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Abstract 

Since the launch of the first civilian earth-observing satellite in 1972, satellite remote sensing has provided 
increasingly sophisticated information on the structure and function of forested ecosystems. Forest classifica- 
tion and mapping, common uses of satellite data, have improved over the years as a result of more dis- 
criminating sensors, better classification algorithms, and the use of geographic information systems to incor- 
porate additional spatially referenced data such as topography. Land-use change, including conversion of 
forests for urban or agricultural development, can now be detected and rates of change calculated by superim- 
posing satellite images taken at different dates. Landscape ecological questions regarding landscape pattern 
and the variables controlling observed patterns can be addressed using satellite imagery as can forestry and 
ecological questions regarding spatial variations in physiological characteristics, productivity, successional 
patterns, forest structure, and forest decline. 

Introduction 

Since the launching of the first earth-observing 
civilian Landsat satellite in 1972, satellite remote 
sensing has been used for gathering synoptic infor- 
mation on forests. In the early years, satellite data 
were used mostly by geographers to create maps of 
forest types. These early efforts relied almost en- 
tirely on satellite-collected digital spectral data with 
no integration of ground-based digital information 
such as topography. More recently, ecologists have 
joined the geographers in utilizing satellite technol- 
ogy for a variety of forest-related applications 
which will be reviewed in this paper: detecting land- 
scape change over time, relating landscape patterns 
to biological or physical phenomena, evaluating 
physiological processes of forest canopies, and 
quantifying forest cover, biomass, or productivity 

over varying scales of spatial resolution. 
The sophistication of applications evident in re- 

cent years has been made possible by (1) the use of 
more spectrally and/or spatially discriminating 
sensors; (2) the improvement of hardware and 
software systems designed to process spatially- 
referenced digital data, and (3) the increased availa- 
bility, standardization, and compatibility of other 
spatially-referenced digital data sets such as digital 
topographic variables generated from digital eleva- 
tion models. The most common sources of satellite 
data relevant to forests are the U.S. Landsat 
Thematic Mapper (TM), the U.S. Landsat Mul- 
tispectral Scanner (MSS), the U.S. Advanced Very 
High Resolution Radiometer (AVHRR), and the 
French Systkme Probatoire d'observation de la 
Terre (SPOT). The spectral characteristics and spa- 
tial resolution of data from these sensors are por- 
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Fig. 1. Spectral and spatial resolution for four common satellite sensors: AVHRR, MSS, TM and SPOT. Also shown is a spectral 
response curve for typical green vegetation. 

trayed in Fig. 1 and compared to the electromagnet- 
ic spectrum typically found in green vegetation. 
More details on each sensor’s characteristics can be 
found elsewhere (e.g., Billingsley 1984; Greegor 
1986). Several other sensors have been used in 
forest-related applications but much less frequent- 
ly; for example, the Scanning Multichannel Micro- 
wave Radiometer (SMMR) to monitor vegetation in 
semiarid regions (Choudhury and Tucker 1987) or 
for assessing global primary productivity (Choud- 
hury 1988) and radar data for detecting forest 
change (Lee and Hoffer 1988; Stone and Woodwell 
1988). Several sophisticated airborne sensors are 
capable of detecting a great deal of ecological infor- 

mation on forests, but are beyond the scope of this 
paper. Sensors on the recently launched Japanese 
satellite and the Russian satellite are also useful in 
forest applications although their full potential is 
untested. 

Current trends in ecological studies have dictated 
the integration of remotely sensed digital spectral 
data into geographic information systems (GIs). 
This merger moves satellite spectral data beyond 
standard image processing and permits the use of 
remotely sensed spectral data in conjunction with 
such other spatially referenced digital data as eleva- 
tion, slope aspect, vegetation type, and soils. In this 
way, information about a landscape can be en- 
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riched beyond what is possible by the separate sys- 
tems (Logan and Bryant 1987). The integration of 
image processing systems and multilayered spectral 
data (as provided by satellite sensors) with GIS and 
digital geographic databases allows for the develop- 
ment of more sophisticated models of landscape- 
scale variables such as regional forest cover (Iver- 
son et af. 1989). 

