These linear vectors are interpreted as series of 
new and uncorrelated "components," which are 
combinations of the original variables (monthly NDVI 
values). 

Principal components are usually computed from 
eigenvectors of the covariance matrix between variables, 
This results in orthogonal representations of variation 
(using and orthogonal rotation method) since the 
covariance matrix is symmetric. Although other 
methods of rotation can be used (Richman 1986), 
orthogonal rotations capture the periodicity inherent 
in the data (Goodman 1979). The components define 
linear combinations of original variables where their 
respective eigenvectors are proportional to the fraction 
of the variance of the original dataset accounted for by 
eachcomponent. Usually, the first component accounts 
for the majority of the variability; subsequent 
components explain residual (but still significant) 
variance, capturing all of the details in their modes of 
variation. 

Because the resulting components reflect a 
combination of monthly NDVI values, their meaning is 
more complex than the original variables. Although 
the resulting interpretation of principal components 
derived from multitemporal NDVI analysis remains a 
matter of judgment, these can be related to seasonal 
vegetation activity, and their modes of variation can be 
mapped. Further, the spatial representations (images) 
of each component represent a series of latent images 
or trends that would be nearly impossible to detect by 
direct examination of the data (Eastman and Fluke 
1993). 

In this context, PCA assumes a meaningful 
interpretation of the components obtained. Previous 
studies are consistent in giving (at least for the first 
component) interpretation to PCA results. Generally, 
the first component is a measure of the non-seasonal 
and locational variability of vegetation, while the other 
components obtained can be quantitatively related to 
the "green up" or "brown down" of vegetation (Ehrlich 
et al. 1994). A classification into land-cover classes, 
using the components obtained with PCA, integrate 
the phenological variations of vegetation, while 
classifications using the original bands d o  not 
necessarily do so. However, the amount of seasonal 
variability captured by PCA depends on the number of 
months represented in the multitemporal dataset, year 
of observation, variability in the vegetation activity, 
and noisiness of the scenes (e.g., subpixel cloud 
contamination, sensor anomalies, etc.). In short, PCA is 
highly scene dependent, and results should be analyzed 
in the proper context. 

The objective of this paper is to show how the 
application of remotely sensed data (specifically GVI 
images) can be used for multitemporal landscape 
analysis in Mexico using PCA. The application of PCA 
in multitemporal analysis of vegetation activity results 
in valuable phenological information that can be 
represented in several ways, including land-cover 
classifications. Although a previous land-cover 
classification for Mexico was developed using AVHRR 
composites (December and May) from NOAA-11 
(Evans et al. 1992), this study constitutes one of the first 
attempts to capture the seasonal component in a 
vegetation/land-cover classification for Mexico. A 
recent effort using GVI data and PCA for Mexico 
showed that the seasonal component of vegetation can 
be captured (Turcotte et al. 1993) though the modes of 
variation were not analyzed in the pl~enological context. 

The identification of recurrent multitemporal and 
spatial patterns in GVI images (and other AVHRR 
products) should result in improved sources of 
vegetation information for an ecological classification. 
The application of this technique to this specific dataset 
does not attempt to obtain a definitive classification for 
the country, but rather to illustrate how phenological 
information can be interpreted in an ecological sense. 
Better multitemporal vegetation information (than GVI) 
will be available through AVHRR (i.e., the NOAA/ 
NASA Pathfinder AVHRR Land dataset) and other 
platforms (i.e., EOS) in the future, but this and other 
contributions using PCA techniques should help 
"standardize' the methods of approach. 

