Acacia farnesiana (L.) Willd.
Aroma, huisache
Leguminosae (Mimosoideae)
Legume family

John A. Parrotta

Acacia farnesiana (L.) Willd., commonly known as aroma or huisache, is a multistemmed, deciduous shrub or small tree characterized by a dense, spreading crown, spiny branches, and fragrant flowers. Aroma is probably native only along the Mediterranean coast, although it is naturalized in many parts of the New and Old World tropics and subtropics where it has been introduced. It is a useful species for reforestation of degraded drylands; it is also used extensively for fuel and small timber and in the perfume industry in southern France. In some locales, it is considered a pest due to its ability to colonize pastures and other disturbed habitats (fig. 1).

HABITAT

Native Range

Aroma is considered native only to southern France, Italy, and elsewhere along the northern Mediterranean coast. It was introduced to the New World during the early years of Spanish colonization. The type botanical specimen described by Linnaeus was collected in the Dominican Republic. Following its introduction, aroma has been spread by livestock and disturbances associated with grazing such as fire, brush cutting, and browsing. It has become naturalized throughout the West Indies; in the Southern United States, from California to Florida; Mexico, Central America; South America as far south as Chile and Argentina; and in many parts of the Old World tropics and subtropics, including India (22, 27), North Africa (10), and Nigeria (14). It is present on all continents (between 30° N. and 40° S. latitudes) and is the most widely distributed species of *Acacia* (43).

Climate

Aroma generally requires a mean annual rainfall of between 500 to 750 mm for good growth, although it can survive in areas receiving as little as 400 mm of annual rainfall, with a dry season lasting from 4 to 6 months (2, 52). In Mexico, aroma grows in areas receiving up to 900 mm of rainfall (34). The species is drought hardy, fire resistant, and susceptible to frost (52). Aroma grows well where mean annual temperatures range from 15 to 28 °C, with mean temperatures of 25 to 32 °C during the hottest months and mean temperatures of 2 to 10 °C during the coldest months (52). However, where it has been naturalized in India, mean maximum temperatures range from 30 to 40 °C during the hottest months and mean minimum temperatures from 4 to 24 °C during the coldest months (22).

Soils and Topography

In Mexico, aroma grows on a wide variety of soils, from heavy clays to sands (34), although best growth occurs in well-drained soils. In areas of India where aroma has become naturalized, the tree grows on sandy alluvial soils and is cultivated throughout the Indo-Gangetic plain on a variety of alluvial soil types. It grows well on nutrient-poor sands in dry forests and is considered useful for soil stabilization in degraded drylands (12, 22). Aroma is not exacting as to soil pH and tolerates saline soils (52).

The tree grows in natural stands at altitudes from sea level to approximately 2,000 m in Mexico (34), and to an elevation of approximately 1,000 m in Central America (19).

Associated Forest Cover

In the xeric shrublands and forests of the Gulf Coastal Plain in northeastern Mexico, aroma is associated with *Acacia berlandieri* Bent., *A. rigidula* Bent., *A. wrightii* Bent., *Helietta parviflora* (A. Gray) Bent., *Leucaena leucocephala* (Lam.) de Wit, *Pithecellobium flexicaule* (Benth.) Coulter, *P. pallens* (Benth.) Standl., *Prosopis juliflora* (Sw.) DC., and *P. laevisigata* (H. & B. ex Willd.) M. C. Johnst. (12). In western Mexico, aroma is associated with...
pennulata (Schlecht. & Cham.) Benth. in degraded deciduous forest areas; in the State of Morelos, it is associated with A. bilimekii Machrifice, A. cochlacantha Humb. & Bonpl., Cassia pringlei Rose, and Willardia parviflora Rose in secondary thickets (38). In subtropical dry forests (18) at altitudes up to 2,000 m in Jalisco and Aguascalientes, aroma grows in association with A. pennulata, Bursera bipinnata (DC.) Engl., Eysenhardtia polystachya (Ortega) Sarg., Heliocarpus terebinthaceus (DC.) Hochr., Hypsidi balsae H. B. K., Ipomea intrapilosa Rose, I. murucoides Roem. & Schult., Mimosa monandra Bentham, Opuntia fuliginosa Griffiths, and Tecoma stans (L.) H. B. K. (38).