The objective of this paper is to review ways in 
which satellite remote sensing can be useful in 
delineating structural and functional characteristics 
of forests at a variety of geographical scales. We fo- 
cus on the following uses of satellite imagery: (1) 
classification and mapping of forest types; (2) de- 
tection of areal change in forestland due to clearing 
or reforestation; (3) determination of patch disap- 
pearance and compositional change during succes- 
sion; (4) assessment of forest structure (basal area, 
biomass, leaf area index, density, crown closure); 
( 5 )  determination of damage or forest decline; (6) 
assessment of physiological processes and (7) as- 
sessment of forest cover and productivity. 

Applications of remotely-sensed data to forests 

Mapping of forest types 

Using satellite data to classify and map various 
forest and/or land-use types has historically been, 
and still is, the most frequent use of satellite data. 
Pixels are classified according to their ground 
reflectance values as measured by the satellites. The 
desired map is created by displaying the classified 
pixels in their appropriate geographic context. Two 
types of classification procedures may be followed 
to create a forest type map from a satellite image 
(Colwell 1983; Lillesand and Kiefer 1987). In un- 
supervised classification, computer algorithms are 
used to examine the spectral data of the entire scene 
and to clump pixels with like spectral properties 
into common classes according to the specific 
clustering algorithm used. The classes are indepen- 
dent of any apriori assumptions as to what ground 
cover they actually represent. After the classes are 
generated, the operator assigns meaning to the 
classes (i.e., converts the classes to landcover types) 

on the basis of ground-based data and the spectral 
properties of the class (e.g., water has unique 
reflectance characteristics so it can often be dis- 
cerned directly from its spectral signature). In su- 
pervised classification, the operator assigns specific 
pixels (training sites) to particular landcover classes 
on the basis of ground-based data. Computer al- 
gorithms are used to analyze the spectral properties 
of those sets of pixels and to assign the remaining 
pixels to landcover classes on the basis of the 
statistical similarity of their spectral properties. 

Satellite data of all resolutions have been used to 
generate forest type maps, from high resolution 
SPOT and TM land-use maps (e.g., Hopkins et af. 
1988; Buchheim et af. 1985; Nelson et af. 1984) to 
mid resolution MSS maps (e.g., Beaubien 1979; 
Dodge and Bryant 1976) to coarse resolution 
AVHRR maps (e.g., Tucker et af. 1985; Norwine 
and Greegor 1983; Townshend et af. 1987). 

Comparisons of the various sensors for classifi- 
cation and mapping accuracy have shown the su- 
periority of the finer resolution TM data over the 
MSS data (DeGloria 1984; Williams et af. 1984; 
Malila 1985; Toll 1985; Hopkins et af. 1988). Toll 
(1985) found that the improvement in classification 
of a scene of rapidly urbanizing Washington D.C. 
was due primarily to the better spectral discrimina- 
tion of TM data (especially TM bands 1, 5 ,  and 7; 
Fig. 1) and to a lesser degree to the increase in quan- 
tization of the spectral data within a band (a raw 
MSS band value can range from 1 - 128; a TM band 
value can range from 1-256). Interestingly, Toll 
found that the increased spatial resolution of TM 
reduced his ability to differentiate land-use classes 
of the first order such as urban, forest, agriculture, 
and water. This reduction occurred because the 
finer resolution TM data increased spectral varia- 
bility within the pixels of first-order classes but the 
spatial context of the pixel was not incorporated 
into the classification algorithms (e.g., forested ur- 
ban areas such as yards and small parks were classi- 
fied as forest rather than urban). However, Hop- 
kins et af. (1988), examining forested areas of Wis- 
consin, USA, found the spatial detail of TM to be 
advantageous in classifying second- and third-order 
forest land-use types such as upland coniferous 
forests and central hardwoods. The difference in 
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classification accuracy lies in the nature of the land- 
cover classes desired: for classification of a finer, 
higher order, the higher spatial resolution of TM is 
beneficial (Williams and Nelson 1986); for classifi- 
cation of a coarser, lower order, TM is disadvanta- 
geous unless the spatial context of a pixel is incor- 
porated into the classification procedure. 

The usefulness of SPOT data in classifying forest 
types has received mixed reviews. In an urban study 
in Athens, Georgia, SPOT data were found to in- 
crease the accuracy of all second- and third-order 
classifications by about 15 to 20% over that of TM 
(Welch 1985); further, these data were suitable for 
cartographic mapping at a scale of 1 :24,000. How- 
ever, SPOT data may be less helpful for mapping 
forest types (away from urban regions) because its 
reduced spectral resolution (fewer bands) relative to 
TM may obscure vegetation differences. 

