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Abstract
Tropical forest structural variation across heterogeneous landscapes may control above-ground carbon

dynamics. We tested the hypothesis that canopy structure (leaf area and light availability) – remotely esti-

mated from LiDAR – control variation in above-ground coarse wood production (biomass growth). Using

a statistical model, these factors predicted biomass growth across tree size classes in forest near Manaus,

Brazil. The same statistical model, with no parameterisation change but driven by different observed can-

opy structure, predicted the higher productivity of a site 500 km east. Gap fraction and a metric of vegeta-

tion vertical extent and evenness also predicted biomass gains and losses for one-hectare plots. Despite

significant site differences in canopy structure and carbon dynamics, the relation between biomass growth

and light fell on a unifying curve. This supported our hypothesis, suggesting that knowledge of canopy

structure can explain variation in biomass growth over tropical landscapes and improve understanding of

ecosystem function.
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INTRODUCTION

A challenge in ecosystem science is to understand carbon dynamics

in tropical forests, of which the Amazon is the largest region with

the largest potential feedbacks to global climate change. Amazonian

forests face an uncertain future: the Amazon is expected to warm

and experience lower rainfall and an increased frequency of severe

drought in the coming century (Cox et al. 2004; Malhi et al. 2008;

Sitch et al. 2008). Evidence suggests that drought may have rapid

widespread effects on carbon dynamics and canopy structure, partic-

ularly by increasing the mortality rate of large trees (Nepstad et al.

2007; Phillips et al. 2009). Although canopy environments may

strongly mediate ecosystem carbon dynamics by influencing photo-

synthetic production and tree performance – including recruitment,

growth and mortality – the exact nature of this mediation is not

well known (Moorcroft 2006; Niinemets & Anten 2009).

Historically, investigation into tropical forest above-ground car-

bon dynamics has followed two distinct trajectories. First, scaling

the biophysics of leaf photosynthetic production (via process

models) to predict the influence of canopy environments on gross

primary production (e.g. de Pury & Farquhar 1997). Second, linking

forest demography (the growth, mortality and recruitment of indi-

vidual trees or groups of trees, as acquired from permanent tree

inventory plots) directly to above-ground ecosystem carbon dynam-

ics (e.g. Lewis et al. 2004; Muller-Landau et al. 2006b). Contempo-

rary research aims to unite leaf-scale biophysics and forest

demographic processes to establish a mechanistic predictive frame-

work to link environments with ecosystem carbon dynamics. The

performance of trees across the forest size spectrum must be con-

nected with the canopy environments that drive leaf biophysics

(Kohyama 1993; Moorcroft et al. 2001; Muller-Landau et al. 2006b).

Methods to measure three-dimensional variation in canopy structure

and environments at sufficient spatial scales to link with tree perfor-

mance, however, have been lacking.

Airborne small-footprint LiDAR is typically used to improve esti-

mates of landscape-scale ecosystem carbon stocks (Chambers et al.
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2007; Asner et al. 2010). We examine whether this technology can

be applied to predict the components of above-ground carbon

dynamics based on data on canopy structure. Our approach relates

the above-ground coarse wood production (biomass growth) of

trees in different size groups (size classes from particular forest inven-

tory plots) with LiDAR-based estimates of light transmittance and

absorption and leaf area density in different, associated, canopy

strata. We formulate hypotheses that depend on the importance of

light environments and how these environments are distributed over

the forest size spectrum, and use our data to test these in compari-

son to alternative simpler hypotheses that do not account for the

distribution of biomass over canopy environments.

The optimisation of leaf and individual tree production may help

explain canopy structure and function (reviewed in Niinemets &

Anten 2009). Under optimisation, we may expect consistent rela-

tionships between canopy environments and canopy production, in

the face of variation in other characteristics such as maximum tree

height (Hypothesis H1a). On the other hand, variation in canopy

production could be related to other factors (Hypothesis H1b),

potentially obscuring relationships between canopy environments

and biomass growth. Plots or sites may differ in the heights (diame-

ters) of the groups associated with particular crown environments –
this could lead to different patterns of biomass growth if leaf func-

tion is more sensitive to height than environment (Cavaleri et al.

