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[1] A new three-dimensional version of the Carnegie-Ames-Stanford Approach (CASA)
ecosystem model (CASA-3D) was developed to simulate regional carbon cycling in
tropical forest ecosystems after disturbances such as logging. CASA-3D has the following
new features: (1) an alternative approach for calculating absorbed photosynthetically
active radiation (APAR) using new high-resolution satellite images of forest canopy gap
fraction; (2) a pulse disturbance module to modify aboveground carbon pools following
forest disturbance; (3) a regrowth module that simulates changes in community
composition by considering gap phase regeneration; and (4) a radiative transfer module to
simulate the dynamic three-dimensional light environment above the canopy and within
gaps after forest disturbance. The model was calibrated with and tested against field
observations from experimental logging plots in the Large-scale Biosphere Atmosphere
Experiment in Amazonia (LBA) project. The sensitivity of key model parameters was
evaluated using Monte Carlo simulations, and the uncertainties in simulated NPP and
respiration associated with model parameters and meteorological variables were assessed.
We found that selective logging causes changes in forest architecture and composition that
result in a cascading set of impacts on the carbon cycling of rainforest ecosystems. Our
model sensitivity and uncertainty analyses also highlight the paramount importance of
measuring changes in canopy gap fraction from satellite data, as well as canopy light-use
efficiency from ecophysiological measurements, to understand the role of forest
disturbance on landscape and regional carbon cycling in tropical forests. In sum, our study
suggests that CASA-3D may be suitable for regional-scale applications to assess the
large-scale effects of selective logging, to provide guidance for forest management, and to
understand the role of forest disturbance in regional and global climate studies.
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selective logging, J. Geophys. Res., 113, G01002, doi:10.1029/2007JG000438.

1. Introduction

[2] Tropical forests have been threatened by increasing
rates of forest degradation during the past 3 decades.
Although deforestation, largely for the conversion of land
to food crops or pastures, is the major destructive force in
tropical forests worldwide [Houghton et al., 2000], other
forest disturbances such as the selective harvest of timber
have also increased in frequency and extent [Nepstad et al.,
1999]. In selective logging, a limited number of marketable
tree species are cut, and logs are transported off site to
sawmills. Unlike deforestation, which is readily observed
from satellites, selective logging in the Brazilian Amazon
causes a spatially diffuse thinning of large trees, which is

hard to monitor using satellite observations. Selective log-
ging causes widespread collateral damage to remaining
trees, subcanopy vegetation, and soils, with impacts on
hydrological processes, soil erosion, fire, carbon storage,
and plant and animal species.
[3] Recent remote sensing studies have made the moni-

toring of selective logging possible from the space. Asner et
al. [2005a, 2006] developed a large-scale, high-resolution,
automated remote-sensing analysis of selective logging and
applied it to the top five timber-producing states of the
Brazilian Amazon. Their results show that logging rates
ranged from 12,075 to 19,823 km2 per year (a) (±14%)
between 1999 and 2002 in these states, equivalent to 60–
123% of previously reported deforestation (forest clear-cut)
area for those years.
[4] Current ecosystem models either operate at a broad

spatial scale incompatible with diffuse forest disturbances
such as selective logging, or at a very fine spatial scale that
cannot easily ingest high-resolution data on forest canopy
damage and disturbance over large geographic regions. The
Ecosystem Demography (ED) model is an exception in that
it is an individual-based terrestrial biosphere model which
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can be scaled to large areas (e.g., a General Circulation
Model (GCM) grid cell) with a size- and age-structured
approximation [Moorcroft et al., 2001]. However, it lacks
an ability to simulate the carbon budget following distur-
bance such as selective logging. In the case of selective
logging, an appropriate modeling approach is needed to
simulate timber harvest impacts over large regions, mean-
while properly accounting for a necessary lack of site-
specific information that is not expressed in remote sensing
data (e.g., changes in forest community composition, light
conditions, and stand structure after disturbance).
[5] To address these issues, we developed a new version

of the Carnegie-Ames-Stanford Approach (CASA) ecosys-
tem model (CASA-3D) designed specifically to quantify
changes in carbon storage and fluxes following forest
disturbance in humid tropical forests. The major new
features of CASA-3D include: (1) an alternative way of
estimating absorbed photosynthetically-active radiation
(APAR) by taking advantage of new high-resolution satel-
lite maps of forest canopy gap fraction [Asner et al., 2005a];
(2) a pulse disturbance module to realistically modify
carbon pools after forest disturbance; (3) a regrowth module
that addresses changes in community composition follow-
ing disturbance with a new set of parameterizations based
on field observations of gap phase regeneration; and (4) a
radiative transfer module for charactering the dynamic
three-dimensional light environment above the canopy and
within gaps after disturbance. This paper presents the novel
combination of these new modules within CASA-3D and
exercises the model on a well-measured tropical forest site
in the central Amazon that was selectively logged during the

Large-scale Biosphere-Atmosphere Experiment in Amazo-
nia (LBA) program [Keller et al., 2004a]. The new CASA-
3D features are presented, followed by a calibration and
testing carried out by comparison to data of net primary
production (NPP), above ground biomass (AGB), coarse
woody debris (CWD), net carbon exchange, and soil carbon
pool collected at the Tapajos National Forest experimental
logging sites [Keller et al., 2004b; Miller et al., 2004]. We
then carry out a series of single-parameter and multiparam-
eter sensitivity analyses to understand the absolute and
relative importance of the major model parameters in
describing and quantifying forest responses to selective
logging. The uncertainties associated with the parameters
are also discussed based on the sensitivity analyses.