AVHRR classifications are useful for maps of 
large areas and can be verified with higher resolu- 
tion images or map data (Schneider 1984). For ex- 
ample, multitemporal AVHRR data were used to 
develop a vegetation map of South America in 
which 16 vegetation classes were differentiated, 
several with accuracy greater than 90% (Town- 
shend et al. 1987). 

Much research has been conducted in an effort to 
enhance classification results. Raw spectral data 
may be pre-processed prior to classification. Vari- 
ous mean or median filters, in which pixels are reas- 
signed the mean or median spectral value of their 
surrounding pixels, may be applied to reduce intra- 
class variance while retaining the boundary detail 
of classified areas (Atkinson et al. 1985; Cushnie 
and Atkinson 1985). Raw spectral values are also 
sometimes converted to their principal component 
values via principal components analysis of the en- 
tire scene. More sophisticated techniques for clas- 
sification include stepwise discriminant analysis 
(Nelson et al. 1984) and per-field algorithms (Dean 
and Hoffer 1982) in which the classification of a 
pixel depends not only on its own spectral charac- 
teristics but also on those of adjacent pixels. 

Recently, classification accuracies have been im- 
proved by using a CIS to integrate digital bio- 
geographical data with satellite sensor data (e.g., 
CERMA 1985). For example, topographic varia- 

bles were integrated with TM data to increase the 
accuracy of classifications of vegetation communi- 
ties in Rocky Mountain terrain (Frank 1988). By in- 
corporating topographic variables, the shadowing 
effects created by the angle of the sun can be ac- 
counted for. Topo-climatic variables can also pro- 
vide indirect information about vegetation cover 
which can be incorporated directly into classifica- 
tion algorithms. Other biogeographical variables - 
soil types, landforms, geology, or vegetation maps 
- can also be helpful in classifying by providing 
strata (e.g., forest-non-forest, cultural-non- 
cultural, or wetland-non-wetland masks) that al- 
low image classification to be focused on a particu- 
lar area or resource of interest. 

Using satellite imagery to classify forest types is 
still a subjective procedure and as much an art as a 
science. Nonetheless, the technique has proven very 
useful not only to researchers but also to agencies 
that manage land resources. Classifications tend to 
be more accurate in flatter terrain and when the 
vegetation types are sharply contrasting, for exam- 
ple, coniferous versus hardwood or forested versus 
agriculture. The use of multitemporal scenes to 
capture phenological differences in vegetation 
often improves accuracy. In inaccessible parts of 
the world such as the tropical and boreal regions, 
satellite imagery is invaluable in mapping forest- 
land because often no other current data are 
available. 

Detection of forest change 

Changes in forest cover over time are important be- 
cause of the role forests play in the global carbon 
cycle, in global climatic trends, and in providing 
species habitat (Woodwell et al. 1984). Although 
understanding forest change is important world- 
wide, it is especially important in the tropics, where 
land-use transformation is occurring very rapidly 
and where timely ground data are scarce. 

The basic methodology for detecting change is 
straightforward: two or more satellite images of the 
same area, preferably taken at the same phenologi- 
cal period but in different years, are overlaid to 
show geographically specific changes in landcover. 
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In some cases, raw satellite spectral data can be 
taken from the two scenes and merged to make a 
multiple band combination data set, which is then 
classified. Usually, however, the two images are 
classified separately prior to  combining the data; 
this technique permits the use of varying data types 
such as MSS and TM or even historic ground-based 
maps. 

By comparing digitized ground-based maps of 
Costa Rican forestland from 1940, 1950, and 1961 
and MSS-derived forest cover maps of 1977 and 
1983, Sader and Joyce (1988) found that forest 
cover had decreased from 67 to 17% between 1940 
and 1983 with the most rapid rate of clearing be- 
tween 1977 and 1983. Furthermore, four of the l l  
Costa Rican life zones had disappeared completely: 
the dry tropical, the moist premontane, the moist 
lower montane, and the wet montane. They also 
demonstrated the close relationship between road 
building and deforestation by overlaying transpor- 
tation network maps with forest cover maps. 

Deforestation in the Amazon basin of Brazil has 
been quantified by using AVHRR band 3 thermal 
data which, unlike the visible bands, can penetrate 
the ubiquitous cloudcover of the region (Tucker et 
al. 1984; Malingreau and Tucker 1987). Estimates 
of deforestation were obtained by using band 3 to 
detect both the fires associated with lines of active 
deforestation and the devegetated areas, which are 
warmer. The studies of Rondonia, Brazil, indicate 
that the deforested area increased from 4200 km’ in 
1978 to 10,000 km’ in 1982 to 27,000 km’ in 1985 
to over 35,000 km’ in 1987 (Malingreau and Tucker 
1987; Malingreau and Tucker 1988). 

