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Do plant species influence soil CO, and N,O fluxes in a diverse
tropical forest?
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[1]1 To test whether plant species influence greenhouse gas production in diverse
ecosystems, we measured wet season soil CO, and N,O fluxes close to ~300 large (>35 cm
in diameter at breast height (DBH)) trees of 15 species at three clay-rich forest sites in
central Amazonia. We found that soil CO, fluxes were 38% higher near large trees than at
control sites >10 m away from any tree (P <0.0001). After adjusting for large tree presence,
a multiple linear regression of soil temperature, bulk density, and liana DBH explained
19% of remaining CO, flux variability. Soil N,O fluxes adjacent to Caryocar villosum,
Lecythis lurida, Schefflera morototoni, and Manilkara huberi were 84%—196% greater than
Erisma uncinatum and Vochysia maxima, both Vochysiaceae. Tree species identity was
the most important explanatory factor for N,O fluxes, accounting for more than twice the
N,O flux variability as all other factors combined. Two observations suggest a mechanism
for this finding: (1) sugar addition increased N,O fluxes near C. villosum twice as much
(P <0.05) as near Vochysiaceae and (2) species mean N,O fluxes were strongly negatively
correlated with tree growth rate (P = 0.002). These observations imply that through enhanced
belowground carbon allocation liana and tree species can stimulate soil CO, and N,O
fluxes (by enhancing denitrification when carbon limits microbial metabolism).
Alternatively, low N,O fluxes potentially result from strong competition of tree species with
microbes for nutrients. Species-specific patterns in CO, and N,O fluxes demonstrate that

plant species can influence soil biogeochemical processes in a diverse tropical forest.
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1. Introduction

[2] Species’ influence on ecosystem functions remains
a fundamental, outstanding question in ecosystem ecology
[Lawton, 1994]. In forests, knowledge of tree species’
influence on soil CO, and N,O fluxes is important for scaling
these fluxes from the chamber to the ecosystem level [Hall
and Asner, 2007] and predicting ecosystem feedbacks to
climate change [Townsend et al., 2008]. Climatologically,
CO; and N,O are both potent greenhouse gases, and N,O
leads to stratospheric ozone destruction [Crutzen, 1970].
Biologically, soil CO, is a useful measure of ecosystem
decomposition rates and root productivity, while N,O is an
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indicator of nitrogen cycling processes [Galloway et al.,
2001].

[3] Soil CO, and N,O fluxes are spatially and temporally
highly variable, especially in the tropics, where soil gas fluxes
are generally high [Breuer et al., 2000; Raich and Schlesinger,
1992] and measurements are scant [Breuer et al., 2000;
Luyssaertet al., 2007; Werner et al., 2007]. Development and
application of automated chamber techniques have revealed
that temporal N,O flux variability in tropical forests is
strongly coupled to precipitation changes [Kiese et al., 2003].
Spatially distributed, manual chamber measurements have
been used to show that soil N,O fluxes are higher and more
variable on clay-rich than sandy soils. In contrast, soil CO,
fluxes are much less affected by soil texture [Breuer et al.,
2000; Keller et al., 2005; Ohashi et al., 2007] but can be
related to soil moisture and temperature [Sotta et al., 2004],
fine root content [Schwendemann et al., 2003; Metcalfe et al.,
2007], and forest structure [Katayama et al., 2009].

[4] Studies in temperate ecosystems and plantations
[Butterbach-Bahl et al., 2002; Binkley and Menyailo, 2005]
have demonstrated that plant species can influence soil N,O
production and that proximity to tree individuals [Butterbach-
Bahl et al., 2002] and community assembly can be critically
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Table 1. Site Characteristics and Fluxes®
Coordinates MGR® ST BD CO, N,O
Site or Year %Sand  (kgyh) C/N® (°C) (gem™)  %WFPS pH (mg-Cm?2h") (ugNm?Zh")
km 67 2.86S 125.04W 5.4 (1.3) 20.6 (0.6) 12.4 (0.6) 24.8 (0.04) 0.72 (0.01) 54.7 (0.9) 3.67 (0.04) 240 (7) 85.9(4%)
km 67 2006 24.7 (0.03) 0.72 (0.01) 52.5 (0.9) NA 244 (8) 82.1(27)
km 67 2007 25.0 (0.02) 0.71 (0.02) 59.4 (1.8) 3.67 (0.04) 232 (11) 94.6(35)
km 72 291S 125.04W 1.2 (0.4) 13.9(0.5) 13.1(0.2) 255(0.06) 0.72 (0.02) 57.6 (1.3) 3.45(0.03) 243 (11) 444G
km 83 3.02S 125.03W 17.5(2.6) 18.3 (1.1) 13.3 25.7 (0.06) 0.81 (0.02) 69.1 (1.2) 3.59 (0.04) 228 (11) 107.133)
*Values denote mean (SE); bold values are greater than those in italics (o = 0.01).

