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Background: The dynamics of gaps plays a role in the regimes of tree mortality, production of coarse woody debris (CWD)
and the variability of light in the forest understory.
Aims: To quantify the area affected by, and the carbon fluxes associated with, natural gap-phase disturbances in a tropical
lowland evergreen rain forest by use of ground measurements and high-resolution satellite images.
Methods: We surveyed two large forest inventory plots of 114 and 53 ha of the Tapajós National Forest (TNF) in the Brazilian
Amazon during 2008 and 2009, respectively. We mapped all gaps and collected data on light availability, CWD stocks and
tree mortality in the field. Gap location, canopy openness (CO) and leaf area index (LAI) estimated in the field were compared
with two IKONOS–2 high-resolution satellite images acquired at approximately the time of the field measurements.
Results: In the two large plots (167 ha total area) we found 96 gaps. The gaps represented 1.42% of the total area and gaps
<1-year-old accounted for 0.81% of the plot area. In TNF, the production of CWD in recent gaps was 0.76 Mg C ha−1

year−1 and the mean tree mortality was 2.38 stems ha−1 year−1. The area of gaps estimated using thresholds of light intensity
measured by remote sensing optical instruments was twice as large as the gap areas measured on the ground. We found no
significant correlation between spectral remote sensing images and CO or LAI, probably due to the high degree of shadow in
the high-resolution satellite images.
Conclusions: We present the first statistics of CWD production based on gap size in the tropical forest literature. Tree
mortality and CWD flux and the forest floor light environment were closely related to gap area. However, less than 30% of
the annual tree mortality and CWD flux was associated with gaps, and gaps were difficult to detect using remote sensing
methods because of the high proportion of shadow in the images. These results highlight the need for permanent plots in
long-term carbon studies.

Keywords: Amazon; canopy opening; coarse wood debris gaps; leaf area index natural disturbances; remote sensing; tropical
forest; IKONOS

Introduction

The formation of gaps in tropical forests continually
reshapes forest structure (Whitmore 1989; Brokaw and
Scheiner 1989) and is a mechanism for the maintenance
of biodiversity (Denslow 1987; Hubbell et al. 1999). Gaps
produced by tree falls and subsequent regrowth (Brokaw
1982; Uhl et al. 1988) create the characteristic patchwork
structure of old growth tropical forests and are important
for forest dynamics and carbon cycling (Shugart 1984). The
impact of gap formation on tropical forest carbon cycling
can be measured by tree mortality at the plot level (Phillips
et al. 1998; Clark et al. 2000; Clark and Clark 2000), by
measurement of the stocks of coarse woody debris (CWD)
(Delaney et al. 1997; Clark et al. 2002; Baker et al. 2004;
Chambers et al. 2004; Keller et al. 2004; Palace et al. 2007),
or more rarely by measurement of the CWD flux – input
of new tree or branch falls to the CWD pool (Palace et al.
2008).

*Corresponding author. Email: f.delbon@gmail.com

Few studies of canopy dynamics have attempted to
map the distribution of small frequently occurring gaps
in tropical forest (Hubbell et al. 1999) and few, if any,
have attempted to relate the occurrence of natural distur-
bances to production of CWD, a large pool of ecosystem
carbon (Denslow 1987; Clark et al. 2002; Chambers et al.
2004; Keller et al. 2004; Rice et al. 2004; Palace et al.
2007) and nutrients (Clark et al. 2002). We are unaware
of any study in the tropical forest literature that estimates
the relationship between the geometry of gaps (e.g. area,
perimeter) and the amount of CWD produced by natural
tree mortality or branch fall disturbances. The relationship
between disturbed area and its biophysical consequences
(e.g. tree mortality or CWD) is valuable for the quantifica-
tion of the effects of disturbance on carbon cycling in forest
ecosystems (Turner 2010). Passive optical remote sensing
provides information that is mainly relevant to quantifi-
cation of the area of disturbance in tropical forests. The
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intensity of such events in terms of carbon fluxes can only
be estimated by empirical calibration between disturbed
area and field data.

Forest disturbances caused by tree-falls and/or branch-
falls can be described either in terms of the number of
dead trees or with regard to the sizes and rates of pro-
duction of canopy gaps (van der Meer and Bongers 1996).
Physically, gaps have been defined in many ways but are
generally divided into two categories, exemplified by the
Brokaw (1982) and Runkle (1981) gap definitions. Brokaw
(1982) defined gap formation at the upper level of the
top canopy wherein gaps are vertical holes, defined by a
plumb line extending from the foliage at the gap edge
down to a selected height above ground (e.g. 2 m) (Brokaw
1982). Runkle (1981) defined gaps at the ground level as
the area under a canopy opening extending to the base
of the surrounding canopy trees defined by a minimum
trunk diameter of 20 cm and height of 10 m (Runkle
1981). The definition of Runkle (1981) includes areas
directly and indirectly affected by the canopy opening by
light enhancement at the forest floor. Depending on the
definition used, the area measured can easily vary by a
factor of two. This makes quantitative interpretation of
tree-fall disturbance regimes impossible unless accompa-
nied by a clear gap definition (Brokaw 1982). Although
gaps can be detected and mapped using these definitions,
Lieberman and Lieberman (1989) have argued that the
dichotomy of forest environments into gap and non-gap is
both unrealistic and difficult to implement with rigour and
consistency. Instead they argue that the forest light envi-
ronments should be treated as a continuum. The spatial
distribution of light environments caused by disturbance
regimes reshapes canopy biophysical proprieties (e.g. leaf
area index), canopy functions (e.g. photosynthesis) and for-
est dynamics (e.g. forest growth and mortality) (Denslow
1987).

Remote sensing provides a means of analysing gap for-
mation at multiple scales. Data from high spatial resolution
sensors such as IKONOS (GeoEye Inc.) have been used in
tropical forests to measure tree crown sizes (Asner et al.
2002; Clark et al. 2004a; Barbier et al. 2010), to estimate
mortality in dominant trees (Clark et al. 2004b), to deter-
mine the effects of selective logging (Read et al. 2003) and
in other ecological applications (Clark et al. 2004a, 2004b).
However, high-resolution images have rarely been used to
estimate gap formation or natural disturbances in tropical
forests, with the exception of demographic studies of emer-
gent tree mortality in Costa Rica (Read et al. 2003; Clark
et al. 2004a, 2004b).

The aim of the present study was to improve the quan-
tification of the area affected by and the carbon cycle
effects of natural gap-phase disturbances in a tropical
evergreen lowland rain forest in the Brazilian Amazon.
Working in large plots we linked gap formation with car-
bon cycling through analysis of the CWD inside the gaps
and linked measurement of gap area with the quantity of
CWD. By using ground-based optical instruments we quan-
tified light penetration in the plot areas to estimate the

effects of gap disturbances. We investigated how remote
sensing could be used to estimate tree-fall and/or branch-
fall disturbances and attempted to detect small distur-
bances using high-resolution satellite images and spectral
analysis. We compared the detection of gaps using high-
resolution remote sensing and detailed ground-based forest
survey, supplemented by instrumental measurements of
light penetration.

Materials and methods

Study area and large forest survey plots

The study was conducted in an area of the Tapajós National
Forest (TNF; 2◦ 32′ and 4◦ 18′ S; 54◦ 30′ and 55◦ 29′ W),
Pará, Brazil (Figure 1(a)–(c)). The tropical moist forest in
the TNF experiences a wet season from January to May,
with 70% of the annual precipitation falling during this
period. Forest structure and biogeochemical characteris-
tics of this forest have been described elsewhere (Silver
et al. 2000; Keller et al. 2001). The total live above-
ground biomass (including vines and epiphytes) has been
estimated at ca. 282 Mg ha−1 (Keller et al. 2001) and
above-ground necromass at ca. 85 Mg ha−1 (Palace et al.
2001).