2010). Tree allocation towards wood production may slow as trees

get larger (Herault et al. 2011; Coomes et al. 2012), while leaf area

may differ between groups in similar environments because of dif-

ferences in demographic history that lead to differences in the num-

ber of individuals in groups (Muller-Landau et al. 2006b). Finally,

leaf ecophysiology could differ between plots and sites because of

differences in functional composition or nutrient and water

resources (Lambers et al. 2008).

If we find support for H1a, consistent relationships between can-

opy environments and biomass growth may help illuminate the

environmental drivers of biomass growth and allow airborne

LiDAR to assess landscape carbon dynamics, thus helping to

resolve debates about whether the Amazon is a source or sink of

atmospheric CO2 today (Gloor et al. 2009). If we instead find sup-

port for H1b, other factors such as leaf functional characteristics or

soil heterogeneity may be critically important covariates needed to

link ecosystem biomass growth with canopy environments.

We also hypothesised that simpler indices may predict elements

of above-ground carbon dynamics, but only insofar as these indices

strongly reflect the integrated influence of canopy structure and

environments on canopy function (H2). Particularly, we hypothes-

ised that canopy gap fraction (fraction of canopy vegetation lower

than a threshold height) and the canopy Shannon index (a com-

bined measure of the extent and evenness of canopy area profiles)

were two such indices.

MATERIALS AND METHODS

Study sites

Plots were from the Adolfo Ducke Reserve (Manaus, Amazonas,

Brazil) and the Tapajós National Forest (Santarém, Pará, Brazil;

500 km east of Manaus), a site previously found to be out of demo-

graphic equilibrium, possibly due to past disturbance (Saleska et al.

2003; Vieira et al. 2004; Castilho et al. 2006; Pyle et al. 2008). Both

sites are terra firme forest but differ in that the Tapajós has more

pronounced dry season (5 mo. vs. 3 mo. with <100 mm rainfall

mo�1). Ducke and the nearby ZF2 site - also considered in gap

fraction analysis - sample more soil conditions ranging from sandy

valleys to adjacent clay-rich plateaus � 50–100 m higher (da Silva

et al. 2002; Vieira et al. 2004; Castilho et al. 2006; Pyle et al. 2008).

For additional detail see Appendix S1.

Diameter surveys and biomass dynamics

Tree diameter survey plots were long-term – predating this study –
and followed standard tropical forest methodologies for measure-

ments (Appendix S1; da Silva et al. 2002; Castilho et al. 2006). Plots

at both sites were constant in elevation along 250 m elongated cen-

tral axes and were variable in area for trees of different size classes,

sampling 1 hectare (ha) and 1.25 ha for trees over 30 cm diameter

at breast height (DBH), or over 35 cm DBH, in the Ducke and the

Tapajós sites respectively. The minimum tree diameter considered

in both sites was 10 cm DBH, but Ducke included individuals

between 1 and 10 cm DBH. All analyses were standardised to the

one-hectare scale. Ducke one-hectare scale plots (N = 22) were sep-

arated by 1 km in a grid design (Fig. S1). We subdivided four large

plots in the Tapajós – associated with a gas exchange eddy flux

tower – into 16 subplots (Fig. S2; total plots N = 38). We used the

third-order polynomial biomass allometry for tropical wet forest

presented in Chave et al. (2005) to estimate biomass (aboveground

coarse wood carbon density, Mg C ha�1) from (1) DBH measure-

ments, (2) species, genera or community-average wood density val-

ues (Pyle et al. 2008; Chave et al. 2009) and (3) plot areas. In

Appendix S1, we also present components of carbon dynamics esti-

mated from a recent, alternate, biomass allometry that incorporates

region-specific height vs. diameter relationships (Feldpausch et al.