Methods 

Sources of Information 
A subset of GVI (NDVI) monthly averaged 

observations (January to December) was extracted for 
Mexico from the global dataset developed by the 
Construction Engineering Research Laboratory (CERL) 
Environmental Laboratory in Champaign, IL (CERL, 
undated). The CERL-Global dataset contained monthly 
composited data for 45 months from April 1985 to May 
1989; these were averaged into 12 monthly values. 
Although these monthly composited data may, at times 
for some portions of the globe, be contaminated by 
continuous cloud cover or spurious sensor artifacts, 
our examinatios of the 4-year averaged data did not 
show this to be problematic for Mexico. The NDVI is 
calculated from channels 1 and 2 of daily GAC data; its 
values are scaled (minimum value of 0 and maximum 
of 65) to represent the data, from no vegetation 
productivity to maximum vegetation productivity, in 
8-bits (Kidwell, 1990). The cell size in all GVI images 
contained in the CERL-Global dataset were arbitrarily 
resampled to 4 minutes 48 seconds (0.08 decimal 
degrees) per grid cell, though the source data were 8.64 



minutes per grid cell ) (Tateishi and Kajiwara 1991). 

Data Analysis 
The original CVT data were mapped by month to 

obtain a phenological characterization associated with 
the Mexican vegetation during 1985-89. With the 
analysis of these data, the following phenological 
metrics about vegetation could be mapped: (1) 
maximum photosynthetic level, (or maximum monthly 
GVI score) for each pixel; and (2) minimum 
photosynthetic level (or minimum monthly GVI score) 
for each pixel (see Lloyd 1992). 

PCA was applied to the GVI dataset to determine 
the statistical dimensionality of seasonal variations in 
the landscape. PCA also can reduce the total variation 
in the original 12 (monthly) GVI bands on an annual 
basis and produce components that are highly related 
with vegetation productivity and seasonality. The scree 
test, which estimates variation accounted for each 
component, was used as an aid in choosing the number 
of components to retain in subsequent analyses. An 
orthogonal rotated solution was applied to calculate 
the respective principal component scores. Respective 
component values were calculated for each resulting 
principal component and used as a set of new ecological 
variables for an unsupervised classification. The 
principal component procedure was implemented using 
the PRINCE algorithm in ERDAS software (ERDAS 
1990). 

For pattern identification, an unsupervised 
classificatioi~ approach was preferred because there 
was no preconceived number or types of classes that 
define the landscape units. Sixty preliminary 
"greenness" classes were derived from the five principal 
component values using an iterative self-organizing 
data-analysis technique (ISODATA), which is a spatial 
classificatory algorithm (ERDAS 1990). The ISODATA 
algorithm was selected because it gives better results 
than other methods (e.g., statistical clustering using 
parallelepiped or minimum-distance methods) while 
identifying clusters inherent in the data. The 60 classes 
represent a stratification of the spatial and spectral 
variation captured by the principal GVI components 
across Mexico. 

Original GVI values for each class were plotted by 
month to visualize the temporal pattern obtained with 
PCA. Each class had a characteristic "phenological 
signature" that represented photosynthetic activity 
during a correspondent period of growth. These 
signatures can be used to obtain a phenological 
classification of vegetation activity, according to Lloyd 
(1991). Even when phenology in vegetation is associated 
in an agricultural context (planting, fruiting, and 
harvest), it also has been defined as the "study of the 
timing of recurring biological events, the causes of 
their timing (due to biotic and abiotic forces), and 
interrelationships among species." Seasonality also can 

be defined in terms of the "occurrence of certain obvious 
biotic and abiotic events or groups of events within a 
definite limited period of the astronomic year" (Lieth 
1974). 

There are several phenological (timing of onset and 
peak) and seasonal (summer-winter difference in 
vegetation activity) variables that can be observed 
directly using multitemporal NDVI signatures for each 
class. The onset of greenness is observed at the month 
when there is a significant departure of previous GVI 
values (generally indicating an acceleration of the 
photosynthetic activity); the peak of greenness is 
determined when the maximum GVI value is reached 
for that class. Senescence in vegetation also can be also 
observed when greenness declines, and the end of the 
growing season can be identified when declining GVI 
values reach levels similar to those observed at onset. 
The duration of tile growing season (in months) was 
identified by comparing the occurrence of onset and 
senescence dates in the signatures. 