We installed and surveyed two large forest inven-
tory plots of 114 and 53 ha in an unmanaged forest
area of the TNF (Figure 1(a)–(g)). The 114 ha plot was
installed between August and September 2008 and the
53 ha plot between August and October 2009. We made
measurements of the following forest disturbance variables:
(1) mode of gap formation; (2) light environment over the
gap areas; (3) light environment of the large plot surveys;
and (4) coarse woody debris inside the gap areas. Ground
measurements were used to calibrate the high-resolution
satellite images (IKONOS–2) acquired within two months
of the field campaigns.

Mode of gap formation

We mapped all gaps in both large plots using the gap defini-
tion of Runkle (1981): opened canopy, extending to the base
of surrounding trees of >20 cm diameter at breast height
(DBH) and 10 m in height, and including areas directly
or indirectly affected by the canopy opening. We collected
data on light availability (canopy openness) and estimated
leaf area index (LAI) for the whole large plot area. For
each gap we collected the following data: (1) mode of for-
mation, (2) disturbance age, (3) gap area and perimeter at
the ground level, (4) proportion of canopy openness (CO),
and (5) LAI. We defined the modes of gap formation based
on the type of disturbance: (a) partial or complete crown-
fall (from either live or dead standing trees), (b) snapped
bole-fall, and (c) uprooted tree-fall. We classified all gaps
into two age classes: (i) recent disturbances, <1 year; and
(b) old disturbances, ≥1 year. For each gap identified in
the field we collected a central Global Positioning System
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Gap formation and carbon cycling in the Brazilian Amazon 3

Figure 1. Survey of ground gaps (red lines) and leaf area index (LAI; yellow dots) collected in large forest inventory plots in the Tapajós
National Forest, Pará, Brazil (TNF). (a) 53 ha plot (white box) overlapped in an IKONOS-2 image acquired 8 August 2009. (b) Location
of TNF in a TM Landsat acquired 30 July 2001 and the overlapped IKONOS-2 images. (c) 114 ha plot (white box) overlapped the
IKONOS-2 image of 23 June 2008. (d) Forest canopy details of the 114 ha plot survey in the 4 m multispectral IKONOS-2 bands. (e)
Ground collections of gaps (n = 55, Runkle’s gap definition), hemispherical photos (n = 110, two photos per gap) and biophysical data of
canopy openness (CO) and LAI collected with LAI-2000 plant canopy analyzer (n = 980) in 114 ha plot overlapped in a 4 m multispectral
IKONOS-2 image. (f) Forest canopy details of the 53 ha plot survey in IKONOS-2 multispectral images. (g) Ground collections of gaps
(n = 41), hemispherical photos (n = 82), LAI-2000 (n = 2315) in 53 ha overlapped in a visible multispectral band composition of
IKONOS-2 images. Colour compositions of Landsat image at full-width wavelength for the three bands are: (3) red 0.63–0.69 µm;
(4) near-IR 0.76–0.90 µm; and (5) mid-IR 1.55–1.75 µm. For the IKONOS–2 image the wavelength bands are: (2) green 0.51–0.60 µm;
(3) red 0.63–0.70 µm; and (4) NIR 0.76–0.85 µm.

(GPS) coordinate using an average of 53 way-points (col-
lection time about 2 min) using a GPS receiver (Garmin
GPSMAP 76CSx). From the centre of each gap we mea-
sured the distance and the azimuth of each large tree (DBH
>20 cm) along the gap edge using a laser rangefinder
(Impulse–200LR, Laser Technology Corp.) and a magnetic
compass corrected for magnetic declination (NOAA 2010).
We delimited each gap with at least eight edge vertices.
We estimated the recurrence interval (turnover) of gaps
using the area of tree-fall <1-year-old, in the form of total
area studied divided by gap area formed per year.

Light environments over the gaps areas

We quantified the CO and LAI for each gap using indirect
measurements of hemispherical photographs. Two photos
were taken at the centre of each gap, 1.5 m above the for-
est floor, with a colour digital camera, Nikon Coolpix 950,
and FC–E8 fish-eye lens (180◦ field of view). The pho-
tographs were taken using a tripod (1.6 m above the ground)
and collected in the early morning, late afternoon, or after
clouds had eclipsed the sun (Rich 1989). The lens was fac-
ing skywards and the camera body was oriented magnetic
north, allowing superposition of solar tracks. The CO of
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4 F.D.B. Espírito-Santo et al.

the photos was analysed using the image-processing soft-
ware, Gap Light Analyzer (GLA), version 2 (Frazer et al.
1999). Considering the colour blurring or chromatic aber-
ration associated with digital cameras (Frazer et al. 2001),
we used an automatic threshold algorithm for hemispher-
ical canopy photographs based on edge detection (Nobis
and Hunziker 2005) to separate canopy and sky elements,
producing a binary black and white image. The automatic
threshold was applied to all images using the edge value
mode (Nobis and Hunziker 2005). All photographs were
saved in grey scale (BMP format) and CO was extracted
following Frazer et al. (1999). In order to reduce the arte-
facts associated with image processing and sky conditions,
we averaged the CO of the two photographs collected in
each gap.

Light environments of the large forest survey plots

We examined the spatial distribution of sky opening for the
whole plots using diffuse non-interceptance (DIFN) canopy
and LAI estimates produced by the LAI–2000 (LI–COR
Inc. 1992) plant canopy analyser (PCA). We estimated the
CO and LAI in both plots, where the CO represented values
of DIFN collected with LAI–2000 PCA at a height of 1.5 m.
We used two inter-calibrated LAI–2000 PCA sensors; one
sensor was installed in an open area without obstruction
(above the unit) to measure the instantaneous diffuse solar
radiation, and the other was used to collect the data along
the forest transects (below the unit) (Welles and Norman
1991). Both sensors were oriented in the same direction,
pointing away from the sun using a compass. The mea-
surements were carried out in the early morning (5:30 am)
or late afternoon (5:30 pm) to minimise the incidence of
direct sun on the sensor. We omitted one of the five LAI–
2000 sensor readers (lens No 5) due to the large variability
in measurements introduced by that lens.

In the 114 ha plot, the LAI and CO measurements were
made along 21 transects of 1 km length, at a separation of
50 m. Along each 1 km line we collected data from the
LAI–2000 and GPS coordinates at points separated by ca.
15 m along the transect, to produce a grid of CO and LAI
data with ca. 15 m × 50 m spatial resolution. We used this
data to map all gaps by light availability near the forest
floor. For the 53 ha plot we collected data on light avail-
ability more intensively. In this plot measurements were
made along 41 transects of 0.5 km length with a separa-
tion between lines of 25 m (double the density of that in the
114 ha plot). When the gaps occurred between the lines, we
explicitly collected ground data of LAI–2000 at the centre
and edge of these gaps in order to obtain the maximum spa-
tial variance of CO and LAI. In total, 21 days were needed
in each plot to measure the DIFN by LAI–2000 PCA due to
the high density of data collection inside these large grids.