2012) for comparison with components estimated from the Chave

et al. (2005) allometry; we found that the sign, R2, and statistical sig-

nificance of reported relationships were effectively unaltered by the

choice of biomass allometry but that estimates from the Feldpausch

et al. (2012) allometry were �20% lower. To reduce measurement

error, we probabilistically filtered data to central 95% quantiles of

annual diameter increment (cm yr�1), replacing values outside of

this range with individual-specific predictions from a multiple

regression model on past and subsequent (when available) measure-

ments. We chose single census intervals 4 years in length immedi-

ately leading up to or including the LiDAR acquisition in 2008 for

biomass dynamics analysis (Ducke 2004–2008, Tapajós 2005–2009).
We note that allometric biomass estimation, while the best approach

available, entails significant uncertainty (Chave et al. 2004; Pyle et al.

2008; Feldpausch et al. 2012).

LiDAR data acquisition

All sites were over flown between the 7th and the 28th of June

2008 with a Leica Geosystems ALS70-II LiDAR (Heerbrugg,

Switzerland). Ground LiDAR surveys were conducted at Ducke and

the Tapajós in April and August of 2009, respectively, with a Riegl

LD90-3100VHS-FLP system (Horn, Austria). Although the airborne

LiDAR surveys generated a three-dimentional data set, ground

LiDAR surveys generate a canopy profile map in the vertical and a

single horizontal direction (Parker et al. 2004). We analysed airborne

LiDAR data from central 10-m wide regions of forest plots.

© 2012 Blackwell Publishing Ltd/CNRS
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Airborne LiDAR data were associated with forest plots based on

differential GPS measurements and a distance-decay optimisation of

the likelihood of canopy surface profile correlation between air-

borne and ground-based LiDAR (P-value < 0.001 in all plots; mean

R2 = 0.5 after smoothing ground-based estimates; Appendix S1).

Maximum canopy height estimates corresponded to within a few

meters.

Estimating canopy structure and light environments from LiDAR

We estimated leaf area profiles from the distribution of airborne

LiDAR returns, adjusting for shadowing of canopy elements further

from the sensor by the nearer elements using the MacArthur &

Horn (1969) method. In a novel approach, we tested how well this

adjustment worked by comparing with similar profiles, but derived

from a ground-based LiDAR that viewed the forest from the

opposite direction. Specifically, we derived leaf area estimates by (1)

assuming an exponential reduction of LiDAR pulses by leaf area

through successive 1-m thick (vertical dimension) canopy voxels

with 10 m3 volume – � 12,500 per plot – and (2) adjusting the

exponential constant so that total leaf area (LAI) matches published

values for LAI in the central Amazon (i.e. 5.71; Appendix S1). Air-

borne LiDAR-derived mean leaf area density profiles showed strong

agreement with ground LiDAR-derived profiles in the Tapajós and

Ducke, relative to the difference between sites (Fig. 1a and b), and

with a destructive estimate of the Ducke vertical leaf area profile

(McWilliam et al. 1993; Fig. 1a for Ducke). This test gave us confi-

dence in the reliability of airborne LiDAR indices. Although LiDAR

has been applied to estimate leaf area profiles, relatively few studies

have validated these estimates (e.g. Harding et al. 2001; Parker et al.

2001; Tang et al. 2012).

The distribution of leaf area determines the distribution of light

and the pattern of light absorption in the canopy (Parker et al.

2001; Todd et al. 2003; Lee et al. 2009; Richardson et al. 2009).

Therefore, we also derived profiles of two indices of light environ-

ment to associate with plots and sites: the estimated fractional trans-

mittance of light incident to the canopy, an index of relative light

availability at a given point in the canopy (Fig. 1c), and the esti-

mated light absorption within a given canopy layer (fraction of inci-

dent light; Fig. 1d). These light indices corresponded with light that

passes through the canopy vertically and do not consider reflectance

and scattering. The exponential reduction of LiDAR pulses used to

estimate leaf area density is similar to that influencing photosynthet-

ically active radiation (PAR) transmittance (Parker et al. 2001), how-

ever, the rate of LiDAR pulse reduction is expected to differ from

that of PAR since LiDAR employs a different wavelength: near

infrared (NIR). Therefore, we adjusted exponential light attenuation

constants to create understory light conditions that agreed with

empirical measurements. Absorption was calculated as the difference

in light transmittance between the top and bottom of each voxel.