®Site average of all trees greater than 35 cm DBH.

°C/N values for km 67 are from Williams et al. [2002], values for km 72 are from de Camargo (unpublished data), and values for km 83 are from Silver et al.

[2000].

important [ Niklaus et al., 2006]. The only species-level study
on samples collected in tropical regions [Menyailo et al.,
2003] linked CO, and N,O production from soil cores to
tree species located in low-diversity plantations. We set out to
test whether tree species influence soil CO, and N,O fluxes
in high-diversity primary tropical forest. We measured soil
gas fluxes, soil temperature (7;), bulk density (BD), soil
moisture (SM), tree mass growth rate (MGR), and all stems
>1 cm within a 3 m radius from the flux location close to
(>0.5 and <3m) and away from (>10 m) large individuals
of 15 species. All measurements were conducted in three
sites within a single primary forest in central Amazonia. To
maximize potential soil flux variability, all measurements
were conducted during the late wet season (April, May, and
early June) of 2006 and 2007, since moisture becomes a
limiting factor to greenhouse gas fluxes in the dry season
[Davidson et al., 2004; Keller et al., 2005].

2. Methods

2.1.

[5] We selected three primary forest sites (termed km 67,
km 72, and km 83), all located within 20 km of each other in
the Tapajos National Forest (TNF) south of Santarém, Para,
Brazil. Mean annual temperature in the region is 25.0°C, and
annual precipitation average is 1920 mm with a pronounced
dry season from July through December [Parrotta et al.,
1995]. The forest vegetation is diverse with ~150 species
ha ! (diameter at breast height, DBH > 10 cm) and 27 species

Site Description

Table 2. Species Used for Flux Measurements®

per hectare (DBH > 35 cm). Soils at the km 67 and km 72 sites
are texturally highly homogeneous and consist of clay-rich
Oxisol (clay content > 90%, see Table 1). At km 83, soils are
texturally more variable [Silver et al., 2000], and we only
selected sites with sand content <20%.

2.2. Sampling Design and Analyses

[6] Fifteen tree species (Table 2) were selected based on
abundance (% basal area) and canopy status (upper canopy
or emergent species only) from within 20 ha of transects
established between 1999 and 2003 [Pyle et al., 2008]. Our
species selection included one pioneer species (Schefflera
morototoni) and four legume species (Coipefeira multijuga,
Chamaecrista xinguensis, Psuedopiptadenia psilostachya,
and Sclerolobium chrysophyllum), which can potentially
form a symbiosis with N-fixing rhizobia bacteria. Of the
species selected, most abundant at km 67 were Erisma
uncinatum, Manilkara huberi, Couratari stellata, and C.
xinguensis with over 100 individuals >35 cm and 21%, 19%,
17%, and 11% of all basal area, respectively. Least abundant
were Caryocar villosum, Vochysia maxima, Bertholletia
excelsa, and S. morototoni with 12, 11, 9, and 12 individuals,
respectively, and ~2% of basal area each. All individuals
selected were >35 cm DBH, which because of their age and
size were expected to exert more influence on soil processes.
We determined mass growth rate (MGR) from biomass
increment over time, calculated from periodic DBH mea-
surements using the allometry of Chambers et al. [2001]. We
identified by common name and measured the DBH and

Family Genus Species Authority Common Name
Anacardiaceae Astronium lecointei Ducke Aroeira
Araliaceae Schefflera morototoni (Aubl.) Maguire Morototo
Caryocaraceae Caryocar villosum (Aubl.) Pers. Piquia
Fabaceae (Caes.) Chamaecrista Xinguensis (Ducke) H.S. Irwin & Barneby Coragdo de negro
Fabaceae (Caes.) Copaifera mulijuga Hayne Copaiba
Fabaceae (Caes.) Sclerolobium chrysophyllum Poepp. Tachi vermelho
Fabaceae (Mim.) Psuedopiptadenia psilostachya (Benth.) G.P. Lewis & M.P. Lima Fava folha fina
Lecythidaceae Bertholletia excelsa Humb. & Bonpl. Castanha do Para
Lecythidaceae Couratari stellata Aubl. Tauari
Lecythidaceae Lecythis lurida (Miers) Morales Jarana
Meliaceae Carapa guianensis Aubl. Andiroba
Sapotaceae Manilkara huberi (Ducke) Chev. Magaranduba
Sapotaceae Pouteria reticulate (Engl.) Eyma Abiu
Vochysiaceae Erisma uncinatum Warm. Quarubarana
Vochysiaceae Vochysia maxima Ducke Quaruba verdadeira