Elsewhere in Mexico, aroma forms dense successional stands in southwest Puebla on sites with deep, well-drained soils. On these sites, aroma is easily replaced by Prosopis and Pteleocercium. Aroma is also common in the other sites derived from subtropical thorn forests (18) in the southeast San Luis Potosi, where it grows with A. amenaforma DC., Caesalpinia mexicana Gray, Cordia alba (Jacq.) Roem. & Schult., Dehydro minutaifolia Roese, Harpalcyca arborescens A. Gray, Pteleocercium calostachys Standl., Sapindus saponaria L., and Thesietia peruviana (PERS.) K. Schum. (38). In tropical deciduous forests and thorny woodlands (18) of the Isthmus of Tehuantepec, aroma is commonly associated with A. corningera (L.) Willd., A. pringlei Rose, A. cymbisipina Sprague & Riley, Amphipterygium adstringens (Schlecht.) Schiede, Bauhinia albiflora Britt. & Rose, B. pauletia Pers., Caesalpinia coriaria (Jacq.) Willd., C. eriostachys Bentham., Casearia nitida Jacq., Cordia curassavica (Jacq.) Roem. & Schult., Croton guatemalensis Lote, D. floribunda Peyr., Haematoxyllum brasiliense Karst., Jacquinia aurantia Ait., Pereskia conzattii Britt. & Rose, Piptadenia flava Bentham., Pteleocercium dulce (Roxb.) Bentham. (33), P. tortuosa Mart., Prosopis laevigata, and Randia aculeata L. (5, 38). It is a minor component in forests dominated by P. laevigata at altitudes ranging from 1,000 to 2,000 m in many parts of Mexico, including much of the area west of the Isthmus of Tehuantepec (38).

In Puerto Rico, aroma has become naturalized in thickets and forests in many dry coastal and dry tropical regions (27) and commonly grows in association with Pteleocercium dulce (33) and Prosopis pallida (H. & B. ex Willd.) H. B. K. In Barbados, aroma grows in xerophytic shrub formations on rocky hillsides with Leucaena leucocephala (Lam.) de Wit, Pisonia aculeata L., Psidium guajava L., Tecoma stans (L.) H. B. K., and Ziziphus mauritiana Lam. (15).

In India, where aroma has been cultivated and naturalized throughout much of the drier regions of the country, it occurs most commonly in dry deciduous forests, particularly in sandy river beds, in pure stands or in association with Dalbergia sissoo Roxb. (32) and Tamarix dioica Roxb. (22).

LIFE HISTORY

Reproduction and Early Growth

Flowering and Fruiting.—Aroma is known to flower as early as the second year following germination, with pods produced as early as the third year (22). Flowering season varies with local climate; trees are recorded in flower from November to February in Puerto Rico (27), from December to March in Central America (19), from January to April in northwestern India, and from September to February in eastern India (22). Numerous yellow flowers form fragrant, globose heads, which are borne one to three together on hairy stalks 1.8 to 3.6 cm long (27) (fig. 2). Individual flowers consist of a tubular five-toothed calyx (3 mm long), a tubular five-toothed corolla (6 mm long), many threadlike stamens 6 mm long, and a pistil (4.8 mm long) with a narrow ovary and slender style (27).

The fruits, generally produced in abundance from the time the tree is about 3 years old, are thick, slightly flattened pods, dark brown to blackish in color when ripe, 3.6 to 7.6 cm long, and 3 to 12 mm wide. The fruits form rapidly after flowering, reaching full size in 2 to 4 months and ripening approximately 2 months later. A sample of pods collected in Puerto Rico contained between 11 and 23, averaging 14.4 ± 1.2, seeds per pod (author, personal observation).

Seed Production and Dissemination.—Aroma seeds are small, elliptical, and slightly flattened, 8 mm long, and brown in color with a hard seedcoat (27). While the literature indicates that there are approximately 11,000 to 13,000 seeds per kilogram (22, 52), two samples of 100 air-dry seeds from Puerto Rico averaged 0.132 ± 0.004 g and 0.130 ± 0.006 g per seed, respectively, or about 7,600 seeds per kilogram (author, personal observation).1 While livestock are probably the primary means of dispersal in pastures, smaller seed-eating vertebrates such as lizards have been reported to disperse aroma seeds up to 500 m from parent trees in Central American deciduous forests (48). Unless first consumed by livestock, the ripe pods remain attached to the tree for several months and generally fall to the ground without dehiscing. Seeds are released from pods following decay or insect damage (22). Ripened pods may be collected from branches, air-dried, and crushed to release seeds (22).

Seedling Development.—Germination in aroma is epigeous. Seeds may be sown without pretreatment, although soaking in cold water for 48 hours (22) or in hot water for 10 to 20 minutes (23) is reported to greatly improve germination. Incubation of seeds at temperatures between 60 and 70°C for a period of 6 to 12 hours has been found to greatly increase germination percentages (14). Scarification in concentrated sulfuric acid for 20 to 60 minutes or in concentrated nitric acid reportedly resulted in 65 to 70 percent germination (14, 39). Mechanical scarification with sandpaper appears to be the best pretreatment technique, resulting in germination as high as 98 percent (14). Whether mechanical scarification is carried out before or after storage seems to make no difference in germination rates (24).

Mechanically scarified seeds placed on moist filter paper in a petri dish begin germinating within 6 days, with 57-percent germination after 13 days.1 Seed germination is commonly between 10 and 40 percent for fresh, untreated seeds (14, 28). Seeds remain viable for 30 years or more when

are available on vegetative reproduction under field conditions, the persistence of aroma in heavily grazed, mechanically cut, and herbicide-treated pastures suggests that the species coppices well.