Deforestation rates in Rondonia, Brazil, have 
also been evaluated using AVHRR data in combi- 
nation with selected cloudfree 1976, 1978, and 1981 
MSS scenes of much smaller portions of the region 
(Nelson and Holben 1986; Nelson et al. 1987; 
Woodwell et al. 1987). The spatially precise MSS 
data revealed a doubling of deforestation rates be- 
tween the 1976-1978 and 1978-1981 intervals 
(Woodwell et al. 1987). The MSS data were also 
used to check the accuracy of AVHRR band 3 esti- 
mates of cleared areas for the entire state of Rondo- 
nia. The estimates appeared reasonably accurate 
given the constraints on the satellite data and the 

lack of timely ground data. Radar data also holds 
good potential for assessing deforestation in the 
tropics since radar data are not constrained by 
cloud cover. For example, Stone and Woodwell 
(1988) found Shuttle Imaging Radar-A (SIR-A) 
data to have the brightest returns (the highest signal 
returns to the radar sensor result from smooth, de- 
forested areas) on recently deforested regions in 
Amazonia. 

Although most forest change studies using satel- 
lite data have focused on deforestation in the 
tropics, temperate forest changes have also been 
studied because of their importance with regard to 
soil protection, water retention during flooding, 
wildlife habitat, timber resources, and recreation 
sites. For example, loss of bottomland forest coin- 
cident with upland forest regeneration has been 
documented in southern Illinois, USA, using classi- 
fied 1978 MSS and 1984 TM scenes (Iverson and 
Risser 1987), as has forest degeneration in the high- 
elevation forests in the Green Mountains of Ver- 
mont (Vogelmann 1988). 

The accuracy of satellite-based studies of forest 
change in the tropics are difficult to  determine, 
given the lack of ground-based data for verifica- 
tion. Nonetheless, the results are valuable because 
they are often the only source of timely, regionally 
consistent information on deforestation. In tem- 
perate regions where ground-based data are often 
available (e.g., national forest inventories), satellite 
studies are nevertheless valuable because they can 
show the spatial pattern of change, which most in- 
ventories cannot, because they can look at shorter 
time intervals (two to three years versus 10 or more 
years for most ground-based surveys), and because 
the methodologies developed to assess forest cover 
(or change) over large regions can be validated with 
the independent inventory data sets (as in Iverson et 
al. 1989). 

Forest succession 

The spatial and temporal patterns of forest succes- 
sion can be studied using spatially referenced vege- 
tation data from two or more dates. Transition 
probabilities of forest succession pathways in 
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northern Minnesota, USA, were calculated using 
classified MSS scenes from 1973 and 1983 (Hall et 
al. 1987). Transition probabilities of the managed 
areas differed from those of the wilderness areas 
primarily because of the influence of logging, 
which altered not only the rates of transition but 
also the possible types of transition. In a second 
type, Walker et al. (1986) successfully used Landsat 
MSS data in Australian semi-arid eucalypt wood- 
lands to detect stage of seccession based on struc- 
tural differences in 0 to 50 year old clearings. 

In another forest succession study, which utilized 
both image processing and GIS technology, the sta- 
bility and fate of abandoned pasture patches in a 
mosaic of mountainous forest were found to be sig- 
nificantly related to original patch size and eleva- 
tion (Graham et al. 1987). This study used 1934 
vegetation maps depicting the abandoned pastures 
and 1984 TM imagery. The fate of the pastures 
patches was determined by comparing the 1984 
spectral signature of pixels within the historic 
boundaries of the abandoned patches with the spec- 
tral signature of pixels just outside the patch 
boundaries. 

Satellite imagery holds considerable promise for 
determining the rate and spatial context of succes- 
sion; however, this use is still experimental and not 
without problems. The accuracy of transition prob- 
abilities will depend in large part on the accuracy of 
the original classifications. Furthermore, there are 
theoretical problems in calculating transition prob- 
abilities with data that have a time interval equal to 
or greater than that of the change phenomena. 