“Tree species were initially identified in 1999 along the km 67 transects by Nelson A. Rosa from the Museu Emilio Goeldi in Belém, Para, where voucher
specimens are stored in the museum collection. During our field campaigns Nilson de Souza Carvalho of the EMBRAPA office in Belterra, Para, conducted all
the tree identifications. All tree species are also described in the Trees of the Tapajos [Parrotta et al., 1995].
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distance from the chamber of all stems greater than 1 cm
within a radius of 3 m from the flux location. Liana stems
were measured at 1.3 m from the first rooting location and not
identified by species. Immediately after taking the fluxes, we
measured Ty.;; and pH in situ in four locations within the
chamber area with handheld probes (Omega PH222 meter
with PHAT-222 temperature probe, accurate at +0.1°C, and
PHE-2385 rugged pH probe, accurate at 0.02 with a two-
point, pH 4 and 7, calibration before and after every batch
of measurements). We collected soil samples (0—3 cm depth)
for bulk density (BD) and soil moisture (SM) analyses by
inserting soil rings (diameter = 5 cm; height = 3 cm) into the
soil surface. The rings were immediately weighed and dried
at 105°C for at least 24 h. BD was determined by dividing
the soil dry weight by the ring volume and percent water
filled pore space (% WFPS) was calculated from BD and SM
according to Linn and Doran [1984]. After drying, we
selected 45 soil samples from three species with differing
N,O fluxes, removed, and weighed root and litter fractions
before measuring C and N content on a Carlo Erba Elemental
Analyzer at CENA, Piracicaba, Sao Paulo, Brazil. We mea-
sured microbial biomass using the fumigation and extraction
method on freshly sampled soils collected close to 6 randomly
selected Caryocar villosum, Erisma uncinatum, and Vochysia
maxima trees.

2.3. Soil Gas Fluxes

[7] To measure soil gas fluxes, we installed ~30 cm
diameter chamber bases ~2 cm into the soil and within 1 h
(to minimize root decomposition effects) drew four 20 mL
B&D® plastic syringes at 10 min intervals. Within 36 h, we
analyzed all syringes for CO, and N,O on a Shimadzu gas
chromatograph with a 2 mL injection loop, Porapak Q col-
umn (1/8" x 4', P5-carrier head pressure at 40 psi, and column
temperature at 60°C), and electron capture detector at 300°C.
Gas fluxes were determined using linear regression and
converted to weight area ' time ' using air temperature and
chamber volume. In 2007, we measured soil gas fluxes
immediately before and ~30 min after glucose addition to the
soill(2.5¢g m 2 in 20 mL of water), to assess the instantaneous
response of the existing soil community to sugar addition
[Nobre et al., 2001; Garcia-Montiel et al., 2005].

2.4. Data Analyses

[8] Measured parameters were tested for normality and
log-transformed when appropriate; geometric mean and
standard error (SE) values were reported in Tables 2 and 4.
Statistical analyses were conducted in JMP (SAS, USA).
For both the whole data set and for each species separately,
we tested different regression models using liana DBH and
sum DBH within 3 m of the flux location, T;, BD, and %
WEPS through the stepwise module in JMP. pH was excluded
from the procedure since (1) we only measured pH in 2007,
which approximately halved the data set; and (2), when
included, pH was at most a weak predictor variable, except
for all N,O fluxes. To assess which independent variables
provided the best regression fit, we calculated the Akaike
Information Criterion (AIC) values for each fit separately,
then calculated the Akaike weight of each potential regression
equation and summed these per predictor variable to obtain
their relative importance according to the study of Johnson
and Omland [2004].
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2.5. Impact of Species Composition on Ecosystem-Scale
Fluxes

[9] In order to estimate how changes in tree species
composition might influence the overall forest fluxes and
greenhouse gas balance, we used a simple model to scale
ecosystem fluxes. We calculated annual fluxes based on dry
season fluxes from Keller et al. [2005], who measured soil
CO;, and N,O fluxes at one of our sites in 2001 and 2002, and
a 6 month wet season [Parrotta et al., 1995]. We assumed
no flux difference between species in the dry season. Then,
we added the wet season effect of tree species’ influence
depending on the species identity and the size of the trees. To
accomplish this, we entered tree location and size of all trees
>35 cm into ArcGIS (ESRI, USA) to obtain the circle of
influence and overlap [eg., Zinke, 1962] for each tree species.
We assumed that circle of influence scaled linearly with
DBH and calculated the influence area per species for when
the circle of influence at DBH of 100 cm was between 1.5 and
15 m. Areas of all combinations of flux influence (control,
tree species, and tree species overlap where fluxes were
averaged) were multiplied by the appropriate flux and
weighed by the total area. Population changes were mimicked
by increasing or reducing the proportional area of influence
of the species with high or low fluxes.