Three categorical maps (onset, peak, and duration 
of growing season) were obtained by reclassifying the 
unsupervised classes according to this phenological 
information, A more complete phenological 
characterization was then obtained by masking the 
onset, peak, and duration maps with the original GVI 
values. Vegetation index values for the "onset month" 
give the photosynthetic activity level at the beginning 
of the growing season, while GVI values at "peak 
month" give the photosynthetic level at the peak of the 
growing season. 

Each of these variables was combined into a raster 
data base that describes the vegetation phenology 
variation in Mexico. A correlation analysis among all 
phenological factors was performed on the raster data 
to explore redundancy in the phenological set. Pearson's 
correlation coefficients were obtained using ARC/ 
INFO'S correlation command (ESRI 1995). Correlation 
coefficients were squared to obtain an estimate of the 
proportion of variance that can be explained by each 
phenological factor as a function of each other. 

The 60 unsupervised classes were interpreted and 
labeled using vegetation types and land-cover 
categories reported in the "Land Use and Vegetation" 
map prepared by the Instituto Nacional de Estadistica 
Geografia e Informiitica (INEGI 1980). This map at the 
scale of 1 : l  million, was derived from visual 
interpretation of photographic Landsat products dating 
from the late 1970s. Obviously, there are several 
difficulties with this approach in labeling unsupervised 
classes. One problem is caused by the difference in 
dates between the GVI data and the creation of the 
map. Another problem surfaced because the patches 
corresponding to particular vegetation types in the 
INEGI map did not always match with the distribution 
of any particular class or set of classes in the GVI- 
derived data. In this case, the classes were named 



according to the most similar vegetation and land- 
cover category. 

images. 
These maps show predictable patterns in the 

vegetation, according to GVI variations: ( 1 ) the desert 
ecosystems in Baja California and northeastern Mexico 
never show much photosynthetic activity; (2) the 
tropical regions in the Yucatan Peninsula are highly 
photosynthetic for much of the year; (3) the conifer 
forests running along the "Sierra Madre Occidental" 
(western side of the county), which are largely pine 
forests, have relatively high GVI scores throughout the 
year but especially in the summer months; (4) the 
agricultural regions of central Mexico reach peak 
greenness during the summer months; (5) the deciduous 

Results and Discussion 

Spatial and temporal trends in GVl 
The 12 monthly-averaged GVI images captured the 

annual and spatial variation of vegetated features in 
the landscape of Mexico during the period 1985-89 
(Fig. 1 ). In addition, a summarization of original 
monthly GVI data shows maximum and minimum 
photosynthetic activity (Figs. 2a & 2b), which aids in 
interpreting the patterns elucidated by the satellite 
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Figure 1 Multitemporal variation in vegetation activity. Monthly global vegetation index (GVI) 
from January to December. 



vegetation in central Mexico also shows a phenological 
pattern similar to agriculture, and reaches maximum 
photosynthetic values during summer months; and (6) 
maximum photosynthetic activity is similar between 
tropical and temperate forests, though minimum 
photosynthetic activity is substantially higher ill the 
tropical regions (Figs. 1,2a & 2b). 

Principal Components Analysis 
A scree test in the PCA Indicated that five principal 

components could be retained while explaining 94.7% 
of the variation in GVI. Thus PCA thereby reduced the 

dimensionality of 12 monthly GVI images into five 
phenologically meaningful components. 

Scores for the five principal components were plotted 
by month to show the structure of each principal 
component (Fig. 3). This graph shows the PC structure 
in terms of the original variables (monthly GVI's) that 
are more associated with each principal component. 
PC1 is relatively constant across the year, whereas PC2 
to PC5 have considerable seasonal variation. PC2 peaks 
in August and has its minimum in March, whereas PC3 
peaks in December and has its minimum in May. PC4 
and PC5 are bimodel in nature (Fig. 3). 
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Figure 2 Phenological variation derived from 12 monthly GVI scores (scaled from 0 tol). (a) 
Maxi~nuln and (b) lninilnuln photosynthetic activity, (c) vegetation productivity, (d) 
vegetation seasonality, (e)  onset and (f) peak of photosy~~thetic activity. 