Although light environments are mechanistically connected to the

arrangement of leaf area, the leaf area density of a particular voxel

does not directly influence the incoming light such that these vari-

ables are independent. Absorption may be influenced by covariation

between leaf area density and light transmittance. Confidence inter-

vals (95%) bracketing mean profiles of leaf area density and light

indices were bootstrapped while controlling for horizontal spatial

autocorrelation in leaf area from 1 to 12 m.

Predicting biomass growth of size groups with LiDAR-derived

canopy indices

We tested whether canopy variables estimated from LiDAR pre-

dicted biomass growth across the tree size spectrum. We divided

tree samples in one-hectare plots into size groups of trees defined

by 10-cm wide DBH bins (e.g. trees 10–20 cm DBH form a size

group). We associated the biomass growth of size groups with

LiDAR-derived estimates of leaf area density and the transmittance
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and absorption of incident light. Size groups were connected with

canopy environments based on the expected position (height) of

their crowns in the canopy, based on a power-law allometry relating

diameter and crown height in tropical trees (Chave et al. 2005;

Feldpausch et al. 2010). We based crown height expectations on an

eastern Amazon-specific allometry generated from a large multi-site

analysis [Feldpausch et al. 2010; Height in m = 3.1789 (Diameter in

cm) 0:5072]. Each size group corresponds with an expected region in

the canopy – a horizontal stratum – with lower and upper bounds

determined by the allometric height expectations for the smallest

and largest tree diameters in the size group (e.g. 10–20 cm DBH

corresponds with a canopy stratum extending from 10 to 15 m).

Each one-hectare plot was subdivided into 23 horizontal strata con-

taining up to 23 size groups (not all strata need be occupied by tree

crowns, see Fig. 2; total N = 351). This approach does not consider

variation in the height diameter allometry or in the depth of tree

crowns.

Within vertical strata, we calculated spatial means of LiDAR-

based estimates of leaf area density, light availability and light

absorption to compare with size group biomass growth (Fig. 2).

Taking spatial means reduces or eliminates the possibility that pre-

dictable variation in the vertical extent of canopy strata is statisti-

cally confounded by correlations with tree size groups. Spatial mean

leaf area density is not a measure of the total leaf area associated

with a size group. Instead, relative differences in size group total

leaf area can be estimated by comparing total basal areas – basal

area has been found to be directly proportional to leaf area (Shino-

zaki et al. 1964; Fownes & Harrington 1992; Enquist & Niklas

2002). Basal area specific biomass growth is likely, therefore, to be

directly proportional to leaf area specific biomass growth.

To test the predictive skill of models of biomass growth based

on LiDAR-estimated variables, we restricted the statistical analysis

to plots from the Ducke reserve, but we applied this model predic-

tively (i.e. with fit coefficients from Ducke) to all plots at both sites.

We aggregated model predictions of size structure within sites (i.e.

collecting size groups of the same size) and by summing size groups

in each one-hectare plot, to compare with tree plot estimated bio-

mass growth.

Gap fractions, canopy heights and the canopy Shannon index

To test the hypothesis that simple metrics of integrated forest struc-

ture and environmental variation derived from LiDAR can predict

biomass growth, we calculated gap fraction and the canopy Shan-

non index and compared them against single canopy layer metrics

like LAI. We generated digital canopy height models (CHMs) by fit-

ting a surface through local minima (ground surface) and maxima

(outer forest canopy surface) of LiDAR point cloud data, and taking

the difference between these surfaces at a 1 m2 resolution (Chen

et al. 2007). Gap fraction is a fraction of forest area, where the can-

opy height is less than the threshold defined for a gap (Brokaw

1985) and may combine information on demographic and canopy

structure and environments because gaps reflect a history of tree

mortality and influence light environments and leaf area (Clark et al.