3. Results

3.1. Overall Flux and Soil Parameter Differences

[10] CO,and N,O fluxes ranged from 39 to 767 mg-C m 2
h™" and 5 to 595 ug-N m 2 h™', respectively, values com-
parable to other tropical forests during the wet season [ Breuer
et al., 2000; Ohashi et al., 2007]. Abnormally high CO,
fluxes (>400 mg-C m 2 h™', n = 33) could have been the
result of termite activity [Ohashi et al., 2007], though asso-
ciation of high CO, with high N,O and CH,4 fluxes, gases also
produced by termite activity, was not consistent. We mea-
sured fluxes both in 2006 and 2007 at km 67, and except for
%WFPS, all variables were nearly identical between years
(Table 1). Our three forest sites had very similar mean CO,
fluxes, but the N,O flux at km 72 was ~50% lower than at
both other sites (Table 1). We found no difference in mean
CO, flux among the selected tree species (Figure 1). Toi1,
BD, liana DBH, and %WFPS explained respectively ~6%,
8%, 8%, and 5% of the observed variability. Interaction
between the liana DBH, T, and BD increased the explained
variability to 24%. Tree species differences explained 16%
of all N,O flux variance, twice the variance explained by
%WFPS (both P < 0.0001, with some interactive effects be-
tween the different variables: AIC,cies = =230, AICo,wrps =
_205, and AICspeCies&%WFPS = _2355)

3.2. Flux and Soil Parameter Differences With Species
Grouped by Day

[11] We found strong variability in the day-to-day mean
pH, Tyi, BD, %WFPS, CO,, and N,O fluxes (7,4 = 0.15,
0.72, 0.13, 0.38, 0.15, and 0.24, all at P < 0.0001). This
prompted us to reanalyze all data grouped by day. Species
differences remained (Figure 1), with only a strong reduction
in P value with T,.;. With all sites combined, CO, fluxes
close to large trees (2458 mg-C mZ2h', meanigg) were
38% larger than mean flux away from large trees (control,
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Figure 1. (a) Tree mass growth rate (MGR), (b) soil pH, (c) bulk density (BD), (d) %WFPS, (e) CO, flux,
and (f) N,O flux in relation to tree species at three clay-rich sites in the TNF. All values were corrected

for mean differences between sampling days. Horizontal continuous and dashed lines denote overall mean

(n =338) and 95% confidence interval (CI), respectively, while black diamonds and error bars denote

and species means significantly

respectively. AL, Astronium lecointei (n = 17);

BE, Bertholletia excelsa (n = 11); CG, Carapa guianensis (n = 28); CM, Coipefeira multijuga (n = 7);

shading,
CS, Couratari stellata (n = 32); CV, Caryocar villosum (n = 23); CX, Chamaecrista xinguensis

0.01 are denoted with + or —,

(n = 13); EU, Erisma uncinatum (n = 29); LL, Lecythis lurida (n = 33); MH, Manilkara huberi

(n =35); PP, Psuedopiptadenia psilostachya (n = 22); PR, Pouteria reticulate (n = 18); SC, Sclerolobium

chrysophyllum (n = 16); SM, Schefflera morototoni (n = 7); and VM, Vochysia maxima (n = 17). Asterisk

species means £95% CI. Legume (L) species are denoted with
denotes control taken >10 m from any tree >35 cm (n = 33).

greater and smaller at «v
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Figure 2. Soil CO, fluxes versus (a) Ty, (b) BD, (c) liana DBH, and (d) their multiple regression com-
bination. The multiple regression explains ~23% of CO, flux variability. BD includes information on soil
moisture (%WFPS) and total organic content (TOC in the top 0—3 cm of the soil), since BD explains ~55%
and 45% of variability in %WFPS and TOC, respectively.

Figure le, 177¢mg-Cm >h™', P<0.0001). Mean BD (0.83 +
0.04 gcm °, Figure 1c) and %WFPS (68 + 3, Figure 1d) of the
control samples were 15% and 24% greater, respectively,
than the species mean (P = 0.02 and 0.01, respectively). Tyo;,
BD, %WFPS, and liana DBH remained the strongest pre-
dictors for CO, fluxes explaining 14%, 11%, 8%, and 6% of
CO, variability, respectively (Figure 2). Multiple regression
between Ty;;, BD, and liana DBH explained 23% of total
variance, 18% after adjusting for the difference between close
and away from large trees.