2. Model Description

[6] The original CASA model was developed to simulate
net primary production and carbon cycling in terrestrial
ecosystems [Potter et al., 1993a, 1993b; Field et al., 1995].
The basic assumption of CASA is that for a given area, the
amount of photosynthetically active radiation absorbed by
green vegetation (APAR), multiplied by the light-use effi-
ciency e, equals NPP:

NPP ¼ APAR" e ð1Þ

[7] The core structure of CASA is illustrated in Figure 1.
In its original form, CASA estimates APAR as the product
of solar surface irradiance and the fraction of photosynthet-
ically active radiation absorbed by green vegetation (fPAR),

Figure 1. A schematic representation of the model structure of CASA. The boxes represent different
carbon pools, and arrows represent the connections among the pools. CWD stands for the coarse woody
debris pool.
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which can be estimated based on the Normalized Difference
Vegetation Index (NDVI) from remote sensing products.
The light-use efficiency (e) for each grid cell is calculated as
the product of a globally uniform maximum e*, down-
regulated by simulated water and temperature stress [Field
et al., 1995]. Carbon (C) that is fixed through NPP is then
allocated into the live C stocks (e.g., leaf, wood, and root C
pools), which are linked to the dead C pools (e.g., the
surface coarse woody debris (CWD), soil, slow, and passive
C pools) with different turnover rates [Parton et al., 1989].
Respiration from the dead C pools is calculated based on
specified decay rates of those pools, combined with medi-
ating factors such as temperature and precipitation. In sum,
CASA provides a straightforward means to estimate the
NPP, respiration, net ecosystem production (NEP), and
carbon stocks of an ecosystem [e.g., Potter et al., 1993a,
1993b; Randerson et al., 1997].
[8] Despite the success and general applicability of CA-

SA to ecosystem C research at regional and global scales, a
number of factors have limited its applicability to forest
disturbance studies. First, the relatively low spatial resolu-
tion and high temporal resolution requirement of the NDVI
inputs for the CASA NPP calculation, along with the
assumption that the vegetation is homogeneous within a
grid cell or image pixel, leaves CASA unable to account for
noncontiguous (sporadic) changes in vegetation leaf area
and fPAR that occur at fine spatial resolution. Second, the
basic CASA formulation was designed to estimate C stocks
and fluxes at equilibrium conditions, and thus it cannot
capture dynamic changes in C cycle processes resulting
from changes in forest architecture and composition follow-
ing forest disturbance. We address these specific limitations
in the following sections.

2.1. An Alternative Calculation of APAR

[9] CASA traditionally estimated fPAR and NPP based
on time series of NDVI, usually from the NOAA Advanced
Very High Resolution Radiometer (AVHRR) or Terra Mod-
erate Resolution Imaging Spectrometer (MODIS) sensors
with 250–1000 m spatial resolution. However, these satel-
lite resolutions and methods do not resolve selective logging
[Asner et al., 2005a]. Even at a high spatial resolution, for
example, 30-m Landsat Enhanced Thematic Mapper Plus
(ETM+) satellite data, the NDVI only provides overall
canopy greenness at each pixel and has very little informa-
tion on the ecosystem structure [Asner et al., 2002a].
[10] Asner et al. [2005a, 2006] developed the Carnegie

Landsat Analysis System (CLAS) to study the forest struc-
tural attributes using Landsat ETM+ and TM data with
automated subpixel analysis methods. The fractional cover
of photosynthetic vegetation (PV), nonphotosynthetic veg-
etation (NPV), and bare substrate in each pixel is estimated
with CLAS. These quantities capture the biophysical
impacts of many types of disturbances, both natural (e.g.,
tree-fall gaps and larger blow-downs) and human-caused
(e.g., logging). Pattern recognition algorithms are then used
to distinguish selective logging from natural gaps. Extensive
validation of the method showed that it could detect and
map logging areas with absolute uncertainties of 11–14%.
A detailed explanation of the algorithms is provided by
Asner et al. [2005a]. Asner et al. [2005b, 2006] also showed
that the PV fractional cover per pixel is related to forest

canopy gap fraction. Taking this a step further for CASA-3D,
we employ the basic principles reviewed by Campbell and
Norman [1998] to simulate fPAR from remotely sensed gap
fraction:

fPAR ¼ 1% gap ð2Þ

where ‘‘gap’’ is forest canopy gap fraction at a spatial
resolution of 28.5 m by 28.5 m from Landsat 7. This simple
modification to CASA provides the opportunity to incorpo-
rate the sporadic observations of forest gap fraction from
Landsat, usually 1–2 times per year in the Amazon due to
cloud cover [Asner, 2001], to modify the fPAR environment
of a forest stand during recovery from disturbance.