2008). We use a threshold height of 10 m for a gap, and also

require that a gap occupy a contiguous area of at least 10 m2. Work

in progress suggests that this definition optimises the sensitivity of

gap fraction to elements of forest dynamics. For larger areas within

sites, we calculated gap fraction in a window encompassing all for-

est plots comprising the larger area. For individual 1 ha plots, gap

fraction and canopy height were calculated from windows corre-

sponding to GPS estimates of tree plot boundaries. The Shannon

index quantifies information entropy (see Appendix S1) and in this

case, applied to leaf area density profiles, it is a measure of canopy

structural diversity, increasing with the vertical extent of the profile

and with a more equal distribution of leaf area density across the

profile. The canopy Shannon index is sensitive to the vertical

dimension of canopy voxels (standardised to 1 m).
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RESULTS

LiDAR-derived estimates of canopy structure and environment pre-

dicted variation in biomass growth – i.e. above-ground coarse wood

production (Mg C ha�1 yr�1) – over tree size groups, forest plots

and sites. Furthermore, the relationship between estimated light

transmittance and size group biomass growth was explained by a

single curve common to both sites, supporting H1a and suggesting

that the higher biomass growth of the eastern site results from

more size groups in intermediate light environments.

Canopy leaf area structure and light environments

We found that the Tapajós forest is taller with more estimated leaf

area in the sub-canopy than Ducke (Figs. 1b, S5 and S6), despite

similar total Leaf Area Index values (LAI, leaf area summed verti-

cally; 5.72 and 5.70 respectively). Profiles show a strong peak in

estimated light absorption at about 25 m in Ducke, while in the

Tapajós there is evidence of a large plateau in absorption extending

from 12 m to 37 m (Fig. 1d). Average estimated light transmittance

appears to decrease more rapidly in Ducke and attains a low level

higher in the canopy than the Tapajós, despite the taller canopy of

the Tapajós (Fig. 1c).

Predicting size group biomass growth from canopy structure and

environment

We analysed how LiDAR-derived canopy indices were related to

above-ground biomass dynamics, particularly biomass growth. Com-

paring sites, considering bootstrapped 95% confidence regions, size

group biomass growth appeared consistently related to only one fac-

tor: mean light availability (Figs. 3 and S9). Although biomass

growth declined with higher light, basal area specific biomass

growth – a metric of leaf area specific wood production – was rela-

tively constant over light environments and sites (Fig. 3). Basal area

significantly declined with increasing light and was consistently

related to biomass growth (Fig. S9d). Although the best linear

model predicting basal area with light included a site level effect on

the slope and intercept terms (R2 = 0.70, P-value < 0.0001), differ-

ences between site relationships appeared modest. At 20% estimated

transmission, Ducke was expected to have 28% more basal area

than the Tapajós, but the difference was less than 1% at 90% of

incident light. Site and plot-level variation in standing biomass were

strongly predicted by LiDAR data (between 40 and 55% of varia-

tion), as has been found by other studies (Fig. S10).

Relating biomass growth with LiDAR-based metrics, we restricted

analysis to the tree size classes common between sites (trees

>10 cm DBH) and excluded data from an outlier plot (lowest bio-

mass growth; Ducke LO3.4500). Substantial variation in leaf area

density, light transmittance and light absorption remained after cor-

relation with each other factor, suggesting that these factors could

be included together in a multiple linear model (leaf area density vs.

light: R2 = 0.47, P-value < 0.0001; leaf area density vs. absorption:

R2 = 0.31, P-value < 0.0001; light vs. absorption: R2 = 0.01,

P-value = 0.07). A multiple linear model including all three factors

was identified by AIC analysis as the best model explaining the bio-

mass growth of size groups in Ducke plots (Ducke model: biomass

growth = 0.554 + 1.119 9 leaf area density �3.927 9 light absorp-

tion �0.484 9 light transmittance; Resid. SE = 0.15; R2 ¼ 0:66;
161 d.f.; P-value < 0.0001; additional results in Appendix S1). This
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model was significantly better than alternatives (i.e. model was sepa-

rated from others by a DAIC greater than 2) and all factors were

significant; the second best model included light transmittance and

light absorption (DAIC = 4.12) and the third best model included

just light transmittance (DAIC = 7.05). We extended the best model

from Ducke to predict the variation of size group biomass growth

in Ducke and the Tapajós.

Aggregating predictions of this model within each of the two

forests by averaging groups of the same tree sizes across plots

(Fig. 4b), and for each one-hectare plot by summing all size group

predictions for the plot (Fig. 4a), we are able to predict 90% of

variation in growth between size groups (P-value < 0.0001; Resid.

SE = 0.07; 27 d.f.), or 25% of the variation between plots

(P-value < 0.01 level; Resid. SE = 0.62; 35 d.f.). When we restricted

plot level analysis to a single site, Ducke or the Tapajós, the

LiDAR-based approach does not significantly predict variation

(P-values 0.17 & 0.19 respectively).

The Shannon index of leaf area profiles predicted 27% of plot-

to-plot variation in biomass growth (Fig. S10a in Appendix S1;

growth = �6.675 + 2.800 9 Shannon index; Resid. SE = 0.61; 35

d.f.; P-value < 0.001). In this case, the canopy Shannon index sig-

nificantly captures plot level variation (favoured by 4.4 DAIC in

comparison with a model including a site-factor alone). Plot-level

growth predictions obtained from the size group model reported

above were highly linearly related to the canopy Shannon index val-

ues (R2 ¼ 0:76; SE = 0.32, P-value < 0.0001, 35 d.f.). The canopy

Shannon index was not related to plot-level variation in mortality,

while it was the best predictor – 20% of variation – of net change

in above-ground coarse wood biomass (net change = �30.805 +
9.203 9 Shannon index; Resid. SE = 2.45; 35 d.f.; P-value < 0.01;

Fig. S10b). Single-layer indices – LAI, light transmission to the

understory, and total absorption – were, however, not able to

predict plot growth (growth vs. LAI: R2 ¼ 0:01; P-value = 0.57,

35 d.f.).

Gap fraction and above-ground carbon dynamics

The demographic components of above-ground coarse wood car-

bon dynamics – biomass growth, loss to mortality and gain from

recruitment to 10 cm-DBH – were significantly related to gap frac-

tion in 1-ha plots (considering Tapajós and Ducke plots; Fig. 5 and

Table S2 and ‘Site Differences in Components of Above-ground

Carbon Dynamics’ in Appendix S1). Relationships were strongest

when sampling over larger areas within sites, an analysis that

allowed the inclusion of a third site, ZF2 (Table S2 in Appendix

S1), giving R2 values ranging from 0.31 to 0.67. Nonetheless, the

combined effect of these components (net change in live above-

ground biomass) was significantly related to gap fraction only at the

one-hectare plot scale, where gap fraction explained a low propor-

tion of variation in net change (13%). Offsetting trends of increas-

ing biomass growth (gain) and mortality (loss) with gap fraction

may explain why net biomass change does not covary as strongly

with gap fraction as biomass growth. At the one-hectare plot scale,

gap fraction predicted variation in biomass growth about as well as

the Shannon index (27%).