Of the 980 measurements of DIFN data for the 114 ha
plot (Figure 1(e)), only 731 ground data were used for
the geostatistical analysis of CO and LAI. We eliminated
249 points in which DIFN = 0 where inspection of the
data indicated that the LAI–2000 devices had failed and

produced consecutive zero values. These 249 samples rep-
resented a set of consecutive measurements (1.5 transect
lines) and a few points where DIFN = 0 in the darkest
regions of the plot. Along these 1.5 transect lines we had
only the small and old gaps (>1-year-old) that had a minor
impact on our analysis of light variability in this plot. In the
53 ha plot 2315 measurements were collected (Figure 1(g)).

In order to investigate the relationship between forest
disturbance detected by ground measurements of LAI–
2000 and remote sensing, the DIFN surveys of CO and
LAI in the 114 ha and 53 ha plots were interpolated at
the spatial resolution of the high-resolution remote sensing
images (ca. 4 m). CO estimates the percentage of canopy
not obstructed by leaf or other vegetational material. The
LAI index expresses the amount of leaf area per square
metre, estimated by a biophysical inversion model (Welles
and Norman 1991). CO is directly related to canopy gaps
(Canham et al. 1990). LAI is inversely correlated with CO,
and both can be correlated with remote sensing images (e.g.
Asner et al. 2004).

We used kriging (Cressie 1993) to produce the con-
tinuous variables of CO and LAI in both plots. Detailed
descriptions of the kriging approach and the semivari-
ogram models used are provided in the online supplemental
material (Geostatistical analysis of light environments).

Coarse woody debris of the tree-fall gaps

We estimated the volume of all CWD in each ground gap.
CWD was separated into whole dead trees or wood pieces.
Whole dead trees (diameter ≥10 cm) were recorded, includ-
ing snapped bole-falls and uprooted tree-falls. We used the
allometric equation developed by Brown (1997) to approxi-
mate woody biomass losses by fresh tree-falls and snapped
bole-falls. For partial crown-fall we recorded the diameters
of all wood pieces ≥10 cm (the end diameter of the logs)
and the length of the woody material. We calculated the sec-
tional volume of each segment of CWD using Smalian’s
equation (1), from the cross-sectional average areas from
the ends of the segment:

Vs = H(L + U)/2 (1)

where V s is the volume (m3) of a segment of CWD, H is
the segment length (in m), L is the cross-sectional area at
the lower end section (large diameter) and U is the cross-
sectional area at the upper end section (small end diameter).
CWD in the gaps was classified according to its decompo-
sition status (Harmon et al. 1995), into five classes from
freshest (class 1) to most rotten (class 5). We used an
average of wood density measured for each decay class
specifically developed for this site (Keller et al. 2004). The
mass of each section of CWD (Mi) was determined from the
product of the volume of material (V i) and the respective
density for the material class (ρ i):

Mi = ρiVi (2)
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Gap formation and carbon cycling in the Brazilian Amazon 5

We estimated the flux of CWD inside the gap areas by
limiting the amount of CWD to recent tree-fall disturbances
(<1-year-old).

Remote sensing data and image processing

Aiming to estimate small disturbances at the scale of
tree-fall gaps (Clark et al. 2004a, 2004b) we used high-
resolution images from the commercial satellite IKONOS–
2. Large disturbances such as blow-downs have been suc-
cessfully monitored over the Amazon (Nelson et al. 1994;
Chambers et al. 2009; Espirito-Santo et al. 2010), but
small-scale disturbance remains a challenge. For the lat-
ter, two high-resolution images were acquired over the field
plots (both off-nadir IKONOS images). The first acquisi-
tion was made on June 23, 2008 (ca. two months before
the field work campaign) with a nominal collection ele-
vation of 66.77◦ and sun angle elevation of 56.81◦. The
second acquisition was conducted on August 11, 2009 (at
the same period of field work activities) with a nominal col-
lection elevation of 66.74◦ and sun angle elevation 54.49◦.
The IKONOS–2 satellite sensor produces 11-bit radiomeric
images in panchromatic and multi-spectral mode with 1 m
and 4 m spatial resolution, respectively (Dial et al. 2003).
The following image processing steps were applied over
the original satellite images: (1) radiometric correction,
(2) ortho-rectification, and (3) spectral mixture analysis.

The images were radiometrically transformed from dig-
ital numbers to in-band radiance physical units (mW cm−2

sr−1). Subsequently the images in radiance units were
corrected to the top-atmosphere or apparent reflectance
(ρa) using the mean solar exo-atmospheric irradiance and
the post-calibration gain and off-set (Markham and Barker
1987) of the IKONOS sensor (Taylor 2009), by application
of the algorithm developed by Markham and Barker (1987).

We ortho-rectified the IKONOS images using an empir-
ical 3-D rational function model (Toutin 2004) over
the rational polynomial coefficients (RPCs) from satel-
lite ephemeris and altitude data (Geo-Eye product). The
rational polynomial method is similar to the simple polyno-
mial method, except that it involves a ratio of polynomial
transformations. and it also takes ground elevation into
consideration. RPCs reduce the numbers of ground con-
trol points (GCPs) needed for the ortho-rectification (Toutin
2004). We extracted the Z-terms related to the third dimen-
sion of the terrain from an available DEM extracted from
the Shuttle Radar Terrain Mission (SRTM) for the region.
Although the spatial resolution of SRTM is relatively coarse
for high-resolution satellite images (ca. 90 m for South
America), this had a minimal effect in our study area
since it was flat. In addition we used highly accurate GCPs
with differential GPS collected with differential GPS in
the field to check the planimetric quality of the ortho-
images. A cross-check of GCPs indicated a root mean
square (RMS) error of ca. 4 m after the ortho-rectification
process (see online supplemental material S1).

We applied a spectral mixture analysis (SMA) by
using a linear mixture model (Shimabukuro and Smith

1991) in all four IKONOS multi-spectral bands of both
images to produce fractional images based on three end-
members: green vegetation (GV), non-photosynthetic veg-
etation (NPV), and shade (SD). The spectrally pure end-
members (GV, NPV and SD) were determined using the
pure pixel index (Boardman 1993; Boardman et al. 1995).
A spectral library was then built to estimate the fractional
proportions (NPV, GV and SD) of each pixel (Shimabukuro
and Smith 1991). Bearing in mind the high proportion of
shadow in high-resolution images of tropical forest canopy
(Asner and Warner 2003) we also produced a simple nor-
malised difference vegetation index (NDVI) (Tucker 1979)
from the IKONOS bands in the red (0.632–0.698 µm) and
near-infrared (0.757–0.853 µm) for both images.

Linking observed ground disturbance to satellite image

We investigated the relation between ground disturbances
and remote sensing data in our 114 ha and 53 ha plots.
Considering that ground disturbance is related to the spa-
tial heterogeneity of the light environments (LAI and CO)
in the forest canopy, we tested two approaches to link
observed ground disturbance to the satellite images. First,
we simply tested the direct relationship between light envi-
ronments collected by hemispherical photographs within
each ground gap with its estimated ground gap area col-
lected in the field (Runkle 1981). We then tested the rela-
tionship between light environments in the gap areas with
the corresponding remote sensing data. Finally, since we
did not find any relationship using the earlier approaches,
we used the total data collected by LAI–2000 over the two
large forest survey plots to investigate the relationship with
remote sensing products (unmixing images and NDVI).