Sapling and Pole Stage to Maturity

Growth and Yield.—Mature trees are characterized by multiple stems; dark-brown, smooth bark; a branchy, spreading crown of slightly zigzag twigs bearing paired, whitish spines; and light-green foliage. Leaves are bipinnately compound, 5 to 10 cm long, with 2 to 6 pairs of pinnae, each with 10 to 25 pairs of narrow, stalkless leaflets 3 to 9 mm long (27). Heights at maturity generally range from 3 to 5 m (occasionally to 10 m), depending on locality (19, 22). Maximum stem d.b.h. is approximately 45 cm (46).

In 3-year-old plantations established at a 2- by 2-m spacing on a site in Mexico with alkaline, vertisol-like soils, and mean annual rainfall of 750 mm, average basal diameter and tree height were 3.9 cm and 1.5 m, respectively (12). Average height and d.b.h. were recorded as 2.8 m and 4.3 cm, respectively, in 3-year-old plantations established with a 2- by 2-m spacing at a site in Tamil Nadu, India, that received an average annual rainfall of 330 mm (45). An average tree height of 1.5 m was recorded in 4-year-old, direct-seeded plantations at a site in Punjab that received an average annual rainfall of 760 mm (22).

Rooting Habit.—The morphology of the root systems of aroma is variable and may be dominated either by deep taproots or wide-ranging lateral roots, depending on the distance to the water table (15). Like other members of the genus *Acacia*, aroma commonly forms a symbiotic association with bacteria of the Rhizobiaceae, thus enabling it to fix atmospheric nitrogen (4, 19). Association with the mycorrhizal fungus *Endogone calospora* has been reported to improve seedling growth (21).

Reaction to Competition.—Aroma is intolerant of shade and requires free growing space in nurseries and plantations; otherwise smaller seedlings are quickly suppressed by more vigorous individuals (22). It has been successfully interplanted for nitrogen fixation at 1- by 1-m spacings on infertile semiarid sites with *Pinus brutia* Ten. in Iraq (16). Aroma is an aggressive competitor in pastures and other disturbed sites.

Damaging Agents.—Aroma is susceptible to attack by the twig girdler *Oncideres postulatus* LeConte (Coleoptera: Cerambycidae) in southern Texas (11, 36). In Puerto Rico, aroma seeds and pods are susceptible to attack by bruchid beetles (author, personal observation). Elsewhere, attack by *Mimosestes nubigenus* has been reported in Costa Rica (47) and attack by the tamarind bruchid beetle (*Caryedon gonagra* Fabriscius) in India (31). The green pods are reportedly attacked by the pomegranate butterfly *Viraechola livia* Klug (Lepidoptera-Rhopalocera: Cycaenidae) in Egypt (1).

Several leaf and stem pathogens have been reported to infest aroma. *Corticium salmonicolor* Berk. & Br., the cause of "pink disease," has been reported in Sierra Leone (13). Fungal pathogens include *Ravenelia australis* Dict. & Neger, *R. hieronymi* Speg., and *R. siliqueae* Long in Texas (50); *R. spegazziniana* Lindquist in Hawaii, the continental United States, Mexico, Guatemala, Cuba, and Puerto Rico; *R. acciae-farnesiana* P. Henn. in Brazil; *R. formosana* Syd.
Taiwan; unidentified *Ravenelia* species in Myanmar, New Caledonia, Zambia, and Ethiopia; and *Uromycladium notabile* (Ludw.) McAlp in New Zealand and Australia (13). Other leaf pathogens of minor importance include *Phyllachora acaciae* P. Henn. in the West Indies and Ecuador (44) and *Camptomeris albizziae* (Petch) Mason in Dominica, Sudan, Kenya, and South Africa (13). Root diseases affecting aroma include root rot caused by *Clitocybe tabescens* Scop. ex Bres., reported in Florida, and *Phymatotrichum omnivorum* (Shear) Dug., reported in Texas (50). Aroma is the host of the root-knot nematode *Meloidogyne javanica* (Treub) Chitwood in India (17). A serious wilt caused by a species of *Dothiorella* has been noted in Italy (13).

GENETICS

Among the mimosoid legumes, few species exhibit the systematic complexity of *A. farnesiana*, which is considered an assemblage of species or microspecies. Closely related species segregated from the *A. farnesiana* complex include *A. smallii*, distributed in the Southern United States and northern Mexico; *A. pinetorum* in southern Florida; and *A. caven*, an extratropical South American taxon (6, 42). Botanical synonyms include *A. cavenia* Bert. (50), *A. leptophylla* DC. (3), *Vachellia farnesiana* (L.) Wight & Arn., and *Mimosa farnesiana* (26, 37). *Acacia farnesiana* is a tetraploid species (2n = 52) (42).

LITERATURE CITED