2.2. A Pulse Disturbance Module

[11] The new pulse disturbance module of CASA-3D is
designed to modify the C pools immediately following
forest disturbance. For example, selective logging causes
ground damage and tree mortality leading to fluxes from
live into detrital C pools as a pulse after timber harvest
[Pereira et al., 2002; Keller et al., 2004b]. These C fluxes
are calculated as:

Coutwood ¼ flogged " Swood

Coutleaf ¼ flogged " Sleaf

Coutfroot ¼ flogged " Sfroot

ð3Þ

where Cout is the carbon taken out of the C pools due to
logging, S represents the storage of C in a given pool before
logging, and flogged is the fraction of the canopy removed
within each image pixel (from CLAS [Asner et al., 2005b]).
The formulation of equation (3) is based on the assumption
that biomass loss is proportional to canopy loss in a pixel.
Field evidence from Cauaxi, Brazil [Pereira et al., 2002;
Keller et al., 2004b] showed that CWD mass is correlated
with gap fraction with a slope of 281 Mg/ha, which is close
to the estimated above ground biomass (AGB) at that site and
an intercept of 45Mg/ha nearly the total CWD in undisturbed
forest. Because CWD constitutes the major portion of Cout
[see Asner et al., 2005a, Table S6], equation (3) is not only
reasonable from a mass balance point of view but is also
supported by field observations.
[12] Coutwood consists of two components: (1) the wood

volume removed and transported off-site, and (2) the
collateral biomass lost to coarse woody debris (CWD) and
standing dead (SDD) pools. According to Pereira et al.
[2002] and Asner et al. [2005a], gap fraction can be used to
estimate the volume of roundwood (m3/ha) extracted on a
per-area basis using an equation drawn from 35 logging
sites in Brazil, Belize, Suriname, Guyana, and Indonesia as:

Volumewood ¼ 3:882þ 108:7 ' gap ð4Þ

The amount of carbon (g C/ha) transported off-site then
becomes:

Coffsite ¼ 0:5 ' rwood ' Volumewood ð5Þ

where rwood is the specific wood density.
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[13] The necromass, including CWD and SDD, left on
site is given as:

Necromass ¼ Coutwood % Coffsite ð6Þ

where the relationship between CWD and SDD in Mg/ha
[Palace et al., 2007] is characterized by:

CWD ¼ 4:3 ' SDDþ 18:6 ð7Þ

[14] In CASA-3D, CWD is divided into large, medium,
and small pools based on Keller et al. [2004b] and Palace et
al. [2007] to reflect the fact that the decay rates of various
size classes of CWD are quite different, and, for decompo-
sition calculations, SDD is treated as part of the large CWD
pool. The partitioning of losses from the wood C pools to
large, medium, and small CWD pools are 0.8818, 0.0798,
and 0.0384 in the intact forest (unlogged) case, and 0.7813,
0.1395, and 0.0722 in the logged case, respectively [Keller
et al., 2004b; Palace et al., 2007]. In addition, foliar losses
(e.g., Coutleaf) enter the surface metabolic and surface
structural C pools, while fine root losses (i.e., Coutfroot)
go to soil metabolic and soil structural pools, with the
metabolic fraction determined by the lignin:N ratio at a
specific site [Potter et al., 1993a, 1993b].

2.3. A New Regrowth Module Considering
Community Ecology

[15] Gap phase regeneration of trees has been a topic of
ecosystem research and modeling for decades. Forest gap
models [e.g., Botkin et al., 1972; Shugart, 1984; Bossel and
Krieger, 1991; Bugmann, 2001] are a group of individual-
tree based, semimechanistic simulators designed to study
tree population dynamics on small patches of land [Risch et
al., 2005]. These models require site- and species-specific
information to facilitate interspecific competition for light,
water, and nutrients but also capture the stochastic nature of
tree establishment and mortality. Alder and Silva [2000]
developed an empirical cohort model for management of
Terra Firme forests in the Brazilian Amazon. Forest stands
are represented by as many as 54 cohorts, each with their
own parameters for diameter increment, mortality, and
recruitment. None of these models is suitable for our
purposes due to their complexity and requirement of de-
tailed site- and/or species-specific information. Although
Moorcroft et al. [2001] introduced a size- and age-structured
(SAS) approximation to scale the ED model to broader
geographic and/or temporal scales, the individual-based gap
simulator in the ED model are based on assumptions that are
not appropriate to be applied under a selective logging
scenario. We therefore developed a forest regrowth module
for CASA-3D that takes advantage of the remotely sensed
gap fractions from Landsat to track the C budget with a
small number of parameters as possible.
[16] The primary input to the regrowth module is the gap