We applied an ordinary least-squares regression to
assess the relationship between canopy openness (distur-
bances) and information extracted from high-resolution
satellite imagery. The continuous variables of CO and LAI
interpolated by kriging (114 and 53 ha plot areas) were used
to evaluate the remote sensing IKONOS–2 products, frac-
tions (NPV, GV and SD) and NDVI images. For the 114 ha
plots we used a total interpolated grid of 71,416 pixels of
4 m (identical to the spatial resolution of IKONOS–2 mul-
tispectral bands) of CO and LAI to evaluate patterns of
disturbance in the satellite image of 2008. In the 53 ha plot
a total grid of 33,020 pixels of 4 m was used to detect dis-
turbances of tree-fall gaps in the satellite image of 2009.
Following the regression analyses we determined the best
remote sensing product from IKONOS–2 image (unmix-
ing images and NDVI) to quantify the disturbances at the
plot scale and for the whole image. In total we statistically
tested 16 variables, of which four were ground remote sens-
ing data (grids of CO and LAI for both plots) and four were
satellite products (NPV, GV, SD and NDVI).

We also applied an alternative approach to detect areas
with a signal of high ground disturbances. Using the inter-
polated grids of CO and LAI from both plots, we selected
ground thresholds from those variables that were found to
cover all mapped polygons of tree-fall gaps. The selected
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Figure 2. Diagram summarising the methods for the ground gap–CWD survey and remote sensing, geostatistics, image processing and
data integration applied in the study.

grid pixels of 4 m from these thresholds were then used
in the regression analysis with remote sensing products.
We empirically estimated the amount of CWD produced
by small-scale disturbances based on this derived remote
sensing threshold and on the relation between biophysical
canopy gap (CO and LAI) and CWD. Our methodological
approach is summarised in Figure 2.

Results

Gap geometry, CWD and tree mortality

In the two large forest inventory plots totalling 167 ha
(114 and 53 ha) we found 96 gaps. We removed four
samples (outliers), reducing our total sample to n = 92
(Table 1). Outliers were identified by plotting the residuals
in stepwise scatter plot pairs with high scores of leverage
(the impact on the fitted values when i-th cases are dropped
from the regression models) (Crawley 2007). These four
outliers had a large amount of CWD and numbers of dead
trees for a small proportion of opened area. The correlation
between CWD and gap area increased from r = 0.61 to
r = 0.73 after exclusion of the outliers. In addition, after
removing the outliers the correlation between the number
of dead trees and the gap area increased from r = 0.69 to
r = 0.75.

We found a total of 16 gaps produced by partial or
complete crown-fall (either from live or dead standing
trees), 44 by snapped bole-fall and 32 by uprooted tree-
fall (Table 1). In total these disturbances represented an
area of 2.37 ha, or 1.42% of the whole area surveyed. Only
1.36 ha, or 0.81%, of the plots was affected by recent distur-
bances (<1-year-old). The recurrence interval or turnover
for these events was calculated as about 123 years for all
gap formation types. The mean gap size was 257 m2 (95%
confidence limit between 219 and 294 m2). The minimum
gap size was 32 m2 (crown-fall) and the maximum 1,313 m2

(uprooted tree-fall). The average length of these gaps was
26 m where the geometry of uprooted gaps had the largest
length (81 m), and consequently the largest disturbance
area.

Amounts of CWD depended on the type of gap for-
mation, crown-falls contained 0.11 Mg C ha−1 of CWD,
snapped tree-falls 0.65 Mg C ha−1 and uprooted tree-falls
0.70 Mg C ha−1. In total, the 92 gaps contained a stock of
1.45 Mg C ha−1 of necromass for the study area. The flux of
CWD caused by the gaps was 0.76 Mg C ha−1 year−1. The
average mortality of trees (DBH ≥10 cm) per gap was 6.5,
resulting in a total of 596 dead individual trees (3.57 trees
ha−1 >10 cm DBH) for the total surveyed area of 167 ha.
From the total dead trees of all ages contained in the gaps,
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Gap formation and carbon cycling in the Brazilian Amazon 7

Table 1. Mode of gap formation and disturbance responses (number of dead trees, above-ground biomass and coarse woody debris
(CWD) in two plots of 114 ha and 53 ha forest surveys in the Tapajós National Forest, Pará State, Brazil.

Mode of gap formation

Gap parameters Crown-fall Snapped Uprooted All gap types

Frequency of gap formation mode 16 44 32 92
Proportion of gap formation mode (%)a 17 48 35 100
Gap area (ha) 0.26 1.18 0.93 2.37
Proportion of plot area under gap (%)b 0.15 0.71 0.56 1.42
Gap area (ha) with <1-year-old in 167 ha 0.14 0.90 0.32 1.36
Proportion of plot area under gaps <1-year-old (%) 0.08 0.54 0.19 0.81
Frequency of gaps >500 m2 0 4 2 6
Maximum gap size (m2) 266 658 1313 1313
Minimum gap size (m2) 32 92 100 32
Mean gap size (m2) 160 268 290 257
Median gap size (m2) 187 232 251 220
Standard deviation gap size (m2) 67 146 242 182
Maximum gap perimeter (m) 72 123 192 192
Minimum gap perimeter (m) 22 37 40 22
Mean gap perimeter (m) 50 69 74 67
Median gap perimeter (m) 54 62 70 65
Standard deviation of gap perimeter (m) 14 22 32 26
Maximum gap length (m) 32 49 82 82
Minimum gap length (m) 7 13 15 7
Mean gap length (m) 19 25 31 26
Median gap length (m) 19 24 27 24
Standard deviation of gap length (m) 6 9 15 12
Maximum gap width (m) 18 29 33 33
Minimum gap width (m) 4 7 6 4
Mean gap width (m) 12 14 13 13
Median gap width (m) 13 14 13 13
Standard deviation of gap width (m) 3.92 4.37 5.62 4.80
Maximum CWD per gap (Mg C)c 2.85 8.79 17.55 17.55
Minimum CWD per gap (Mg C)c 0.06 0.14 0.40 0.06
Mean CWD per gap (Mg C)c 1.12 2.45 3.63 2.63
Median CWD per gap (Mg C)c 1.18 1.46 2.94 1.61
Standard deviation of CWD per gap (Mg C)c 0.74 2.23 3.47 2.7
CWD in gaps (Mg C ha−1)c 0.11 0.65 0.70 1.45
CWD flux in gaps (Mg C ha−1 year−1)d 0.05 0.45 0.26 0.76
Maximum number of dead trees per gape 10 24 26 26
Minimum number of dead trees per gape 0 1 1 0
Mean number of dead trees per gape 2.7 7.8 6.6 6.5
Median number of dead trees per gape 1.5 6.5 5 5
Standard deviation of dead trees per gape 2.65 5.87 6.03 5.77
Dead trees in the gaps per hectaree 0.25 2.05 1.27 3.57
Annual tree mortality per hectaref 0.19 1.68 0.51 2.38

aProportion = (sum area of gaps in all ages/total gap area) × 100%.
bProportion = (sum area of gaps <1-year-old/total plot area) × 100%.
cOnly pieces of CWD ≥10 cm of diameter were measured in gaps of all ages.
dOnly pieces of CWD ≥10 cm of diameter were measured in gaps <1-year-old.
eOnly dead trees ≥10 cm of diameter at breast height were measured in the gaps of all ages.
f Only dead trees ≥10 cm of diameter at breast height were measured in the gaps <1-year-old.

we estimated a mean annual tree mortality of 2.38 trees
ha−1 year−1 (Table 1).

Linking gap geometry and light penetration to carbon
stocks

There was a strong correlation between production of CWD
and gap geometry (r = 0.73 for area, r = 0.80 for perimeter
and r = 0.78 for length) (Figure 3 and online supplemental
material, S19). Gap area and perimeter were both correlated

(r = 0.75 and 0.77, respectively) with the number of dead
trees (Figure 3 and online supplemental material, S20).