[12] Mean N,O fluxes close to C. villosum (10413 pg-N
m “h™', Figure 1f) were 111% and 147% larger than close to
E. uncinatum and V. maxima (49.633 and 42.3%9 ug-N m

h™!, respectively, o < 0.005 Tukey-Kramer HSD test). While
L. lurida fluxes (9113 1g-N m 2 h™') were 84% greater than
E. uncinatum, the L. lurida, S. morototoni, and M. huberi
fluxes (12575 and 8617 ug-N m > h™', respectively) were
116%, 196%, and 104% greater than V. maxima fluxes (all at
«<0.05). Tree species still explained more N,O flux variance
(12%) than any other variable, with %WFPS, MGR, and pH
explaining ~4%, 2%, and 3%, respectively. When taking
the species averages, only regressions with %WFPS and tree
MGR were significant (P = 0.005 and 0.002, respectively),
explaining 43% and 52% of species-to-species variability
(Figure 3).

£ 150 B Pioneer (SM) c . Al
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Z 100 ° o
o Al _ = o
3 - Pioneer o "
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z “Saic=30  arc=7o|| Alc=76 -Pioneer AIC=68
55 65 30 60 0 2
% WFPS MGR kg y"! 0.05*MGR-0.20*%WFPS+11

Figure 3. Species-specific soil N,O fluxes versus (a)

%WEFPS, (b) mass growth rate (MGR), and (c) their

combination. Vochysiaceaec N,O fluxes (rzadj =0.97 (large dashed line) versus 0.39 (solid line) for all spe-
cies) define a separate, more positive trend with %WFPS than most other species (small dashed line, rzadj =
0.70). The negative trend between N,O flux and MGR is significant, especially when S. morototoni, a pio-
neer species, is excluded (rzadj =0.48 and 0.69, respectively). Note that because of the negative correlation
with N,O, the sign of the MGR and %WFPS coefficients is the opposite of what is expected.
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Table 3. Slope Direction, Summed Akaike Weight, Adjusted Correlation Coefficients, and P Values for the Multiple Linear Regressions
by Species for By-Day Corrected CO, Fluxes and N,O Fluxes Also After By-Species Correction

Species Liana DBH?* Sum DBH?* ST BD %WFPS Rzadj P
CO,

All +0.99 +1.00 —0.98 0.23 <0.0001
A. lecointei +0.95 —0.62 0.52 0.007
B. excelsa +0.67 0.25 0.08
C. guianensis +0.97 0.21 0.01
C. stellata +0.64 +0.86 +1.00 0.51 <0.0001
C. villosum —0.88 0.16 0.04
L. lurida +0.86 0.10 0.04
M. huberi +0.87 -0.99 +0.97 0.52 <0.0001
P. psilostachya +0.92 0.18 0.04
S. morototoni +0.60 +0.64 +0.59 —0.78 0.89 0.07
V. maxima +0.69 —0.66 0.31 0.05

NzO

All +0.88 —-0.70 +0.99 0.04 0.001
C. multijuga +1.00 0.54 0.06
C. xinguensis +0.67 0.29 0.03
Control +0.68 -0.73 +0.83 0.31 0.005
L. lurida +0.84 -0.76 -0.99 +0.99 0.41 0.001
M. huberi +0.86 -0.98 +0.88 0.41 0.0007
P. reticulate +0.61 —-0.75 +0.89 0.49 0.01
V. maxima -0.79 +0.49 0.30 0.05

“Liana DBH and sum DBH represent the sum of DBH measurements within a 3 m radius of the soil flux location of all liana and stems >1c¢cm DBH,
respectively. Species not mentioned did not have a correlation between any independent and dependent variables P value less than 0.10.

3.3. Species-Specific Regressions

[13] Multiple regression analyses, conducted separately for
each species, had much higher explanatory value than the
overall regression (Table 3). The mean species Rzadj was
higher than the Rzadj of the regression with all samples (CO,:
0.36 versus 0.23, z = 1.8, P = 0.04; N,O: 0.39 versus 0.04,
z =293, P =0). This even was true for N,O after assuming
Rzadj = 0 for not reported species (0.17 versus 0.04, z = 2.5,
P=0.006). We found that for 6 species, CO, fluxes correlated
positively with liana DBH (Table 3). We further found 5, 3, 2,
and 3 correlations between CO, flux and T,;, total DBH <
3m, BD, and %WFPS, respectively. Correlations between
CO, flux and both liana DBH and T,,;; were consis-
tently positive, whereas correlations with total biomass and
%WEFPS were not. Species-specific N,O flux multiple lin-
ear regression analyses were almost all strongly positively
correlated with %WFPS. Other consistent correlations were
found for BD (3 times negative) and liana DBH (twice
positive). Correlations with total DBH (3) and T,,; (2) were
not consistent.