The PCA also provided, wit11 PC1 and PC2, the 
capability to map indirect measures of vegetation 
productivity and direct measures of vegetation 
seasonality (Figs. 2c & 2d). PC1 values showed an 
increasing trend ill a north-south direction, highly 
associated with the neotropical-tropical pattern of 
vegetation distribution, i.e., very low values in the 
northern part of the country and the Penninsula of Baja 
California (where deserts and semideserts occur), and 
considerably higher values in the Yucatan Peninsula 
(where tropical vegetation occurs). As such, PC1 is 
highly related to vegetation productivity, as has been 
shown previously (Townshend ot 01. 1985; Coward and 
Dye 1987). 

The pattern observed for PC2 showed that the 
country can be divided into two general areas according 
to vegetation seasonality. The first, or summer season 
growth zone (scores of > 0.3 in Fig. 2d), occurs in the 
lowlands of central and northern Mexico, as well as in 
the northern portion of the Yucatan Peninsula. In these 
areas, the associated vegetation is highly deciduous 
(deciduous selvas and agriculture). The second, or 
winter season growth zone (score < 0.3 in Fig. 2d), 
occurs in the extreme south, parts of the "Sierras," and 
in deserts of the northern portion of the country where 
perennial vegetation (deserts, conifers, and rain forests) 
dominates the landscape. 

Classification of vegetation types 
A classification based on five principal components 

rather than on the original 12 months of GVI data 
offers several advantages. First, the seasonal variation 
in vegetation identified through PCA can be included 
in the classification scheme. Vegetation types and land- 

cover classes can be described in productivity and 
seasonal components in addition to phenology. 
Additionally, subsequent multivariate analysis, which 
uses the components as a set of new ecological variables, 
can be performed for an ecological classification without 
temporal autocorrelation effects, and can be assumed 
to be statistically independent, i.e., multicollinearity 
effects on successive monthly observations are removed. 
Since each component obtained with PCA is not only 
orthogonal but also statistically independent, the 
classification will not be temporally autocorrelated and 
the differences among classes will be maximized with 
respect to the new phenological information. 

The unsupervised classification on the principal 
components resulted in a definition of 60 land units 
(classes) associated with different seasonal vegetation 
patterns. In addition, since ISODATA is an algorithm 
that takes into account the spatial context, i.e., 
classifying neighboring pixels, the definition of classes 
primarily relies on the maximization of the variance 
between classes that are in close proximity, and 
minimizes the variation within the classes. Thus, the 
land units identified using the components classified 
with this algorithm are temporally and spatially 
homogeneous. 

To rank the vegetation types as they are separated 
by each of the first three principal components, the 
PCA coefficients scores and class means of each of the 
60 classes identified with ISODATA were plotted in 
the feature space plot created by PCA (Fig. 4). PC1 
apparently corresponds well with the annual  
accumulated NDVI (Townshend et a/ .  1985), which 
differentiates the greenest features of the landscape 
from less green features (for Mexico, it clearly 
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Figure 3 Principal compollent structure according to the variation in monthly factor scores 
coefficients. 



differentiates selvas from deserts, Figs. 2a & 4). PC1 
has been previously associated with annual integrated 
NDVI values in North America, which, in turn, are 
associated indirectly with functional ecological 
variables such as gross and net primary productivity, 
and actual evapotranspiration rates (Goward and Dye 
1987). 