DISCUSSION

We found that variation in canopy gap fraction, leaf area density

and indices of light environments – estimated with airborne small-

footprint LiDAR – predicted above-ground coarse wood production

(biomass growth) from scales of one-hectare forest plots to sites

� 500 km apart, predicting over a quarter of variation in small

(1 ha) forest plots. At the landscape scale (10 ha) more relevant to
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understanding the key question of large-scale carbon dynamics, R2

values increased to over 50%. Vertical variation in canopy metrics

appeared to be essential to biomass growth; metrics that were not

sensitive to vertical structure such as average plot LAI were not

related to variation in biomass growth. Gap fraction was a strong

predictor of biomass growth and recruitment to 10-cm DBH, as

well as biomass loss to mortality. Gap fraction, thus, appears to be

a good metric of ecologically relevant canopy structural variation

that influences biomass growth, while being mechanistically linked

to biomass loss through tree mortality and gap formation.

Although estimates of leaf area density and the absorption of

light incident to the canopy significantly predicted biomass growth,

light availability was the strongest single predictor of variation in

biomass growth and the only predictor that was consistently

related to size group biomass growth at both sites (see Figs 3 and

S9). Furthermore, this relationship was consistent in spite of sig-

nificant differences in canopy structure and demographic history

between sites: the Adolfo Ducke Reserve near Manaus (used to fit

our height-structured model) has a low closed canopy with rapid

light reduction in the upper-canopy relative to the carbon-accruing

Tapajós National Forest � 500 km east in Pará (where we

extended the model; Fig. 1). The consistency of this relationship

suggests hypotheses to explain the role of canopy structure in

above-ground carbon cycling, while providing a tool that in com-

bination with LiDAR remote sensing may significantly increase

understanding of the spatial heterogeneity of carbon dynamics in

tropical forests.

The consistent relationship of size group biomass growth with

mean light environment was the primary factor underlying signifi-

cant plot and site level predictions. The proportions of variation

explained by a model containing the light transmittance index alone

were at minimum 89% of those explained by the full model for all

scales of variation in biomass growth considered. This finding sug-

gests, for example, that our ability to predict site differences in the

division of biomass growth over forest size structure (see Fig. 4b)

was due first to the consistency of biomass growth within light

environments – detectable with LiDAR – and second to a differ-

ence in the distribution of light environments over size classes

between the sites (see Fig. 3c). The factors that explain differences

in canopy structure, therefore, predictably influence landscape car-

bon dynamics. It is crucial to determine the basis for this consis-

tency to move from descriptive to mechanistic explanations for

variation in above-ground carbon dynamics.

Our results supported the hypothesis (H1a) that leaves – or indi-

vidual trees – optimise their productivity in the canopy to create

consistent relationships between canopy light environments and bio-

mass growth. In contrast, we did not find support for the alterna-

tive (H1b). Tapajós and Ducke experience different (1) rainfall and

soil characteristics, (2) tree compositions and (3) disturbance histo-

ries (Vieira et al. 2004; Pyle et al. 2008). However, we do not have

strong evidence to rule out the importance of such factors (H1b),

particularly considering the substantial unexplained variation of

components of carbon dynamics in one-hectare plots.

What optimisation process or processes would lead to consistent

patterns of wood production in light environments? The optimisa-

tion mechanism at work appears to array leaf area and (or) leaf level

productivity similarly over light environments in different plots and

forest sites. The total leaf area associated with a size group is influ-

enced by the recruitment, growth, and loss to mortality of trees and

physiological factors, such as wood density and leaf allocation

(Muller-Landau et al. 2006b; Coomes et al. 2012). Demographic pro-

cesses are likely to respond dynamically to light environments and

may, therefore, play roles in the optimisation mechanism (Kohyama

1993; Muller-Landau et al. 2006b). Although we found that size

group wood production decreased in higher light (Fig. 3a), tree size

distributions likely explain the declining pattern: larger size classes

are associated with fewer individuals, less leaf area and therefore

less growth. Future application of this method should focus on test-

ing mechanisms explaining size structure.