fraction of each pixel from satellite images at a resolution of
28.5 by 28.5 m, along with a postlogging forest recovery
function based on Asner et al. [2006], which is given by:

gap tð Þ ¼ a0 þ a1 ' t2 þ a2 ' t0:5
! "%1 ð8Þ

where t is the number of years after logging, gap(t) (0 (
gap(t) ( 1) is the averaged gap fraction of a pixel, and
parameters a0, a1, and a2 can be estimated as:

a0 ¼ %22:59þ 0:41 ' gap0 " 10ð Þ2þ24:91 ' gap0 " 10ð Þ0:5
h i%1

a1 ¼ %0:00147þ 0:000116 ' gap0 " 10ð Þ þ 0:00346

= gap0 " 10ð Þ
a2 ¼ 0:00685þ %0:0630= ln gap0 " 10ð Þ½ * þ 0:11388

= gap0 " 10ð Þ0:5

where gap0 is the gap fraction immediately following timber
harvest.
[17] Within each pixel, the forest is divided into two

components: the intact fraction and the logged fraction.
Assuming that canopy gap of the logged fraction immedi-
ately following harvest (gaplogged (t = 0)) is 1.0 (no canopy),
the logged fraction of a given pixel can be calculated as:

flogged ¼ gap0 % gapintactð Þ= gaplogged t ¼ 0ð Þ % gapintact
! "

ð9Þ

where gapintact is the gap fraction of the intact forest, which
is assumed to be the same as the gap fraction before
logging. With equation (9), the gap fraction of the logged
portion of the forest as a function of t is given by:

gaplogged tð Þ ¼ gap tð Þ % 1% flogged
! "

' gapintact
# $

=flogged ð10Þ

[18] Equations (8)–(10) serve as an essential additional
basis for the NPP calculation in CASA-3D. After logging,
the NPP of the intact canopy and of the logged canopy are
estimated based on gapintact and gaplogged, respectively, with
fPAR estimated using equation (2). The overall NPP of each
pixel is then calculated by weighted-averaging of the NPP
of the two forest components according to their fractions in
the pixel.
2.3.1. Species Composition Within Logged Portion
of the Canopy
[19] Species composition of the intact and logged por-

tions of the forest are different [e.g., Brokaw, 1985, 1987;
Pinard and Cropper, 2000; Clark and Clark, 1999; Webb,
1998]. The intact forest is dominated by shade tolerant
species, while the logged portion of the forest is dominated
by pioneer species in early stages with more shade tolerant
forest species gradually becoming dominant. The gap phase
regeneration has significant impacts on forest architecture,
composition, tree population dynamics, and the C budget.
To capture these effects, we divide the gap species into three
functional types:
[20] 1. Pioneer species are species that colonize gaps from

seeds which are typically light-demanding and which grow
rapidly in the early stage of forest regeneration [Brokaw,
1985, 1987]. An important feature of pioneer species is that
they need full light for both germination and seedling
establishment, and their seedlings are not often found in
deep canopy shade [Whitemore, 1998]. Cecropia is a good
example of a forest pioneer genus.
[21] 2. Light-demanding primary species are those that

can germinate in deep shade and have seedlings that die
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unless they get full light within about a year; they normally
grow fast with pale and soft timbers [Whitemore, 1998].
[22] 3. Shade tolerant primary species are species that can

germinate, establish, and remain alive even under consistent
deep shade; they normally grow slowly with dark and dense
timbers [Whitemore, 1998].
[23] With this classification scheme in CASA-3D, differ-

ent sets of regrowth parameters/parameterizations are
assigned to different functional types. The parameters
include maximum light-use efficiency (e*), specific wood
density, stem density, and tree allometrics. We note that
although most studies of gap dynamics were based on
observations in natural gaps, the dynamics were not funda-
mentally different between natural and logging gaps, espe-
cially when the species were categorized into a few
functional types [Whitemore, 1998]. For example, Webb
[1998] showed that the community dynamics in selectively
logged lowland forest in Costa Rica were similar to that of
naturally disturbed forests.
[24] Whitemore [1998] pointed out that there exists a

threshold of gap size for establishment of pioneer species.
In lowland tropical forests, pioneers are commonly ob-
served in gaps above about 200 m2 in size. Field data on
regeneration in 30 gaps ranging in size from 20 to 705 m2 in
tropical forest on Barro Colorado Island (BCI), Panama also
show that the threshold is +200 m2 [Brokaw, 1985]. In
forests places with lower temperature and/or humidity, the
threshold might be higher. In this initial study with CASA-
3D, the threshold is represented in terms of gap fraction.
When the gap fraction of a satellite pixel is larger than 25%
(or 203 m2), pioneer species are simulated in the regrowth
of the forest canopy in that pixel. Otherwise, only primary
species are simulated. Also, according to Brokaw [1985,
1987], the initial established stem density of pioneer species
in 1 year (a) after logging is correlated with the gap size as:

ISDpioneer ¼

0; flogged < gapth

ISDmin þ
ISDmax % ISDmin

0:75% gapth
* flogged % gapth
! "