PC2 is the primary component which captures the 
temporal variation of natural vegetation (Figs. 2d & 4). 
High PC2 values represent highly seasonal vegetation 
types that reach peaks of greenness durlng from July to 
September (e.g., low deciduous selva and rainfed 

agriculture). Lower values are mostly associated with 
seasonal vegetation that reaches peak of greenness from 
November to April i.e., coniferous forests. Thus, the 
maximum amplitude in PC2 variation is accounted for 
by summer-winter differences in vegetation growth 
(Fig. 4a). 

PC3 to PC5 are seasonal components that 
differentiate features that are not associated with the 
"natural" seasonal variation identified by PC2. PC3 
identifies areas that are associated primarily with 
agricultural zones irrigated during the winter season 
(Fig. 4b). PC4 and 5, though not shown graphically, 
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identify agricultural areas that are irrigated in May. ecosystems at the biome level due to the scale of GVI 
In this analysis, landscape units represent primarily observations. These 60 spectral classes also can be 

Table 1 Land-cover and vegetation types reported on INEGI map associated with the unsurpervised classification of Mexico. 

2 Sarcopl~yllor~s desert Desert vegctalion, dominated by leaf sarcopliyllo~~s s ~ ~ c c ~ ~ l e n t  plants (Ago1.e) and Desert, rnatorral rosetolilo 9.629 5 
pcrenriials slirubs ( l ~ h r i r r r i r i  .vp, Yrrcco salhla). costero, matorrat desertico 

roselolilo 
3 Crassica~~lescet~t Desert vegetation, dominated by large cactus (stem-succ~~lent) ((.'anrcgiu grparrfea. Desert, ~nalorral crasicaule, 12,472 7 

desert Feroorf r r r  ~vislizer~ii) cylindropuntia and platyopuntia, and perennial shn~bs cardonal 
((:ercidiusr microph~~llunr). 

1 Micropllyllous Desert vegetation, dominated by ephemeral l~erbaceo~~s species (growing winter Semideserts, n~atorral desertico 10.390 6 
desert season) and a low density o f  perennial plants. Larren tridrritoto and 17ranscria microtilo, ~natorral espinoso 

[hrrrio.sa. 

CLASS 

5 Agriculture Rainfed agriculture. 51.498 28 

1 Sarcocaulescent Desert vegetation, dominated by large sarcocaulescent lrees (Iltrrsera micraphylb Desert, cactus scn~b, ~natorral 6,761 4 
desert and Jafmpl~o cmerea) with s ~ ~ c c u l e ~ ~ t  plants (Idrio colrrnrriarir), evergreen shn~bs xerofilo 

(Iarrea frickrilafa), and decidooos shrubs (Jarmphn cirneota). 

DESCRIPTION LAND COVER 

6 Chaparral Plant c o m ~ n ~ ~ n i t y  o f  shrubs and scn~bs developed in a Mediterranean climate with 1,628 I 
species resilant to lire (C)rrcrcar rp. A~lcnosfonra sp ) and annual grasses 
(Arcfosfaphylas rp and (:crcircarprr.r sp) 

7 Mesquite s l ln~b Se~i~idesert vegetation dominated by lrees with small leaves, generally mesquite Woodland, savanna, mesquite- 4,555 2 
(Prf~.vopis q). but Acacia ,sp and dercidirrnr sp are also conlmon. grassland 

8 Grassland Annual grasses. Pastizal, zacatonal.sabana 10.9 15 6 

OTHER TERMINOLOGY 

9 Tamanlipan Semidesert shn~bs and low forest formations, wit11 thorny and deciduous species 'n~orn  forest, t l~orn woodland, 9.608 5 
thornscnlb (Acacia sp, C'crcidiurrr sp, I.cacol~l~!~llrrnr rp. I'rri.sopi.v .rp). lnatorral espinoso tamaulipeco 

10 Sub~l~o~~ntainous Semidesert shn~bs and deciduous woodlands (Helietta pan'folia, Neoprirrglec~ Yl~orn woodla~id, matorral, 3,033 2 
n~atorral irrfcgrili,lia, Cordia hai.r.rieri, Acacia sp ma1 Lerrcaphyllrrnr sp). Considered a matorral sobmontano, selva 

transition zone between semidesert matorrals, deciduous selvasa. and oak forest. baja espinosa. 