Recent theories link the arrangement of leaf area in space with

leaf level photosynthetic production and forest demographic pro-

cesses (Moorcroft et al. 2001; Muller-Landau et al. 2006a; Strigul

et al. 2008; West et al. 2009; Coomes et al. 2012). LiDAR is a natural

source of data to compare and test these theories (Hurtt et al. 2004;

Antonarakis et al. 2011), particularly if it can provide data on canopy

environments across the forest size spectrum. The results of this

study can be compared against key assumptions and predictions of

theory. First, the metabolic theory of ecology predicts that wood

production will converge on consistent distributions over stem

diameter. We find, instead, evidence for a consistent distribution of

biomass growth over light environments, and no relationship with

stem diameter. The relative constancy of basal area specific biomass

growth over light environments supports, however, the key ‘ener-

getic equivalence’ assumption of metabolic theory that the average

leaf area-specific productivity of each tree is equivalent. In this case,

a similar distribution of light over individual leaves may be found

across the size spectrum. Canopy optimisation of leaf angle and

nitrogen content may help explain this pattern (Coomes et al. 2012;
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Figure 5 Demographic components of above-ground wood biomass dynamics in

relation to canopy gap fraction for one-hectare plots (N = 37) and larger areas

(sub-sites) within the Tapajós, Ducke and ZF2 sites (N = 9). Large symbols

denote sub-sites in Ducke (dark blue, ‘+’), the Tapajós (dark green, ‘9’) and ZF2

(magenta, ‘O’), while the solid symbols are one-hectare scale plots of Ducke (blue,

circle) and the Tapajós (green, triangle). Significant regressions are shown; solid lines

are for sub-site data, whereas dashed lines are for plots (see Table S2 in

Appendix S1 for statistics).
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Niinemets & Anten 2009). The packing of tree canopies and

branches in space may also play a role (Coomes et al. 2012); the

heterogeneity of leaf area over the vertical canopy profile in the

Tapajós, however, may not be consistent with leaves filling space

uniformly with ‘perfect plasticity’ (see Strigul et al. 2008).

Previously, airborne small footprint LiDAR has been largely lim-

ited to estimating standing above-ground biomass (e.g. Asner et al.

2010). Our results suggest that LiDAR data are rich, and can be

used to make both theoretical and practical progress on problems

related to tropical forest carbon dynamics. We show that by using

LiDAR surveys of heterogeneity in canopy structure and associated

light environments, we could map the components of the above-

ground biomass dynamics that arise from tree demographic pro-

cesses in mature tropical forests. An explicit size-structured model

of canopy environments and two additional approaches – the can-

opy Shannon index and gap fraction – each succeeded in predicting

25% or more of the variation in biomass growth in one-hectare

plots. Within mature forests, our results suggest that biomass

growth can be estimated from LiDAR with much higher confidence

as scale increases above one-hectare plots to the landscape scale.

For example, resampling from the canopy Shannon index vs. bio-

mass growth relationship to create hypothetical 50 ha forest plots,

biomass growth was resolved to within 7% of the tree plot esti-

mated value 95% of the time. This predictive skill is sufficient to

help determine whether plots and sites are carbon sinks or sources

to address debate about the carbon balance of tropical forests (see

Gloor et al. 2009).

Given the potential for future climate change induced droughts

that could drive tree mortality and alter canopy environments (Cox

et al. 2004; Nepstad et al. 2007; Phillips et al. 2009), it is critically

important to understand the canopy processes that regulate carbon

dynamics. Although light has long been known to be important

(Lambers et al. 2008; Niinemets & Anten 2009), the nature of the

quantitative relationship between light and wood production across

landscape scale variation in canopy structure has remained largely

unknown. Using the novel datasets now derivable from LiDAR

remote sensing we were able to reveal consistent relationships

between wood growth and light environments over the forest size

spectrum in sites with distinct climates and canopy structure. We

expect future work to refine this approach and to rigorously test

mechanistic theories of productivity and size-structured tree

demography. Future airborne LiDAR surveys of larger areas across

remote forest regions such as the Amazon will thus likely improve

both theoretical understanding of the large-scale ecology of forest

function, as well as empirical quantification of regional carbon bud-

gets, necessary to inform policy decisions relevant to mitigation of

anthropogenic climate change.
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