Assessment of stand structure 

Satellite data have been used with varying degrees 
of success to quantify spatially such forest structure 
characteristics as crown cover, tree density, tree di- 
ameter, basal area, tree height, tree age, biomass, 
and leaf area index. In general, the technique is to 
collect spatially-referenced ground data on the 
forest structure variable of interest and then to de- 
termine the statistical relationship between the 
ground-obtained data and the spectral data for the 
same location. Thus far, most studies have used 

spectral data generated from airborne sensors such 
as the thematic mapper simulator (TMS), which has 
bands identical to TM, rather than satellite-borne 
sensors. The resolution of airborne spectral data is 
often finer than that of satellite data. Virtually all 
studies have focused on coniferous forests, which 
tend to be more uniform and more distinguishable 
from other vegetation types than are deciduous 
forests. Whether the techniques used to relate satel- 
lite data to forest structure in coniferous forests will 
also be appropriate for non-coniferous forests is yet 
to be determined. 

Canopy closure in montane, coniferous forests 
of California, USA, correlated well with the spec- 
tral intensity of several TMS bands (r = 0.62 to 
0.69, n = 103) irrespective of forest type (Peterson 
et al. 1986). Total stand basal area, however, was 
poorly related to the spectral data (r < 0.33). 
Stratification by forest type improved the spectral 
relationship with basal area. The data suggested 
that the relationship between total basal area and 
spectral signature will be strongest in young, low 
density, even-age stands. In another study of 
Californian coniferous forests, TMS bands 1 , 2  and 
3 (analogous to TM bands 1 ,  2 and 3) were most 
strongly related to stand basal area and leaf bi- 
omass (Franklin 1986). 

A relatively high relationship between TMS spec- 
tral band intensity and canopy closure (r = 0.80, n 
= 32 for band 5) was found for the pine-aspen 
forest of Colorado, USA (Butera 1985). By apply- 
ing a regression model of this relationship to the 
raw band 5 value of every pixel in the mountainous 
scene, Butera generated a map of forest canopy 
closure. The accuracy of the map was 71070, 74%, 
and 54% for canopy closures of 0-25%, 25-75'70, 
and 75- 100% respectively. 

Spanner et al. (1984) used a classification ap- 
proach to study the ability of TMS imagery to 
differentiate crown closure and tree size classes in 
a fir-dominated forest in Idaho, USA. They found 
> 60% accuracy in classifying crown closure class- 
es of > 70%, 40-69'70, and 10-39%, with less ac- 
curacy on sites of very low (< lOQ7o) crown closure. 
Sawtimber and pole size classes were also classified 
with 72-87% accuracy. The optimal bands in these 
analyses were, in order, 4, 7, 5, and 3. 
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Again using TMS imagery, researchers have 
related leaf area index (LAI) of coniferous forests 
to spectral band intensity (Running et al. 1986; 
Peterson et al. 1987). In these studies, LA1 of 
coniferous forest stands along a transect across the 
mountains of Oregon, USA, was strongly related to 
the ratio of band 4 to band 3 (r2 = .82, n = 18). 
LA1 of these stands ranged from < 1 to > 16. 

Danson (1987) correlated SPOT data with struc- 
tural characteristics of pine forests in England and 
found highly significant correlations of SPOT band 
3 (near infrared) to tree density, diameter at breast 
height, and tree age but not to canopy cover. Wu 
and Sader (1 987) showed that airborne Multipolari- 
zation Synthetic Aperture Radar (SAR) also may be 
used with some success to estimate basal area, tree 
height, and total tree biomass. 

An airborne, pulsed laser system, called the Light 
Detection and Ranging (LIDAR) system was also 
used to predict total tree volume and green weight 
biomass of pine plantations in Georgia (Nelson et 
al. 1988). They were able to predict overall tree 
volume to within 2.6% and mean biomass to within 
2.0070, but were not successful at predicting volume 
or biomass on a site by site basis. 

Results from these studies are encouraging in 
that statistically significant relationships between 
spectral data and forest structure data generally do 
exist. The results are also frustrating, however, be- 
cause the relationships are not consistent across 
studies and are generally too weak to offer predic- 
tive accuracy at a per pixel scale. As a consequence 
of the latter weakness, the relationships cannot be 
used to examine the spatial patterns of structural at- 
tributes. Nonetheless, in some cases the relation- 
ships can be used to accurately determine the mean 
value of a structural attribute over a landscape 
(Iverson et al. 1989). New approaches such as the 
incorporation of biogeographical data, along with 
additional research and probable technology de- 
velopment will be necessary before satellite imagery 
- forest structure relationships are sufficiently ac- 
curate and robust to be truly useful in large scale in- 
ventories or to detect spatial changes in stand 
structure. 