We found a weak correlation between CWD and ground
hemispherical photo measurements of CO and LAI (r =
0.22 and r = 0.12, respectively). A higher correlation was
found between the number of dead trees and these vari-
ables (r = 0.57 for CO and r = 0.41 for LAI). A total of
184 hemispherical photos were collected (two for each gap)
and analysed with GLA (Frazer et al. 1999) to estimate CO
(n = 92) and LAI (n = 92) for each gap.
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8 F.D.B. Espírito-Santo et al.

Figure 3. Bivariate Pearson correlation coefficients (r) between pairs of gap parameters (displayed on the diagonal) of the gap survey
(n = 92) in two large forest plots (114 and 53 ha) in the Tapajós National Forest, Pará State, Brazil. CWD in Mg C; number of dead trees
>10 cm of DBH; gap area in m2; gap length and width in m; CO, proportion of canopy openness; LAI, leaf area index. Values above the
diagonal are linear correlation coefficients; below the diagonal scatter plots of variable pairs are shown, fit with a non-linear parametric
smoothing function (Crawley 2007).

Remote sensing and forest light environments

Based on the high-resolution multispectral bands of the
IKONOS–2 acquired close to the dates of our forest sur-
veys, we produced the remote sensing products NDVI and
spectral unmixing fraction images (GV, NPV and SD) for
the 114 ha (Figure 4) and 53 ha (online supplemental
material, S2) plots.

Geostatistical analysis of CO and LAI in the 114 ha
plot (n = 731) indicated a spatial auto-correlation of both
variables (online supplemental material, S13) to a range of
56 and 71 m for CO and LAI, respectively (online supple-
mental material, S2(a)–(b)). For the 53 ha plot (n = 2315) a
stronger pattern of spatial auto-correlation was found to a
range of 57 and 60 m for CO and LAI, respectively (online
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Gap formation and carbon cycling in the Brazilian Amazon 9

Figure 4. IKONOS-2 image processing of the 114 ha plot in the Tapajós National Forest, Pará State, Brazil: (a) normalised difference
vegetation index (NDVI), (b) unmixing fraction images of green vegetation GV, (c) non-photosynthetic vegetation NPV, and (d) shade SD.
Ground gaps (n = 55) are overlaid in red.

supplemental material, S2(c)–(d)). We found a spatial trend
in both CO and LAI for the data of the 114 ha plot, prob-
ably related to the dissected relief, but no spatial trend in
CO and LAI for the 53 ha plot (online supplemental mate-
rial, S5–10). Semivariograms of the data for both large
plots showed a periodic variance every 50 m (online sup-
plemental material, S11–12), aliasing the spacing between
transects. Based on the smallest RMSE for both types
of data we selected and fitted an isotropic exponential
semivariogram model:

γ (h) = c0 [1 − exp(−h/a0)], (3)

where γ (h) is the semivariance at the lag h, c0 is the
variance asymptote and a0 the lag distance or range.

A clear pattern of light penetration was found around
the ground gaps of the 114 ha plot (Figure 5(a) and (f))
and the 53 ha plot (online supplemental material, S18(a)
and (f)), although the uncertainty of interpolation was high
for the 114 ha plot due to the lower density of data col-
lected (online supplemental material, S15 and S16). The
geostatistical interpolation of canopy openness (the square
root of CO) and LAI clearly showed that the occurrence
of gaps increased the light penetration at the forest floor
in both plots (Figure 5(a) and online supplemental mate-
rial, S18(a)). Tree-fall gaps increased the amount of open
sky and reduced the total LAI (Figure 5(f) and online

supplemental material, S18(f)). We found that most gaps
occurred in areas with CO ≥0.25 and LAI ≤4 indices in
both plots.

We were unable to find any significant correlation
between remote sensing spectral products (NDVI and GV,
NPV and SD unmixing images) and the continuous bio-
physical variables – interpolated values of CO (Figure 5(b)–
(e)) and LAI (Figure 5(g)–(j)) of the 114 ha plot (total grid
with n = 71,416 pixels of 4 m), or in the 53 ha plot (online
supplemental material, S18, total grid with n = 33,020 pix-
els of 4 m). Similarly, we were unable to find any significant
correlation between the remote sensing products and raw
ground data points (CO and LAI) in the 114 ha (n = 731) or
53 ha (n = 2315) plots (data not shown).

As gaps produced a large variability of light environ-
ments, thresholds of CO and LAI were selected in both
large grids to identify ground disturbances inside the satel-
lite images. For the 114 ha plot the comparison between
areas where CO values were ≥0.30 and LAI ≤4 and remote
sensing products showed no correlation (online supplemen-
tal material, S16). For the 53 ha plot the regression analysis
between areas where CO ≥0.23 and LAI ≤5 and remote
sensing products also showed also no correlation (online
supplemental material, S17).

The overlay of the canopy gaps of the 114 ha plot
recorded in the field over the 1 m spatial resolution panchro-
matic IKONOS–2 image (Figures 6(a) and 6(c)) and its
4 m multispectral unmixing images of VG, NPV and SD
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10 F.D.B. Espírito-Santo et al.

Figure 5. Interpolated ground collections (n = 731) of canopy openness (square root values, (a)) and leaf area index (LAI, f) in a 114-ha
forest plot (4-m grid plot), using kriging with an exponential semivariogram model, in the Tapajós National Forest, Pará State, Brazil.
Gaps, shown as black polygons in (a) and (f) are present in areas of high CO (a), and low LAI (f). Scatter plots of canopy openness grid
and remote sensing products (4 m spatial resolution): NDVI (b) green vegetation (c), non-photosynthetic vegetation (NPV, d) and shade
(SD). For the LAI grid plot the scatter plots with the same remote sensing products are: NDVI (g), green vegetation (h), non-photosynthetic
vegetation (i) and shade (j).

(Figures 6(b) and 6(d)) indicated that most of the ground
gaps were located in areas with a high SD in the image
(Figure 6(d)). We found an identical pattern of high pro-
portion of shadow component in areas of tree-fall gaps over
the second high-resolution image of the 53 ha plot (Figure
not shown).

Discussion

In the Tapajós National Forest the major mode of gap for-
mation was snapped bole tree-fall (Table 1, n = 44 from
a total of 92 gaps), suggesting that tall trees of the forest
canopy were killed by winds associated with the rainy sea-
son (Garstang et al. 1998) or the low-level winds driven
by the mesoscale circulations of the Amazon and Tapajós
rivers (Lu et al. 2005). Several large trees (DBH ≥50 cm)
had trunks broken at a height around 5 to 8 m, which
suggests strong patterns of wind gusts at the forest canopy.

In our study we found a strong relationship between
tree mortality and gap size (Figure 3). Of the 92 gaps, only
16 disturbances resulted from a single tree-fall. Many indi-
vidual tree deaths resulted in no quantified gap formation,
using Runkle’s gap definition. Most gaps resulted from
multiple fallen trees, with an average mortality of 6.5 trees
(>10 cm DBH) per gap (Table 1). As expected, more fallen
trees produced larger gaps, and we found a high correlation
between the number of dead trees and gap area (r = 0.75) or

gap perimeter (r = 0.77) (Figure 3 and online supplemental
material, S20), a relationship that has not previously been
quantified in tropical forests.