; where gapth ( flogged < 0:75

ISDmax; flogged , 0:75

8

>

>

>

>

<

>

>

>

>

:

where ISDmin and ISDmax are parameters defining the
maximum and minimum possible initial established stem
density of pioneers in the first year of regrowth within a
gap. This relationship is illustrated in Figure 2, showing the
stem density/gap fraction curve that we use to define the
initial stem density of pioneer species in each pixel. In this
initial study, ISDmin = 50 stems/ha and ISDmax = 300 stems/
ha, also based on Brokaw [1985, 1987].
[25] Field studies show that the stem density of estab-

lished pioneer species varies. For example, if Cecropia is
the major pioneer species established, its stem density
would be the highest in the first year and would decrease
exponentially after that. For other pioneers, the stem density
remains stable or even increases during the first few years
and starts to decrease exponentially thereafter. According to
Silva et al. [1995], the only pioneer genus in the Tapajos
field sites where we are working is Cecropia. Brokaw
[1987] showed that the stem density of Cecropia as a
function of time t (in years) after gap formation could be
estimated as:

SD tð Þ ¼
ISDpioneer ' t%0:6592; t , 1

ISDpioneer ' t; t ( 1

8

<

:

ð11Þ

where ISDpioneer is the stem density of pioneer species one
year after logging in each pixel (Figure 2). Figure 3 shows
the relation between the stem density of pioneer species
and number of years after gap formations as given by
equation (11). Note that the turnover time of the pioneer C
pool ranges from 6 to 14 years, which is much shorter than
that of primary species.
[26] Different from that of the pioneer species, the stem

density of the established primary species (both light-
demanding and shade-tolerant types) is assumed to increase
linearly from SD0 to SD1 in the first few years and remains
stable thereafter [Brokaw, 1987]. Parameters Tp_ld and Tp_st
are introduced to represent the time for light-demanding
species and shade-tolerant species to reach their maximum
stem densities SD1_ld and SD1_st, respectively.
[27] The self-thinning process of the primary species is

simulated by assuming that only the first group of trees
entering into the 2 cm diameter at the breast height (DBH)
class will eventually succeed in reaching the upper canopy
[Molino and Sabatier, 2001]. Late recruits will remain in
the shade and grow slowly, especially among the shade-
tolerant primary species. In CASA-3D, the final stem
density of primary species typically ranges from 500 to
600 per ha across all gap sizes. Successful individuals
continue to grow based on allometric relationships de-
scribed later.
[28] With the above parameterizations, the partitioning of

NPP from equation (10) among the three functional types of
gap species is based on the ratio of their stem densities with

Figure 2. Initial stand density of pioneer species in a gap
as a function of gap fraction.
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respect to the overall stem density in the gap at time t. In the
two primary species functional types, we partition NPP
further into two size classes:
[29] 1. The first class is potential canopy trees with a

turnover period of woodage years.
[30] 2. For the understory shade-tolerant species, a turn-

over period of ST_understoryage (up to 100 years) [Vieira et
al., 2005] is used for this class because the shade-tolerant
trees can remain in the shade for a long period, maintaining
very slow growth rate. For understory light-demanding
species, a turnover period of LD_understoryage (+25 years)
reflects the fact that those trees cannot persist in the shade.
The allocation of NPP between the potential canopy trees
and slow-growing understory trees is based on the assump-
tion that the contribution of understory trees to the total NPP
decreases from a percentage of funderstory% to 0% in a period
of Tunderstory years.
2.3.2. Allometric Equations
[31] Two sets of allometric equations are used to simulate

the regrowth of pioneer and primary functional types,
respectively. Chave et al. [2005] suggest that aboveground
biomass (AGB) of a tree in the tropical forest can be related
to its diameter at breast height (DBH) as:

AGB ¼ rwood* exp a0 þ a1 ' ln DBHð Þ þ a2f
' ln DBHð Þ½ *2þa3 ' ln DBHð Þ½ *3g ð12Þ

where rwood is the specific wood density, a0, a1, a2, and a3
are parameters determined based on field data. For our
purposes, the height (H) of trees can be estimated based on a
H-DBH relationship [Keller et al., 2001] as:

H ¼
c1 ' DBHc2 ; DBH , 10 cm

c3 ' DBH ; DBH ( 10 cm

8

<

:

ð13Þ

where c1 and c2 were estimated from field data and c3 = (c1 '
10c2)/10, following King [2005]. Equation (12) is used to
simulate the regrowth of the primary species with
parameters given by Chave et al. [2005].
[32] The allometric equation for the pioneer functional

type is taken from Nelson et al. [1999], which was devel-

oped in secondary forests in central Amazon. As discussed
above, Cecropia is the major pioneer genus and its allome-
tric equation is given by:

ln AGBð Þ ¼ a4 þ a5 ln DBHð Þ ð14Þ

where a4 and a5 equal %2.5118 and 2.4257, respectively,
according to Nelson et al. [1999]. Sposito and Santos
[2001] studied eight Cecropia species in Amazonian and
southeastern forests of Brazil. They suggested that the H-
DBH relationship for Cecropia in forest gap understory
could be estimated as:

log10 H ¼ log10 DBH þ 0:0130ð Þ=1:024 ð15Þ

2.4. Radiative Transfer Module

[33] After logging, more light penetrates and reaches the
understory of the forest. Competition among gap species for
light is an essential factor determining their photosynthesis
and regrowth rates [Denslow, 1987]. To provide a realistic
simulation of the dynamic light environment, we separate
the incoming solar radiation into direct and diffuse compo-
nents. For the intact forest, our partitioning of solar radia-
tion is used to modify photosynthetic capacity via dynamic
changes in light-use efficiency. For the regrowing forest, a
canopy geometric-optic (GOMS) submodel is employed to
simulate three-dimensional (3-D) shadowing within gaps
generated by beam radiation; diffuse radiation is further
partitioned into direct and indirect diffuse components,
which are transmitted through different pathways into the
gaps.
2.4.1. Separation of Incoming Solar Radiation
Above Canopy
[34] The partitioning of incoming radiation into direct

beam and diffuse components (e.g., Rbeam and Rdiff) has a
significant impact on photosynthesis by way of inherent
physiological responses of plants to light [Spitters et al.,
1986]. In CASA-3D, equation (9) from Spitters et al. [1986]
is employed for separating Rdiff and Rbeam above the canopy.
This equation is based on the ratio between measured daily
irradiance at the Earth surface and the estimated exoatmo-
spheric radiation. Within a pixel, the transmission of radi-
ation is treated differently for intact and logged portions of
the forest canopy. For the intact portion, the fraction of
incoming radiation that penetrates to the forest floor is small
and the growth of understory trees is negligible. Therefore
we treat the intact forest as a one-layer system without
considering the 3-D shadowing of beam radiation and
transfer of diffuse radiation into the forest floor. According
to Anderson et al. [2000], under different illumination
conditions, the light-use efficiency of plants varies with
the fraction of diffuse radiation as:

e0 ¼ e ' 1þ 2 'Ddiff fdiff % 0:5ð Þ½ * ð16Þ

where fdiff is the fraction of diffuse radiation, e is the light-
use efficiency under the condition that fdiff = 0.5. Ddiff

equals 0.4 for C3 plants and 0.15 for C4 plants.
Furthermore, fdiff = Rdiff/(Rbeam + Rdiff) is used for the area
of sunlit crowns and fdiff = 1 for the area of shaded crowns

Figure 3. Stem density of pioneer species as a function of
time after gap formation.
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because only diffuse radiation can reach the shaded portion
of a crown. Fractions of sunlit and shaded crowns are
estimated with the GOMS 3-D shadowing model described
below.
2.4.2. 3-D Shadowing of Beam Radiation in Gaps
[35] The transmission of Rbeam is represented with a 3-D

shadowing module comprised of a canopy geometric-optic
(GOMS) model [Li and Strahler, 1992; Asner et al., 1998],
and as shown in Figure 4. This module provides quantita-
tive data on fractions of sunlit understory, sunlit crowns, and
total shaded area at each time step. It requires solar angles as
inputs and parameters to describe forest geometry. Detailed
discussions of the GOMS approach, and its parameters, can
be found in the work of Li and Strahler [1992], Abuelgasim
and Strahler [1994], and Asner et al. [1998]. The GOMS
parameters used in CASA-3D are listed in Appendix A.
[36] In this study, GOMS is coupled to the regrowth

module. As shown in Figure 4, in order to simulate the
light environment within gaps, the following parameters
need to be specified: (1) The density of intact crowns per
pixel l, which is estimated with the averaged gap fraction of
the pixel as (1 % gap(0))/(pr2); (2) The average crown
radius r, half height of the tree crown b, and crown vertical-
to-horizontal diameter ratio brratio of the intact trees within
the pixel, which are estimated based on statistics taken from
field data collected in the eastern Amazon [Asner et al.,
2002b]. The coupling of GOMS and the regrowth module is
established through the parameters hdiff and hbratio, which
are the height of canopy from understory to crown center
and the ratio between hdiff and b (hbratio), respectively. We
treat the forest within a pixel as a two-layer system. One
layer is the intact forest and the other is the regrowing trees
within gaps. Then, hdiff = h % hrg is the height of canopy
from the top of the understory to crown center, where h is
the average height of the intact trees, and hrg is the average
height of the regrowing trees simulated by the regrowth
module.
[37] The solar zenith and azimuth angles are the drivers of