3.4. Soil Measurements Near Species With Differing
N,O Fluxes

[14] We focused further analyses on the three species
with the largest and most consistent N,O flux difference

(C. villosum, E. uncinatum, and V. maxima, Table 4). Soil
analyses revealed no difference for CN ratio, [NO;3], and
microbial biomass, only a weakly significant difference in
either litter or fine root content between soil samples collected
close to C. villosum and E. uncinatum or V. maxima indi-
viduals, respectively. Sugar additions resulted in an imme-
diate response in CO, and N,O fluxes, which were strongly
correlated with the initial N,O flux (F; 27 = 111, R*=10.82,
and P < 0.0001). CO, fluxes increased by 25% to 70%,
whereas N,O fluxes increased by 460% close to C. villosum
and by ~230% close to E. uncinatum and V. maxima in-
dividuals (Table 4).

3.5. Impact of Tree Species on Ecosystem Fluxes

[15] In general, tree species-related N,O flux differences,
and the soil CO, flux difference between species and control,
were both substantial relative to the overall greenhouse gas
budget of this forest. On an equal global warming potential
basis (N,O ~ 296 times CO,), annual species N,O flux dif-
ferences represent approximately half of the net flux of CO,
from the ecosystem and 10% to 20% of the carbon annually
stored as net growth [Pyle et al., 2008].

[16] Our simple model of how the spatial distribution of
trees influenced ecosystem fluxes indicated that the overall
forest CO, flux was 15% greater than the control mean CO,

Table 4. Soil and Flux Measurements Adjacent to Three Tree Species With Differing N,O Fluxes®

N,O CN Litter Fine Root [NOs] MB-C xN,O CO,/N,O

Species (ug-Nm?2h") Ratio® G’ % (mg kg ") (ug-C kg™ Increase (/1000)

C. villosum 1290 14.3(0.2) 2.1(0.2) 1.26(0.04) 10.2(13) 528(47) 4.6(33) 1.6(53)
E. uncinatum 45(1% 13.7(0.2) 2.00.3) 1.44(0.06) 12.6(13 473(46) 2.2(53) 6.2(0:3)
V. maxima 3507 14.5(0.2) 3.4(0.9) 1.32(0.05) 14.7G33) 473(45) 24039 7.043)

*From left to right: mean (SE) of N,O flux, soil CN ratio, litter, fine root content, [NO3], microbial carbon content (MB-C), N,O flux increase after sugar

addition, and CO,/N,O ratio.

PCN ratios, litter, and fine root content were determined on the same samples that were used to measure BD and %WFPS. Bold values are significantly
different from italic values (Tukey-Kramer o = 0.05 for all except N,O and CO,/N,O, where a = 0.0002 and 0.0005, respectively). Subscript and
superscript values in parentheses denote the geometric negative and positive SE.
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flux when the tree circle of influence was >7.5m. This is a
realistic size for the range of tree influence since maximum
tree root extend measured, when trenches were dug for a
large-scale drought experiment, nearby in the TNF were
30-34 m for three tree species (M. huberi, L. lurida, and
E. uncinatum) (D. Nepstad, personal communication). The
modeled ecosystem-scale N,O flux did not change appre-
ciably when the range of influence was increased, due to the
presence of tree species with both higher and lower than
average fluxes. The ecosystem-scale N,O flux, as estimated
from the spatially explicit distribution of trees, is comparable
to the N,O control flux (measurements >10 m away from any
large tree >35 cm DBH). Only a large shift (20%—-25%) in
ecosystem composition from tree species with either high to
low fluxes (or vice versa) would have an appreciable effect
(>15% of the overall flux) on ecosystem N,O fluxes.

4. Discussion

4.1.

[17] We found no tree species effect on CO, fluxes, but the
effect of presence or absence of large trees was presumably a
consequence of litter or root density. Lower fine root density
or litter content [Schwendemann et al., 2003; Metcalfe et al.,
2007] have been demonstrated to correspond with reduced
CO, fluxes. Similar to Sotta et al. [2004], we found no cor-
relation between total forest biomass (measured within 3 m of
the flux location) and soil CO, flux, as found in Borneo by
Katayama et al. [2009], who included a range of measure-
ment radii around their flux measurements. However, we do
not expect that the difference in sampling radius would affect
the correlation in our case, since Katayama et al. [2009]
found a >30% explanatory power for total DBH when mea-
suring only trees >10 cm within 3 m of each flux location
(their Figure 4).