We are also able to provide the first statistics in the
tropical forest literature of CWD production based on gap
size and mode of gap formation (Figure 3 and online sup-
plemental material, S19). Gap formation as a result of
uprooted tree-falls produced one and a half times more
CWD per gap than snapped boles, and three times more
than crown-falls, probably because uprooted trees have
a higher wood density and biomass than those created
through other modes of tree mortality (Chao et al. 2009).
Uprooted tree-falls created larger gaps areas (average ca.
290 m2) than others types of gap formation.

Estimates of carbon fluxes based on tree mortality from
permanent plot studies differ from those derived from gap
formation rates (Leigh 1975). For example, a snapped-
off tree may not die, even when much biomass is lost.
Conversely, a tree that dies standing may never form a gap.
We compared our results with permanent forest plots (Pyle
et al. 2008) for tree mortality measurements and repetitive
line intercept transects for monitoring of CWD flux (Palace
et al. 2008) in the TNF. In our study plots, gap disturbances
accounted for a mean tree mortality of 2.4 stems ha−1

year−1 (>10 cm of DBH), while Pyle et al. (2008) found
rates of 8.4 stems ha−1 year−1 (>10 cm of DBH). The total
stock of CWD in gaps represented between 4.9% and 5.8%
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Gap formation and carbon cycling in the Brazilian Amazon 11

Figure 6. Distribution of ground gaps (red lines, n = 55) over 1 m spatial resolution panchromatic IKONOS-2 image of 23 June 2008 with
full-width wavelength 0.45–0.90 µm (a) and RGB colour composition of the unmixing images of green vegetation, non-photosynthetic
vegetation and shade (b), respectively, in the Tapajós National Forest, Pará State, Brazil; spatial details of ground gaps in the panchromatic
high-resolution image (c), and spectral details of the gaps in the unmixing images (d).

of the total stock of the fallen CWD, when compared with
Palace et al. (2008) and Pyle et al. (2008), respectively.
The production of CWD in recent gaps (<1-year-old) was
0.76 Mg C ha−1 year−1. This represented only 29% the size
of the flux of carbon from annual tree mortality measured
by Pyle et al. (2008), or 23% of the total new flux of CWD
(Palace et al. 2008).

In a study in Panama, Young and Hubbel (1991) showed
that gaps were persistent. Our data, showing relatively
low necromass density in gaps, are consistent with this
interpretation. The recurrence interval or turnover for gap
area formation in our study was about 123 years, falling
within the average range of 100–125 years in other stud-
ies (Denslow 1987; Brokaw 1982; van der Meer et al.
1994), although these studies used different gap definitions.
If we had calculated the recurrence interval for our study
based on the carbon flux of CWD inside the gaps, then
the time would have been noticeably longer (197 years).
By comparison, the calculated carbon turnover based on
tree mortality (ca. 3 Mg C ha−1 year−1) and stock of above-
ground biomass (150 Mg C ha−1) (Pyle et al. 2008) at
TNF is 50 years. The median turnover time calculated by
Malhi et al. (2004) for nearly 100 neotropical forest plots
was approximately 50 years. The very long turnover time
for carbon cycling by gaps at the TNF indicates that gap-
forming mortality accounts for only a portion of woody
carbon turnover.

While a great deal of research on canopy disturbance
regimes and the response of individual species to gaps has
been documented, there has been remarkably little research
on the spatial pattern of forest light regimes in and around
gaps (Canham et al. 1990) for larger areas. In our study,
despite the differences of sample design between plots
(50 m × 15 m vs. 25 m × 15 m) and the quantity of data
collected (n = 731 vs. n = 2315), the geostatistical interpo-
lation of canopy openness (the square root of CO) and LAI
indicate that the occurrence of tree-fall gaps increased CO
(Figure 5(a) and online supplemental material, S18(a)) and
reduced the total of LAI (Figure 5(f) and online supplemen-
tal material, S18(f)) at values of CO ≥0.23 and LAI ≤4 in
gap areas (online supplemental material, S16 and S17). It is
interesting to note that the spatial autocorrelation of light
measurements had a range of about 56 to 71 m (online sup-
plemental material, S13), comparable to the height of the
tallest trees in this forest (Lefsky et al. 2005). It is also pos-
sible that the 25 m and 50 m spacing of the sample lines
may have been aliased into the spatial signal.

Light penetration is affected beyond the gap, and the
ecologically altered area at the forest floor is often larger
than the size of the gap at the forest canopy level (Popma
et al. 1988). Runkle’s gap definition is normally assumed to
be a reasonable measure of the gap size at the forest floor,
and Brokaw’s gap size is taken in the forest canopy (Clark
1990). Gaps measured according to the Brokaw definition
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12 F.D.B. Espírito-Santo et al.

are between two and three times smaller than Runkle’s gap
area (van der Meer et al. 1994). Over the 167 ha area of our
study plots, 1.42% of this plot was defined as gap accord-
ing to the Runkle definition (Table 1). Using an empirical
threshold of light penetration of CO ≥0.30 (114 ha plot)
and CO ≥0.23 (53 ha plot) where most of the gaps were
geographically located (online supplemental material, 16(a)
and 17(a)), the gaps accounted for 2.57% and 3.33% of
the total area of the 114 ha and 53 ha plots, respectively.
Comparing our instrumental measurement of light penetra-
tion with gaps measured on the ground (Runkle 1981), we
found that the area measured by LAI–2000 PCA was twice
as large as the areas defined by Runkle, or a factor of as
much as 4 using the conservative gap definition of Brokaw
(1982).

These last results are in accordance with the ear-
lier opinion of Lieberman and Lieberman (1989) that the
dichotomous definition of forest environments into gap and
non-gap is unrealistic. Further quantitative studies of the
spatial distribution of light environments at the forest floor
(continuous data) are needed to understand the effects of
natural disturbance at the canopy forest structure (e.g. LAI)
and function (e.g. photosynthesis).

Passive optical remote sensing data have been used
previously to estimate areas for large tropical forest distur-
bances (Nelson et al. 1994; Chambers et al. 2007, 2009;
Espírito-Santo et al. 2010), and this technique has also
been employed to quantify the areas and damage caused
by logging (e.g. Read et al. 2003; Asner et al. 2004).
To a limited extent, high-resolution optical remote sens-
ing has been used to identify mortality in emergent canopy
trees (Clark et al. 2004b). We tested whether high spa-
tial resolution satellite images (IKONOS–2) could be used
to estimate gap formation in unmanaged old growth for-
est. We found no correlation between the derived variables
(NDVI, GV, NPV and SD) from remote sensing images
and CO or LAI, using data from the entire plots or for
a sub-set of the data in gaps (online supplemental mate-
rial, S16 and S17). Inspection of the images suggested that
for the present example of Amazonian forest, ground mea-
surements of CO and LAI and remote sensing products
(16 covariates) failed to show significant correlation, due to
the effect of shadows (Figure 6). The shadow fraction rep-
resents ca. 30% (±10% SD) of the area in high-resolution
images of old growth tropical forests and thus exerts a
major influence on spatial variability in canopy reflectance,
at both local and regional levels (Asner and Warner 2003).
Gaps are by definition associated with a high proportion
of shadow (Figure 6). However, due to the variable canopy
height in old-growth forest, shadows are also abundant in
non-gap areas of the heterogeneous forest canopy. It was
therefore not possible to specifically detect gaps using auto-
mated spectral methods by means of the high-resolution
IKONOS–2 images.