Area 

[I$ ha] 

I I Pine oak forests Conifer telnperate forest dominated by species of pine (Pkruv s11) and oaks Boreal foresl, bosq~~e de 10.737 6 
(Qvcrcirv .rp). Characteristic species vary with the geographic region. coaiferas, pinar encinar 

% Mexico 
area 

12 Pine forests Conifer temperate forest dominated by pines. Conifer forest, pinar, bosque de 7.713 4 
pino 

13 Oak forests Temperate forest do~n i~~a ted  by oaks. Encinar, bosque semihlimedo 2,073 I 
de montana 

14 Monntaino~~s Temperate deciduous forest on n~esic I~illsides don~inated by deciduous broad- Cloud forest,~nontane rain 3,158 2 
mesopl~yllous leaved species (Digclhardlin nrcxicorra. Jrrg1mr.v olachmro, Liqrridanrhar forest, lemperate deciduoos 
forests styracflrma, and Osfria ~'irgir~iarra) and wit11 evergreen (Pinrrr sp) species forest, mo~oitain mesie forest, 

dominating the lower strata. bosque mesotilo de montana 

15 Deciduo~~s dry selva Selva ill warm dry clin~ates with l ~ i g l ~ l y  deciduous (6-8 monlhs o f  growing season) I)ec~duous seasonal foresl. 12.267 7 
and semideciduous species (Brrr.xra b~si losra sp, Jacarafia rrrexicarro, tropical deciduous forest, selva 
Iponroco sp. Pscerlohnnrhnr sp, Cbcropia sp. Ccndrela sp, elc) and with a dense baja caducifolia. bosque 
thicket-like understory. tropical decidrro 

16 Second growtli Vegetation t l~at results f ron~ secondary succesio~~ in areas which have been cleared 
vegetation for agricultural or grazing purposes. 

17 Subtropical forests Subtropical thorny shrubs, matorrals, and forests that share characteristics o f  each. Semi-evergreen seasonal 5.062 3 
Considered a transition zone between temperate foikst and matorrals. forest,tropical d e c i d ~ ~ o ~ ~ s  forest, 
Characteristic species are Iponronea sp. Burrera sp, Ey.seirhardfia p i ~ ~ . ~ t a c h i a  . bosque tropical subcaducifolio 
and Acacia sp. 

18 Perennial selvas Three-storied selva, in tropical clin~ates, dominated almost exclusively by Rain forest, tropical evergreen 9.216 5 
perennial species with straight, unbranched, buttressed lm~ iks  rising 50-60 m from forest,selva alta perennifolia, 
the foresl floor (Aspido.vpenria nregolocorpon, Bro.vinrrm alica,vmm~. Llialrm bosque tropical perennifolio, 
priurrerrsc. Ternrirralin arrrazariia, Swicfertia niacrophylla, Vmhysia guafen~alcnsi.~, selva alta sie~npre verdc, selva 
Alchonrca lafifi~lia, Alihertia cd,rIi.r, Bclolia canihellii Brrnrclia persinri1i.r. Bvrsem ombrolila siempre verde 
anranrha). V ie  second stratunl contains a continuous canopy o f  branched trees o f  
25-10 m. The third stratum contains small lrees 10-20 m tall. 

19 Subperennial selvas Selva with a dominance o f  subperennial trees and a well-defined dry season, and Montane rain forest, se~ii i- 8.780 5 
with less overdue precipitation. Superficially . i t  has similar composition as evergreen seasonal foresl. 
perennial selvas, but has only two and ocassionally one layer o f  trees. "Dominant" bosqi~e tropical sr~bcad~tcifolio, 
species are Actmniirnr graveokn.v, Benrorrllia J7amnica. Brir.~inrrini dica.~fnmi, bosqi~e deciduo semihumedo 
Orirrrclia persinrilis. Ceiha perifo~tdra. 