[18] Beyond the effect of presence or absence of nearby
trees and the expected affect of soil climate (positive effect
of temperature, Paul and Clark [1996]), we observed, for the
first time, a distinct effect of liana DBH on soil respiration. As
far as we know, this paper is the first to document a positive
correlation between liana DBH and soil CO, efflux. Two
aspects of liana physiology make this relationship highly
plausible: (1) liana leaves are located in the upper canopy
with high light exposure and have high water use efficiency
[Domingues et al., 2007], and (2) lianas have to invest less
carbon into structural biomass [Putz, 1983] and, compared to
trees, should have more carbon to invest below ground. The
negative relationship between BD and soil CO, fluxes, which
could be a consequence of either lower root density in high
BD soils, or a BD correlation with pore space, which controls
the soil gas transport flux to the atmosphere. Since we did not
observe strong relationships between root density and soil
CO, efflux, we presume that reduced gas transport is the main
mechanism for BD influence on soil CO, fluxes.

Potential Causes for CO, Flux Differences

4.2. Potential Causes for N,O Flux Differences

[19] Perhaps our most interesting finding is the high
importance of tree species composition, even in a diverse
primary forest, on the magnitude of N,O fluxes. In fact, our
data confirm that tree species identity was the single most
important factor in explaining flux variability, more than
twice as important as soil water. For example, when consid-
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ering the species mean N,O fluxes, the two Vochysiaceae
species and control samples appear to define a more sensitive
trend of N,O flux to soil moisture relative to all other species
(dashed line, Figure 3a). There are a number of hypothesis
immediately suggested by the literature, but on close exam-
ination, many of these seem implausible. In tropical forests,
for example, differences in soil N,O fluxes have been linked
to litter decomposition rates [Kiese et al., 2003], soil CN
ratios [Kiese and Butterbach-Bahl, 2002], pH [Menyailo
et al., 2003], %WFPS [Davidson et al., 2004], and texture
[Keller et al., 2005]. By selecting only clay-rich sites, we did
not address the influence of soil texture on N,O fluxes.
Species-specific litter decomposition did not appear to
influence soil mineralization rates since CO, fluxes were
species independent. This is consistent with litter mixing
experiments in diverse tropical forests, which render litter
decomposition rates relatively independent of location
and species [Scherer-Lorenzen et al., 2007]. Neither site-
averaged (Table 1) nor species-specific (Table 3) soil N,O
fluxes and CN ratios supported the correlation between
annual N,O fluxes and site-averaged CN ratios, as observed
by Kiese and Butterbach-Bahl [2002]. Soil CN ratio has been
tied to ecosystem mineralization and nitrification rates, but
its relation to soil denitrification rates is less clear. Since all
our sampling was conducted in clay-rich soils during the
wet season, in a forest where foliar and soil §'°N values
are suggestive of denitrification [Williams et al., 2002], we
expect denitrification to be the more dominant process
causing spatial N,O flux variability. After correcting for the
day measured, we found a small negative correlation between
pH and soil N,O fluxes. However, species or site mean N,O
fluxes correlated neither negatively nor positively with soil
pH as observed by Menyailo et al. [2003]. A negative cor-
relation between pH and N,O fluxes is expected in acidic
soils based on the inhibitory effect of low pH on the N,O
reductase enzyme [Nommik, 1956].
4.2.1. N,O Fluxes and Legume Species

[20] Surprisingly, N,O fluxes close to trees from the
Leguminosaceae family (denoted by dotted areas in Figure 1)
were not particularly high. Even the biomass of small legume
trees, which are more likely to be nodulated [de Faria et al.,
1989; Sprent, 2005], within 3 m of the chamber location did
not appear to influence the soil N,O fluxes (data not shown).
Legumes have been found to restore N dynamics in secondary
forests [Davidson et al., 2007], and soil N,O fluxes have been
found to increase in areas where invasive legume trees
dominated wet tropical forests in Hawaii [Hall and Asner,
2007]. In the TNF, high 6'°N values and high foliar N con-
tent [ Williams et al., 2002] suggest that legumes add little N
to the ecosystem. Lack of nodulation found in the field as
implied by high 6'°N values of leaf nitrogen could account for
the lower than expected N,O fluxes for the legume species.
4.2.2. Potential Plant Drivers of Soil Biogeochemistry

[21] Given that most measured soil physical and chemical
parameters explain less of the soil N,O flux variability than
plant species, we propose that plant-soil interactions drive
soil N,O fluxes in complex forests. Plants are the main source
of carbon, a major source of nitrogen to soils, and potentially
compete with soil microorganisms for nutrients [Schime!l
and Bennett, 2004]. We can envision two mechanisms that
could explain a direct relationship between tree species and
soil N,O fluxes: (1) tree species could alter soil N,O fluxes
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through the quality and quantity of C added to the soil (e.g,
labile carbon would be expected to stimulate denitrification
[e.g., Scaglia et al., 1985]) and/or (2) trees could compete
with soil microorganisms for nutrients and thereby directly or
indirectly effect denitrification. Though not mutually exclu-
sive, we will treat these two processes as such in the following
discussion.