Commercial high-resolution acquisition of remotely
sensed images tends to be significantly off-nadir (Toutin
2004; Taylor 2009). A requirement for near-nadir acquisi-
tion in the tropics would be constrained because of cloud

cover or mission priority resulting in high acquisition costs.
Even at relatively favourable nominal collection elevation
(>70◦), prior results indicate that interpretation would be
sensitive to the shadow fraction. Asner and Warner (2003)
calculated that a 10% increase in shadow fraction at red
wavelengths (0.63–0.69 µm) resulted in a 3% decrease in
pixel reflectance. Multiple images at different view geome-
tries might be used to address the shadow problem, but
this approach would still be limited by cloudiness. It would
also increase costs linearly with the number of images, and
would add a new problem of temporal de-correlation – the
forest changes dynamically and it would be very difficult
to acquire multiple images at the same time, and it would
also be difficult to minimise the sensitivity to shadows in a
study with limited resources. Use of the current generation
of commercial optical satellite sensors that might be able
to overcome the shadow problems (satellite images with
nominal collection >70◦) would be very costly.

Due to the complex structure of the old-growth for-
est, shade areas are not uniquely associated with gaps.
Emergent trees produce shade, even where there is no
canopy gap. Based on the published literature (Asner and
Warner 2003) we had expected that a high fraction of
shadow would be present, but we expected that image
normalisation (e.g. NDVI filtering) or de-convolution into
components (e.g. mixture modelling) might resolve the
shadow problem. However, we found out that the shadows
were resistant to these treatments.

It is noted that IKONOS–1 images have been used in
the TNF to map recent man-made canopy gaps caused by
selective logging activities, by application of NDVI thresh-
olds and visual interpretation (Miller et al. 2007). Despite
the recognition that NDVI is an effective index for reducing
the effect of remote sensing artefacts from solar geome-
try effects, acquisition image angles, noise and atmosphere
contaminations, shadow and topography (Tucker 1979), we
found that NDVI filtering alone was insufficient to permit
gap detection. Textural cues (tracks of logging roads and
skid trails) were probably critical to the visual interpretation
of logging gap areas by Miller et al. (2007).

In future studies it is intended that the spectral approach
to image interpretation may be replaced or supplemented
or by other techniques to extract information on gaps from
the high-resolution images. The modern currently available
techniques of image processing or computer vision using
textural metrics (Kayitakire et al. 2006; Malhi and Román-
Cuesta 2008) could be very useful for detecting patterns of
disturbances in high-resolution satellite images.

In conclusion, it must be emphasised that for the
first time we have been able to quantify the relationship
between gap area and tree mortality, and gap area and
CWD production. These strong relationships will be use-
ful for quantifying carbon fluxes from gap creation by the
use of remote sensing, provided a suitable remote sensing
approach can be found for quantifying gap area. The corre-
lation between gap area disturbance intensity may be useful
for extrapolating disturbance areas detected by remote sens-
ing to carbon cycling on the regional scale (Chambers et al.
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Gap formation and carbon cycling in the Brazilian Amazon 13

2007). However, we wish to point out that in the case of
old-growth forest that we have studied, fewer than 30% of
mortality events resulting in gap formation as measured on
the ground. Remote sensing studies of gap formation alone
are therefore not sufficient for quantifying tree mortality in
old-growth tropical forests.
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Geostatistical analysis of light environments 

We interpolated all collections of CO and LAI from LAI-2000 PCA of the two large plots using 

Kriging (Cressie, 1993). We used a semivariogramγ( )h to calculate the kriging weights of CO 

and LAI ground collections, given by: 

[ ]γ = + −
1( ) ( ) ( )
2 i ih Var z s h z s                                                                                                  (1) 

where γ( )h is a estimated semivariance value given a lag ( )h considering a variable with the 

spatial location ( )iz s and its neighboring at distance +is h . All the geostatistical analyses were 

executed using geoR (Ribeiro and Diggle, 2001) and Fields (Fields Development Team, 2006) 

packages of R language (R Development Core Team, 2005).   

 

We fit several theoretical semivariogram models (linear, spherical, exponential, Gaussian and 

power) using the weighted least squares method and we selected the model with smallest RMSE 

and the best correlation.  Three parameters were used to fit the semivariogram: (1) range equal to 

the maximum distance of spatial dependence of a variable; (2) sill a variance related to the 

spatial structure of the data; and (3) nugget equal to the residual variation at the shortest 

sampling interval.  Finally, we used the following ordinary kriging estimator (Z) of a number of 

measurements of CO and LAI (zi) and its corresponding weightings (wi) to predict the spatial 

distribution of CO over the sample areas: 

=

=∑
1

( , )
n

i i
i

Z x y w z                                                                                                                        (2) 

Considering the skewed frequency distribution of DIFN, we applied a square root transformation 



on the raw data of CO in both large forest inventory plots.  No transformation was applied to 

LAI because the square root transformation did not markedly affect its skewness (see Sup. 

Material, S3-4). 

 

 
 
 
 
 
 
 
 

 
 
 
 



 
 

S1. GPS ground validation (red crosses) used in the orthorectification of the IKONOS-2 image.  
Civil construction features (a) were used as targets for GPS collections (b).  House roofs (c) were 
used only for a general check of the ground validation but not for the ortorectification process 
considering the vertical difference between ground true data and off-nadir satellite angle.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

S2. IKONOS-2 image processing of 53 ha plot at Tapajós National Forest (Brazil).  Normalized 
Difference Vegetation Index NDVI (a) and unmixing fraction images of green vegetation GV 
(b), non-photosynthetic vegetation NPV (c) and shade SD (d).  Ground gaps (n=41) are overlaid 
in red. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

S3. Frequencies distribution of ground collection of LAI-2000 PCA in the 114 ha plot (n=731).  
Positive skewed frequency distribution of diffuse non-interceptance (DIFN) light or canopy 
openness (CO) (a).  Square root transformation of CO to reduce the skewed data distribution (b).  
Negative skewed data distribution of LAI (c) and its square root transformation (d).  
 
 
 
 
 
 
 
 
 



 
 
S4. Frequencies distribution of ground collection of LAI-2000 PCA in the 53 ha plot (n=2315).  
Positive skewed frequency distribution of diffuse non-interceptance (DIFN) light or canopy 
openness (CO) (a).  Square root transformation of CO to reduce the skewed data distribution (b).  
Negative skewed data distribution of LAI (c) and its square root transformation (d).  
 
 
 
 
 
 
 
 
 