Assessment of forest damage 

The assessment of forest damage is an important 
use of remote sensing data. Many of the changes in 
tree or foliage morphology resulting from stress can 
be detected with remote sensors (Jackson 1986). 
Furthermore, the spectral signature of stressed trees 
may indicate not only the degree of stress but also 
the type of stress. For example, TMS imagery of 
damaged red spruce (Picea rubens) stands in Ver- 
mont shows a large reduction in the near and 
shortwave-infrared reflectance (bands 4 and 5 
respectively) (Rock et al. 1986). The location of 
highly damaged stands was readily apparent in the 
scene if the ratio of these bands was displayed. Field 
verification of the image revealed that the foliage of 
the highly damaged spruce stands was drier and less 
dense than that of undamaged stands (Rock et al. 
1986; Vogelmann and Rock 1986). These authors 
have continued their work with the TM sensor and 
have been successful in assessing forest damage in 
Vermont and New Hampshire (Vogelmann and 
Rock 1988). 

Damage produced by insect defoliation has also 
been successfully assessed from remotely sensed im- 
agery. This type of damage is easily perceived by ex- 
amining scenes of an area before and after defolia- 
tion. For example, areas of heavy gypsy moth 
defoliation in Pennsylvania, USA, were quite evi- 
dent in a foliage difference map created from June 
1976 and July 1977 MSS data (Williams and 
Stauffer 1979). The key to successful defoliation as- 
sessment is to use scenes that capture the period of 
heaviest defoliation (Dottavio and Williams 1983). 

Spectral imagery is used routinely by forest 
managers to detect and measure insect defoliation, 
although the data often come from airborne rather 
than satellite sensors. Stress detection of forests is 
still in the research stage, but results thus far are 
promising. 

Assessment of physiological parameters 

Many physiological attributes - such as pho- 
tosynthesis, evapotranspiration, plant maintenance 
respiration, turnover of organic carbon, and 
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moisture retention - are related to the interaction 
of solar radiation and vegetation (Knipling 1970). 
As such, satellite sensors, which measure the light 
reflectance of the earth’s surface, should potential- 
ly be able to indirectly measure changes in these 
radiation-mediated physiological processes. Re- 
flectance measurements should be useful in infer- 
ring spatial and/or temporal variations in pho- 
tosynthesis and evapotranspiration rates because 
the structural and functional properties of leaves 
determine the radiatiodinterception characteris- 
tics of tree canopies (Sellers 1985; Tucker and 
Sellers 1986). Spectral data can provide informa- 
tion on the amount of chlorophyll pigment (visible 
wavelengths), the projected green leaf density (near 
infrared), and the leaf water content of the canopy 
(shortwave infrared). The first two can be used to 
infer potential photosynthesis although actual pho- 
tosynthesis will be determined by solar flux, 
moisture availability, and other environmental fac- 
tors operating on the system at the time (Tucker and 
Sellers 1986). 

Spectral reflectance data should also be useful in 
identifying many important biochemical features 
of forest canopies because many biochemical com- 
pounds possess unique spectral absorption proper- 
ties (Waring et al. 1986). Determination of leaf 
starch, nitrogen, protein, and lignin content should 
be feasible from spectral data, although probably 
not with current satellite technology (Waring et al. 
1986). For example, Spanner et al. (1985) were able 
to relate canopy nitrogen content to spectral data 
taken with the Airborne Imaging Spectrophotome- 
ter (AIS). Peterson et al. (1988) have extended this 
work over several sites to find relationships be- 
tween nitrogen, lignin, and total water content with 
the AIS spectral signatures. The infrared region of 
the electromagnetic spectrum has been shown to be 
especially rich in information about canopy bio- 
chemical characteristics. 

Leaf water content and consequently forest stand 
water relations should also be able to be inferred 
from canopy spectral reflectance properties in the 
shortwave infrared bands (e.g., TM bands 5 and 7) 
(Tucker 1980). In the field, the higher values of the 
ratio of the percent reflectance at 1.65 pm to the 
reflectance at 1.26 pm corresponded to highly 

water-stressed vegetation (Rock et al. 1986). Hand- 
held spectral sensors have been used to detect water 
stress in buffelgrass in Texas, USA (Richardson 
and Everitt 1987). To our knowledge, current satel- 
lite data have not yet been used to satisfactorily 
evaluate moisture availability of forested canopies. 