[22] In tropical forest soils, soil microorganisms are gen-
erally carbon, rather than nitrogen, limited [Nobre et al. 2001;
Garcia-Montiel et al., 2005]. High "N values of total soil
pools and leaves in the TNF [Williams et al., 2002] are con-
sistent with sufficient available N and with substantial N loss
through denitrification [Groffiman et al., 2006]. Our sugar
additions confirmed that the soils in the TNF were C limited
but that carbon limitation could be quite variable. We inter-
pret the stronger response after sugar addition of soils close to
C. villosum and lack of microbial biomass to imply that these
soils are more prone to denitrification. Furthermore, since
pure denitrification produces CO, and N,O at a 1:1 ratio
[Burford and Bremner, 1975] and decomposition processes
produce these gases at a 5000:1 ratio [Garcia-Montiel et al.,
2002], areas with high denitrification activity could produce
high N,O fluxes without changing the CO, flux. Keller et al.
[2005] measured high CO,/N,O ratios (~30,000) in sandy
Ultisols but low ratios (~1500) in clay-rich Oxisols during the
wet season under conditions conducive to denitrification. The
low CO,/N,O ratios and greater reduction in CO,/N,O ratio
after sugar addition closer to C. villosum are consistent with
stimulated denitrification close to C. villosum.

[23] Alternatively, the flux difference among tree species
could be the result of tree-specific competition with soil
bacteria for nutrients, as suggested by Schimel and Bennett
[2004]. Trees derive most of their nutrients from the sur-
rounding soil, except for some N uptake through fixation and
by precipitation interception. The soil nutrient demand of
trees depends on their overall nutrient demand, which is tied
to their overall growth rate [Ingestad and Agren, 1992], their
efficiency in nutrient use, the amount of photosynthesis per
unit of nutrient, and their efficiency in retaining nutrients
during senescence. Although we did not demonstrate such
competition effects in the TNF, a recent study in the Brazilian
Cerrado by Kozovits et al. [2007] found that N and P
resorption was much greater in Caryocar brasiliense, same
genus as C. villosum, than in Quaelea parviflora, which
belongs to the Vochysiaceae family. As a result litter N
concentrations were similar and presumably C. brasiliense
had more N and P stored in woody tissue to provide for the
next leaf flush. The authors interpreted these results to imply
that Q. parviflora had to derive more of its nutrients from the
soil. In the TNF, we observed shallow root mats more com-
monly around E. uncinatum and V. maxima than C. villosum,
suggesting that the Vochysiaceae invest more biomass in
shallow soil nutrient uptake. This was only partially con-
firmed by the root content in our shallow soil samples
(Table 4). Furthermore, we found that tree species’ mean N,O
fluxes were negatively correlated with MGR, especially when
a pioneer species (S. morototoni) was excluded (dashed line,
Figure 2b). Fast growing trees generally have higher nutrient
demands [Ingestad and Agren, 1992] and therefore need to
compete more strongly for nutrients with the microbial pool,
which could lead to reduced N,O fluxes. Pioneer species are
expected to fall off this trend, since pioneers are adapted to
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low nutrient conditions. Legume species normally would
be expected to follow this trend, though lack of nodulation
in the TNF would negate this.

5. Conclusion

[24] We found that tree species and lianas can influence
soil biogeochemistry, especially N cycling in complex trop-
ical forests. However, we are troubled by the overall low
explanatory power of any of the measured variables for either
soil CO, or N,O fluxes. This suggests that in tropical forests
under the wet conditions of the rainy season, we still do not
understand well what processes drive spatial flux variability.
This is consistent with our poor understanding of denitrifi-
cation activity across the globe [Groffinan et al., 2009].
Furthermore, soil CN ratios, the standard way to incorporate
plant species into biogeochemical models, cannot explain the
large N,O flux difference observed between certain species.
We propose that species-dependent resource acquisition
strategies, such as those underlying species-specific growth
rates and nutrient demand functions, are more important for
soil biogeochemistry than previously appreciated. Incorpo-
ration of plant species traits may be important for successful
N,O production models. The influence of lianas on both CO,
and N,O fluxes is evidence of their importance on carbon
balance of tropical ecosystems and their importance as
belowground resource competitors. Since lianas are expected
to increase in abundance in tropical systems with increased
fragmentation and climate change [Phillips et al., 2002], this
might represent a further negative climate change feedback
combined with the reduction in tree growth rates as observed
by van der Heijden et al. [2009].
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