GOMS. Those angles change with the position of sun at a

given study site. To capture the diurnal and seasonal
changes in solar position, a monthly mean diurnal cycle
of solar angles at a 30-min temporal resolution for each
month is embedded in the model so that the diurnal and
seasonal cycles of fractions of sunlit understory, sunlit
crowns and shaded area can be accurately represented for
any point on Earth. As a consequence, NPP is also calcu-
lated and allocated to the C pools according to those cycles.
2.4.3. Transmission of Diffuse Radiation in Gaps
[38] In principle, diffuse radiation can be treated as

multiple beams from all directions of the sky and a diffuse
transmission coefficient for the canopy can be calculated
from:

td ¼ 2

Z

x2

x1

G ' siny ' cosy ' dy ð17Þ

where G is the fraction of incident radiation from zenith
angle y that penetrates the canopy, x1 and x2 are the zenith
angles of interest for integrating the incident radiation. For a
heterogeneous (gap) canopy, the transmission coefficient for
the direct diffuse radiation (Rdd, the diffuse radiation
transmitted through the top of the gap) is given by:

tdd ¼ 2

Z

q

0

siny ' cosy ' dy ¼ 2

Z

sin q

sin 0

sinyd siny

¼ 2 ' sin2 q
2

% 0

% &

¼ sin2 q ð18Þ

where q is the zenith angle corresponding to the gap
opening as shown in the Figure 5, and G = 1 in this case
because there are no obstacles in the pathway of transmis-
sion. Note that by using equation (18), we assume that each
gap is circular in shape and that the distribution of diffuse
radiation is uniform. The transmission coefficient for the

Figure 4. A schematic representation of the three-dimensional shadowing module for simulating the
transmission of direct beam radiation within gaps.
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indirect diffuse radiation (Rdi, the diffuse radiation trans-
mitted through the surrounding forest) is given by:

tdi ¼ 2

Z

p
2

q

G ' siny ' cosy ' dy ¼ 2G

Z

sinp2

sin q

sinyd siny

¼ 2 ' G 1

2
% sin2 q

2

% &

¼ G cos2 q ð19Þ

and then G is approximated by the averaged gap fraction of
the surrounding forest, which is the gap fraction of the intact
forest (i.e., gapintact) in this case.
[39] The light-use efficiency of gap species varies with

the changing fractions of Rbeam, Rdd, and Rdi in the total
incoming radiation within the gap. Again, such a change in
light-use efficiency is described by equation (16), with the
fraction of diffuse radiation given by:

fdiff ¼
Rdd þ Rdið Þ= Rbeam þ Rdd þ Rdið Þ; for the sunlit understory

1; for the shaded understory

8

<

:

ð20Þ

[40] The radiative transfer module, combined with the
regrowth module (described earlier), provides a 3-D repre-
sentation of the forest canopy throughout the disturbance
and recovery processes, allowing for a more detailed
analysis of C storage and fluxes after selective logging.

3. Model Tests
3.1. Model Setup

[41] We tested CASA-3D on two experimental forest
plots in the Tapajos National Forest, located south of
Santarém in the state of Pará, Brazil. Mean annual precip-
itation is +2000 mm, and mean annual mean temperature is
+25!C [Silver et al., 2000]. One 97 ha plot served as a
control, where no logging activity has occurred. Before
logging, the mean gap fraction of the control and logged
plots are 0.017 (s = 0.04) and 0.018 (s = 0.04), respec-
tively, where s represents the standard deviation. The
second 98 ha plot was selectively logged in September

2000 [Keller et al., 2004b] and its mean gap fraction
became 0.24 (s = 0.10) after the disturbance. Both of the
plots are within 3 km from an eddy covariance tower, where
precipitation, temperature, and solar radiation were moni-
tored from July 2000 to February 2004 [Miller et al., 2004;
Goulden et al., 2004; da Rocha et al., 2004]. Using these
meteorological measurements, we calculated a mean annual
forcing time series of 12 months. CASA-3D was then
initialized by repeatedly feeding the mean meteorological
data into the model for 500 years, to generate a steady state
for all C pools. The same forcing data were then used to
drive a simulation of 40 years for a dynamic regrowth of the
forest following selective logging. Landsat imagery for
prelogging (10 August 1999) and postlogging (12 August
2000) triggered the forest disturbance in the model. We
assumed that the climate over this region did not change
significantly throughout the simulation. Although the model
was run at a monthly time step, a monthly mean diurnal
cycle for each month was embedded in the simulation as
discussed earlier, so that the daily light environment could
be simulated.

3.2. Comparison of Modeled and Measured C
Stocks and Fluxes

[42] We compared our modeled estimates (spin-up simu-
lations) of several C pools and fluxes to data available in the
literature and/or from the Tapajos forest sites, which are
listed in Table 1. In our model spin-up studies, we adjusted
the parameters listed in Appendix A manually to best match
simulated and measured NPP, C storage (NEP), and stand-
ing biomass-C stocks. A degree of uncertainty of high (H),
medium (M), or low (L) was assigned to each parameter,
which represents the uncertainty of the parameter from an
ecological point of view. After this model calibration, our
adjusted turnover times for leaf and wood were 2 and
52 years, respectively; the fractional allocation of NPP to
the live carbon pools Pw, Pf, and Pr were 0.35, 0.30, 0.35,
respectively; the turnover rates of the CWD pools were 0.21,
0.25, and 0.47 y%1 for large, medium, and small CWD pools,
respectively.
[43] Table 1 displays the results of the spin-up and logging