1 20 Irrigated agriculture Irrigated agricultural lands. 2.962 2 
- -  

" ~ e l v n  is a term in Spanish which distinguishes between the highly diverse communities of trees developing in the lowlands, in 
contrast to bosque that describes the communities of trees in the highlands and mountains. 



specifically related to 20 vegetation and land-cover 
classes defined apriori via the INEGI (1980) map. Thus, 
statistically valid areal estimates (Table 1) and a map 
depicting the distribution of the resulting vegetation 
and land-cover classes can be obtained (Fig. 5). 

The results of vegetation and land-cover mapping 
(Fig. 5) shows that patterns of vegetation distribution 
are  highly consistent with those observed in 
multitemporal GVT monthly variation and PCA. 
Substantial differentiation can be obtained by 
classifying contrasting phenological vegetation types 
(e.g., conifers, rain forests and deserts), but vegetation 
and land-cover classes are less evident when they occur 
within s~milar phenological groups (i.e., semidesert 
type). PC3 also allows the identification of highly 
contrasting phenological zones such as irrigation areas 
that probably would be less evident without 
multitemporal information. 

Results of the classification also show that most of 

the Mexican landscape can be classified as "natural" 
(69%) by summing the classes dominated by natural 
vegetation. The remaining portion is classified as 
cultural (agriculture, irrigation, and secondary growth), 
most of which (28% of the total area of Mexico) is 
predominantly agriculture. The highest proportion of 
natural landscape categor~es is in deserts, deciduous 
selvas, grasslands, and conifers, each of which occupies 
only about 6 and 7% of the total area in Mexico (Table 1). 

The characteristic GVI variation of each class during 
the year defines a multitemporal spectral signature for 
each ecosystem or land-cover unit identified in this 
analysis (Fig. 6). Ecological information that is not 
evident without temporal analysis can be extracted 
from these signatures, and when combined with PCA 
which d i s t i n ~ u i s h e s  the classes, allows the 
characterization of the landscape in several ways not 
previously possible (Figs. 2e, 2f & 4). Phenological 
attributes such as peak and onset of greenness, levels 
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Figure 5 Land cover and vegetation types. 



of minimum and maximum photosynthetic activity, 
and beginning and duration of the growing season 
along with seasonality measures, can be obtained for 
specific locations (Fig. 2, Table 2). Subsequently, all of 
these attributes can be used as multivariate variables 
to classify landscape units in ecological terms. 

However, not all of the phenological information 
derived with this analysis is completely independent. 
Correlation analysis among phenological variables 
showed that phenological attributes can be redundant 
in capturing their respective spatial patterns of 
distribution (Table 3). 

Squared correlation coefficients among phenology 

Deserts 

variables showed that considerable variance (67%) can 
be explained between vegetation productivity (PC1) 
and maximum and minimum photosynthetic levels, as 
well as with the photosynthetic level at peak. This 
reinforces the idea of PC1 as a vegetation productivity 
component. More than 80% of the variance in both 
photosynthetic levels at peak and onset can be explained 
if the maximum GVI registered is used rather than 
combining PCA and the unsupervised classification. 
However, maximum GVI values during the year give 
no indication of the months in which these occur. 

Photosynthetic levels of vegetation activity, 
particularly peak and onset of the growing season, are 

, , , , . . . . . , , ,  
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Figure 6 Spectral signatures for individual classes identified with ISODATA. Individual spectral 
classes (lines wtthin each group) are associated with land covers and vegetation types and 
grouped 011 a phcnological basis. 



Table 2 Phenological classification of vegetation activity using multitemporal GVI and principal 
component analysis. 