 
S5. Spatial distribution of canopy openness (square root of CO) (n=731) in the 114 ha plot (a), 
Colors signify CO ranges: 0.01-0.2 (blue), 0.21-0.3 (green), 0.31-0.4 (yellow) and > 0.41 (red). 
Scatter plot between CO and spatial coordinates Y (b) and X (c) and frequency distribution of 
gap fraction data (d).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
S6. Spatial distribution of canopy openness (square root of CO) (n=731) in the 114 ha plot (a), 
Colors signify CO ranges: 0.01-0.2 (blue), 0.21-0.3 (green), 0.31-0.4 (yellow) and > 0.41 (red).  
Scatter plot between CO and removed spatial trends of the coordinates Y (b) and X (c) and 
frequency distribution of CO residuals (d).  The global spatial trend was removed from the 
original data (square root of CO) by polynomial linear model (Spatial trend = X + Y + Y2) where 
the regression between the two variable reveled a trend of r2 = 0.10 (F-statistic=28.08, 729 DF 
and p<2.2e-16). Coefficients are: 1.505e-01 (Intercept), 3.175e-06 (X), -2.187e-04 (Y) and 
1.036e-07 (Y2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
S7. Spatial distribution of leaf area index (LAI) (n=731) in the 114 ha plot (a).  Colors mean LAI 
ranges: 0.1-3 (blue), 3.1-5 (green), 5.1-7 (yellow) and > 7.1 (red).  Scatter plot between LAI and 
spatial coordinates Y (b) and X (c) and frequency distribution of LAI (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
S8. Spatial distribution of LAI (n=731) in the 114 ha plot (a).  Colors mean LAI ranges: 0.1-3 
(blue), 3.1-5 (green), 5.1-7 (yellow) and > 7.1 (red).  Scatter plot between LAI and removed 
spatial trends of the coordinates Y (b) and X (c) and frequency distribution of LAI residuals (d).  
The global spatial trend was removed from the original data (leaf area index) by polynomial 
linear model (Spatial trend = X + Y + Y2) where the regression between the two variable 
revealed a trend with r2 = 0.17.  (F-statistic=52.49, 729 DF and p<2.2e-16). Coefficients are: 
2.984 (Intercept), -4.031e-04 (X), 5.086e-03 (Y) and -2.676e-06 (Y2). 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
S9. Spatial distribution of canopy openness (square root of CO) (n=2315) in the 53 ha plot (a), 
Colors mean CO ranges: 0.01-0.15 (blue), 0.16-0.2 (green), 0.21-0.3 (yellow) and > 0.31 (red).  
Scatter plot between gap fraction and spatial coordinates Y (b) and X (c) and frequency 
distribution of gap fraction data (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
S10. Spatial distribution of LAI (n=2315) in the 53 ha plot (a). Colors mean CO ranges: 0.1-3 
(blue), 3.1-5 (green), 5.1-7 (yellow) and > 7.1 (red).  Scatter plot between LAI and spatial 
coordinates Y (b) and X (c) and frequency distribution of leaf area index data (d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
S11. Geostatistical analysis of ground remote sensing collections for the 114 ha plot.  
Semivariograms of canopy openness (square root of CO): unidirectional (a), multi-directional (b) 
and modeled exponential semivariogram (c).  Experimental semivariograms for LAI: 
unidirectional (d), multi-directional (e) and modeled exponential semivariogram (f).      
 
 
 
 
 
 
 
 
 
 



 
 
S12. Geostatistical analysis of ground remote sensing collections of 53 ha plot.  Semivariograms 
of canopy openness (square root of CO): unidirectional (a), multi-directional (b) and modeled 
exponential semivariogram (c).  Experimental semivariograms for LAI: unidirectional (d), multi-
directional (e) and modeled exponential semivariogram (f).      
 
 
 
 
 
 
 
 
 



 
 
S13. Empirical and fitted exponential semivariogram models for canopy openness - CO (a) and 
leaf area index - LAI (b) for the 114 ha plot (n=731).  For the 53 ha plot (n=2315) a fitted 
exponential semivariogram models was also applied for CO (c) and LAI (d).  Kriging parameters 
used to interpolate CO and LAI in 114 ha plot were, respectively: direction (isotropy in both), 
nugget (0.0055 and 0.4586), sill (0.0103 and 1.603) and range (56.1 m and 71.16 m).  For the 53 
ha kriging plots of CO and LAI we used: direction (isotropy in both), nugget (0.0026 and 
0.3922), sill (0.0028 and 0.7507) and range (57.26 m and 60.26 m).  A square root 
transformation was applied for the raw data of CO or (DIFN) to reduce its skewed frequency 
distribution in both plots. 

 
 
 
 
 
 



 
 
S14. Interpolated canopy openness (square root of CO) (a) and leaf area index (LAI) (b) in the 
114 ha plot (n=731) using the exponential semivariogram model (c.f. Figure S11) and canopy 
openness (square root of CO) (c) and leaf area index (LAI) (d) in the 53 ha forest inventory plot 
(n=2315) (c.f. Figure S12).  Gap areas (black polygons) are present in areas of high fraction of 
canopy openness for both plots (a and c).  The leaf area index drops considerably (2 to 4) around 
of tree fall gaps (b and d).  
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 

S15. Interpolation uncertainty (standard error) of canopy openness (a) and LAI (b) of the 114 ha 
plot (n=731) and canopy openness (c) and LAI (d) for the 53 ha plot (n=2315). 
 
 
 
 
 



 
 

S16. Contour map of canopy openness (square root of CO) in the 114 ha forest plot showing high 
CO ≥ 0.3 (yellow) in areas of tree fall gaps (red polygons).  Scatter plots where square root CO ≥ 
0.3 or 0.09 CO and remote sensing products (n=1817 pixels of 4 m): NDVI (b), green vegetation 
(c), nonphotosynthetic vegetation (d) and shade (e).  Contour map of LAI showing low LAI ≤ 4 
(dark blue grid spots) in regions of tree-fall gaps (white polygons).  Scatter plots for LAI ≤ 4 and 
remote sensing products (n=1869 pixels of 4 m): NDVI (g), green vegetation (h), 
nonphotosynthetic vegetation (i) and shade (j).  Fitted curves for all ground measurements and 
remote sensing products are not significant (p<0.05). 
 
 
 
 
 
 
 
 
 



 
 
S17. Contour map of canopy openness (square root of CO) in the 53 ha forest area showing high 
CO ≥ 0.23 (yellow grid spots) in areas of tree fall gaps (red polygons).  Scatter plots for values of 
square root of CO ≥ 0.23 or CO ≥ 0.0625 and remote sensing products (n=1102 pixels of 4 m): 
NDVI (b), green vegetation (c), nonphotosynthetic vegetation (d) and shade (e).  Contour map of 
LAI showing low LAI ≤ 4 (light blue grid spots) in regions of tree-fall gaps (white polygons).  
Scatter plots for data where LAI ≤ 5 and remote sensing products (n=3764 pixels of 4 m): NDVI 
(g), green vegetation (h), nonphotosynthetic vegetation (i) and shade (j).  Fitted curves for all 
ground measurements and remote sensing products are not significant (p<0.05). 
 
 
 



 
 
S18.  Interpolated ground collections (n=2315) of canopy openness (square root of CO) (a) and 
leaf area index (LAI) (f) in 53 ha forest area (4 meter grid plot) using kriging with an exponential 
semivariogram model.  Gaps (black polygons) are present in areas of high opened sky (a) and 
low leaf area index (f).  Scatter plots of canopy openness grid and remote sensing products (4 m 
spatial resolution): NDVI (b), green vegetation GV (c), non-photosynthetic vegetation NPV (d) 
and shade SD (e).  For LAI grid plot the scatter plots with the same remote sensing products are: 
NDVI (g), green vegetation (h), non-photosynthetic vegetation (i) and shade (j). 

 
 
 
 
 
 
 
 
 
 
 
 



 
 

S19. Coarse woody debris CWD (Mg C) in gaps versus gap size area (m2) and coarse wood 
debris in gaps of two large plots (167 ha and n=92 gaps) (a).  Log-log graph of gap area and 
CWD (b). Residuals of the linear regression (c) and its theoretical normalized quantiles (d).  
Pearson correlation r=0.72, fitted adjusted regression model R2=0.53 and p-value<0.01.  
Intercept and slope are respectively, -0.1551 and 0.0108. 
 

 
 
 
 
 
 
 
 



 
 

S20. Plot of the number of dead trees versus gap size area (m2) in two large plots (167 ha and 
n=92 gaps) (a).  Square root transformation graph of gap area and number of dead trees (b).  
Residuals of the linear regression (c) and its theoretical normalized quantiles (d).  Pearson 
correlation r=0.74, fitted adjusted regression model R2=0.56 and p-value < 0.01.  Intercept and 
slope are respectively, 0.3485 and 0.0238. 

 