Mounting evidence suggests that remotely sensed 
spectral data may become as successful, if not more 
successful, at estimating forest function (e.g., pho- 
tosynthesis or evapotranspiration) than forest 
structure (e.g., biomass or leaf area) because of the 
dynamic nature of the reflectance-physiological in- 
terface (Tucker and Sellers 1986; Kimes et al. 1987). 
In the future, remote sensing may be able to detect 
portending ecosystem shifts by detecting changes in 
rates of key physiological processes that reflect 
basic ecosystem parameters (e.g., photosynthesis 
and productivity) (Waring et al. 1986). Evidence 
also suggests that some of these physiological para- 
meters such as photosynthesis can be estimated 
without knowledge of species (Aber and Fownes 
1985). Detection of ecosystem parameters without 
identification of species is necessary to integrate 
data across landscapes and eventually the globe. 

However, examples of satellite detection of phys- 
iological processes of forested ecosystems are rela- 
tively scarce at the present time. Running and 
Nemani (1988) found a high relationship between 
photosynthesis, transpiration, and aboveground 
primary productivity as ascertained by an eco- 
system simulation model and the annual integrated 
normalized difference vegetation index (NDVI, 
(near infrared-red)/(near infrared + red) from the 
AVHRR sensor, Fig. 1) over seven sites in the U.S. 
They found the relationship to be especially rigo- 
rous on sites located at high latitudes with little 
seasonal water stress. Serafini (1987) used diurnal 
and seasonal variations in the difference between 
satellite-derived earth surface temperature (based 
on AVHRR data) and air temperature near the sur- 
face (as measured by ground-based, shelter-height 
sensors). Spatial variation of evapotranspiration 
could account for the variation in the derived 
differences. Tucker et al. (1986) and Fung et al. 
(1987) found a high correlation over a 3 !h year peri- 
od between globally averaged NDVI and globally- 
averaged monthly atmospheric C02concentra- 
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tions. This relationship suggests that satellite data 
can be used to estimate terrestrial photosynthesis 
and productivity, since atmospheric CO, varies 
seasonally according to the amount of drawdown 
occurring via photosynthesis. The intensive studies 
of the First ISLSCP Field Experiment (FIFE), per- 
formed during 1987 and 1988 on the Konza Prairie, 
Kansas, used a large number of ground, airborne, 
and satellite sensors to assess the potential to under- 
stand the physiological characteristics of vegetation 
(especially with regard to the effect on climate) via 
remote sensing (Sellers et al. 1988). Most research, 
however, that relates spectral data to forest physio- 
logical features has been done using various air- 
borne sensors (Sader 1987) or portable sensors 
mounted on platforms or low flying helicopters. 
Furthermore, often the sensors have been quite 
different from the sensors currently employed on 
satellites. More refined satellite sensors and much 
research will be needed before satellite spectral data 
will truly promote a better quantitative understand- 
ing of the temporal and spatial pattern of physio- 
logical properties of the earth’s vegetation. 

Assessment of forest productivity 

If satellite sensors could accurately detect forest 
productivity, they would provide obvious cost and 
effort advantages over traditional field survey 
methods. Productivity estimates based on satellite 
data have been produced with some success for 
agronomic ecosystems (Olang 1983), wetlands 
(Butera et al. 1984; Hardisky et al. 1984), and 
shrublands (Strong et al. 1985). Productivity assess- 
ments of forests using satellite data are rare. Forest 
productivity classes in northwestern California, 
USA, were predicted with moderate success using a 
CIS with classified MSS data, topographic data, 
and ecological zone data (Fox et al. 1985). 

In another study, predictive models of wood 
mean annual increment of volume in three regions 
of the United States (southern Illinois, eastern Ten- 
nessee, and northeast New York) were developed 
using CIS, TM data, and digital biogeographical 
data on forest productivity and soils, slope, solar 
radiation, and/or vegetation type (Cook et al. 

1987; Cook et al. 1989). In general, forest produc- 
tivity was more accurately predicted with a combi- 
nation of TM and biogeographical variables than 
with either data type alone. The best regression 
models in each of the three study regions were high- 
ly significant (p < 0.002) but left a considerable 
amount of the spatial variance in forest productivi- 
ty unexplained. Because of the extreme heteroge- 
neity of forests stands at the 30-m2 resolution of 
TM and because of the many abiotic and biotic 
variables involved, it may not be reasonable to ex- 
pect a high degree of predictability on small, site- 
specific areas (Franklin 1986; Peterson et al. 1986). 
Predictability may be improved by changing the 
scale of reference to cover larger areas or by pooling 
and/or stratifying data (Cook et al. 1989; Franklin 
1986). 