Phenological Characterization of vegetation in Mexico* 
based on Multitemporal GVI imagery and PCA 

Phytophenological attribute: NDVI definition: 

I) Minimum level of photosynthetic activity Minimum GVI value 
2) Maximum level of photosynthetic activity Maximum GVI value 
3) Beginning of growing season Month at which "Onset" was 

recorded 
4) Peak of growing season Month at which "Peak" was recorded 
5) Photosynthetic level at the beginning Onset (GVI) value 

of the growing season 
6) Photosynthetic level at the peak of the Peak (GVI) value 

growing season 
7) Annual vegetation productivity index PC I value 
8) Seasonality index for natural vegetation PC2 value 
9) Seasonal indexes for nonnatural vegetation PC3, PC4 and PC5 values 

(Agriculture) 
*~Mod?fied from Lloyd (1 99i 

Table 3 Pearson's correlation coefficients (squared) for phenological variables derived from 
rnultitemporal GVI imagery and principal component analysis in Mixico. 

I 2 3 4 5 6 

Vegetation Productivity 1 .OO 

Vegetation Seasonality 0.240 1.00 

Maximum photosynthetic level 0.672 0.058 1.00 

Minimum photosynthetic level 0.672 0.017 0.436 1.00 

Photosynthetic level at onset 0.518 0.032 0.828 0.348 1 .OO 

Photosynthetic level at peak 0.672 0.068 0.884 0.462 0.792 1 .OO 

highly correlated with each other and with vegetation 
productivity, but seem to be highly independent from 
seasonality measures (Table 3). PC2 is completely 
independent information about vegetation phenology. 
None of the other phenological variables are correlated 
with vegetation seasonality, indicating that PCA gives 
real (not apparent) variation in seasonal vegetation 
(Fig. 7). ,The correlations among the phenological 
variables can be identified visually by their respective 
spatial patterns (Fig. 2). 

The probable causal factors of temporal and spatial 
variations of individual classes, and consequently of 
landscape units, can be established using additional 
information such as climate and topographic variables. 
If such associations were found, the spatial patterns of 
landscape units could be predicted by a GIs database, 
with the results of the multitemporal analysis used as a 
valuable source of temporal and spatial vegetation 

patterns for Mexico. Such an analysis and GIs 
implementation is currently in progress. 

Conclusions 

In this study, principal component analysis ~f 
multitemporal GVI images of Mexico summarized the 
vegetation variation in the landscape. Current 
improvements in the acquisition and resolution of 
multitemporal vegetation data, via remote sensing, will 
continue to help alleviate the problem of lack of 
ecological data for the country. With the application of 
PCA onmultitemporal (LAC, GAC or GVI) data, several 
phenologically meaningful components can be obtained 
that represent the total annual variation of vegetation 
dynamics. Since PCA captures nearly all of the temporal 
variation in the multitemporal GVI dataset, it seems 
well suited for the seasonal vegetation analysis of the 



landscape of Mexico. PCA also offers several 
advantages in subsequent multivariate analysis (i.e., 
identifying classes) since the new variables obtained 
are statistically independent. Variance reduction 
techniques also can significantly reduce the CPU time 
in calculations as well as disk space. 

The new components derived from this analysis can 
be interpreted as phenological variables and used to 
characterize the landscape in terms of productivity, 
seasonal variations in natural vegetation, and seasonal 
variations in "non-natural" vegetation types (e.g., 
agricultural lands). Additionally, the interpretation of 
multitemporal signatures for every class allows the 

characterization of every landscape unit in phenological 
attributes. The use of spatial classifiers in the definition 
of spectral classes also allows the capture of spatial 
heterogeneity of every landscape unit. 

Since PCA (as with other variance-reduction 
techniques) is highly scene dependent,  this 
interpretation of components and classes is valid only 
for the 1~mdscapeinMexico as described here. However, 
similar interpretations can be obtained for other regions. 
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