As a means to scale up to regional levels, Iverson 
et al. (1988) used the TM-derived models men- 
tioned previously for the Illinois and Tennessee 
sites in combination with TM and AVHRR scenes 
of the same areas to develop predictive relation- 
ships between the much coarser but more extensive 
AVHRR data and forest productivity. Multiple re- 
gression was used to develop the models relating 
AVHRR spectral data to TM-derived estimates of 
forest productivity. The resulting models were then 
applied to each AVHRR pixel in the region to de- 
velop regional maps of forest productivity. The va- 
lidity of these maps was tested by aggregating the 
AVHRR pixel productivity into county-level pro- 
ductivity estimates and then comparing these 
county-level estimates with independently derived 
county-level forest productivity estimates from the 
U.S. Forest Service. 

For the 428 counties centered on the southern 11- 
linois region, the correlation coefficient of the two 
productivity estimates was 0.72 P (p < 0.0001). 
For the 168 counties centered on the eastern Ten- 
nessee region, the coefficient was 0.52 (p < 
0.0001). The lower success in the eastern Tennessee 
region was attributed to the more variable land- 
scapes of counties > 100 km from the original TM- 
AVHRR-forest productivity calibration center. 
Closer to the calibration center (within 100 km), the 
correlation coefficient was 0.86. To extend this 
methodology of using nested TM and AVHRR 
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scenes to scale up relationships between spectral 
values and productivity to continental or global 
scales will probably require stratification of the ini- 
tial calibration sites by ecological regions such as 
Kiichler’s (1964) potential vegetation type or 
Bailey’s (1980) ecoregions (Logan 1985). 

The above methodology for developing regional 
estimates of productivity differs from most re- 
gional-scale remote sensing studies of productivity 
which generally rely solely on AVHRR data. A 
more common approach is to use multiple scenes of 
AVHRR data to capture the change in a spectral 
greenness index over the growing season (Goward 
et al. 1985, 1987; Tucker et al. 1985; Shimoda et al. 
1986; Townshend and Justice 1986). The most suc- 
cessful index has been the normalized difference 
vegetation index (NDVI). For example, Goward et 
al. (1987) found a high correlation between 
seasonal changes in NDVI values and literature esti- 
mates of biome productivity across 24 North and 
South American biomes. Choudhury (1988) also 
found Nimbus-7 37 GHz SMMR data highly cor- 
related with estimates of global net primary pro- 
ductivity. Generally, though, valid satellite-based 
estimates of productivity or other ecological para- 
meters across a large area are difficult to obtain be- 
cause of the problems with securing ground obser- 
vations over such large regions (Curran and Wil- 
liamson 1986). 

Conclusions 

The use of satellite data as an aid in understanding 
the ecological nature of forests is a very recent and 
rapidly evolving phenomenon. Although most 
forest applications are still in the experimental 
stage, research suggests that satellite data will prove 
extremely useful in extracting spatial information 
on forest ecosystem attributes. Because satellite 
sensor data integrate optically over the pixels, they 
are not as useful as finer resolution data if informa- 
tion on site specific ecological parameters is 
desired. However, satellite sensors are indispensible 
if one wishes to evaluate or monitor large areas. 
The synoptic quality of satellite data is just begin- 
ning to be exploited; most research has understand- 

ably focused on parameter identification rather 
than on spatial relations of ecological parameters. 
Satellite data provide two main applications to 
forest ecology: (1) the ability to monitor ecological 
attributes in inaccessible regions and/or spatially 
extensive regions, and (2) the capacity to detect the 
spatial ecosystem patterns and processes of forests. 
Much progress has been made toward the first ap- 
plication although much is left to be done. The sec- 
ond application has just begun to be explored. 

Forests are fundamental to the healthy function- 
ing of the biosphere. With the current global cli- 
mate warming, loss of biodiversity, environmental 
degredation, and increased need for forest products 
(all problems that rely on forests as a key in the 
process or mitigation of the process), it is impera- 
tive that we monitor and understand the forests of 
this globe. Synoptic, timely information, which can 
be provided only with satellite data, is needed to 
support local, national, and global decision-makers 
in the crucial planning efforts designed to preserve 
the habitability of this planet for generations to 
come. 
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