simulations. Since no logging occurs in the control or logged

Figure 5. A schematic representation of transmission of direct diffuse radiation within gaps.
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plot during model spin-up, their C budgets are essentially the
same (Table 1). Slight differences between the plots result
from natural variation in gap fractions in the remote sensing
imagery of each site. In the control site the spin-up and main
simulation runs were the same since there was no logging in
either period.
[44] In the coarsest of our comparisons, data from Clark

et al. [2001] provided a range of likely NPP values for
Brazilian Amazon forests of 6.7–16.9 Mg C/ha/a, compared
to 10.9 Mg C/ha/a from CASA-3D under undisturbed case.
They also estimated aboveground biomass at 151–203 Mg
C/ha, compared to 169.3 Mg C/ha and 169.1 Mg C/ha from
the model for the control and logged plots, respectively.
Keller et al. [2001] estimated biomass in and around our test
sites within the Tapajos National Forest. Their estimates of
total biomass were 186 Mg C/ha, and with a conservative
error estimate of 50% uncertainty, while the estimate from
the model is 184 Mg C/ha. In addition, Keller et al. [2004b]
studied the volume and density of fallen CWD in undis-
turbed forest and logged forest 1 year after logging at
Tapajos. CWD at Tapajos averaged 25.4 Mg C/ha and
38.1 Mg C/ha in undisturbed and logged forest (measured
+1 year postharvest), respectively, while CWD estimated
from the model is 27.7 Mg C/ha under undisturbed circum-
stances and is 36.7 Mg C/ha at 1 year postharvest. Miller et
al. [2004] estimated net C exchange in undisturbed forests
at Tapajos, finding the forest to be a small source, or at most
a modest sink, of carbon; their estimates of net ecosystem
production (NEP) were %0.8 ± 2 Mg C/ha/a, where nega-
tive sign indicates C loss from the forest. Saleska et al.
[2003] used eddy covariance methods to show that undis-
turbed forest in Tapajos was a small C source between July
2000 and August 2003. Finally, Silver et al. [2000] inves-
tigated effects of soil texture on belowground C and nutrient
storage at Tapajos, showing that soil organic C in the top
30 cm averages 31.9 Mg C/ha prior to logging, while the
soil C from the model is 31.5 Mg C/ha and 31.4 Mg C/ha at
the control and logged plots, respectively. Olander et al.
[2005] measured soil organic C pools within 1–2 years after
logging at Tapajos and found no significant decrease in soil
C stocks on that short timescale.
[45] Our initial results showed that logging has a signif-

icant effect on C pools and fluxes (Table 1). We use the sign
convention where a positive indicates C sequestration, and a
negative represents a net C loss from the system. In the 40-a
simulation period after timber harvest, annual NPP recov-
ered from 9.4 Mg C/ha/a in the first year following harvest

to 10.1 Mg C/ha/a in the 40th year after logging. These
values are well within the reported range provided by Clark
et al. [2001]. Annual heterotrophic respiration had the
largest values of 12.0 Mg C/ha/a in the first year after
logging, and slowly decreased to 10.1 Mg C/ha/a by the
40th year. Annual NEP changed sign from a prelogging
value of 0.0 Mg C/ha/a to %2.6 Mg C/ha/a in the first year
after harvest, then it slowly approached a balanced 0.0 Mg
C/ha/a by the 40th year. Our NEP results fell within the
range measured by Saleska et al. [2003] and Miller et al.
[2004]. In sum, our simulated changes in NPP, respiration,
and NEP suggested that the logged forest site would be a net
C source for 30 years following disturbance. Although the
simulated forest is recovering after disturbance, the net rate
of biomass accumulation is slow so that it would take at
least four decades for the forest to reach a new quasi-steady
state, which is roughly the value provided by Silva et al.
[1995] for the same forested area at Tapajos. C pools were
also altered after incorporating the remotely sensed canopy
damage caused by selective logging (Table 1). The CWD
pools rapidly increased from 26.7 to 36.7 Mg C/ha in the first
year following harvest and then decreased to 25.5 Mg C/ha
by the end of the 40th year. These values agree well with the
field measurements provided by Keller et al. [2004b]. The
soil C pools also showed a negligible change after logging,
consistent with field measurements [Olander et al., 2005].
[46] Table 1 only shows changes in the averaged C pools

and fluxes at the site (+100 ha) scale. To evaluate the
model’s performance in simulating forest dynamics at the
localized plot level, we selected three pixels with canopy
gap fractions following logging of +20%, 30%, and 60%
within the logged plot. Figures 6a–6b illustrate the changes
in gap fractions of the entire pixel and of the regrowth
portion of the canopy only. Logging occurs in month 0, and
gap fraction of the entire pixel suddenly increases, and then
gradually recovers to its prelogging level in 1–1.5 years
[Asner et al., 2004]. Time series of gap fractions in each
pixel were calculated based on equation (8) and shown in
Figure 6a. The logged (damaged) fraction of each pixel is
then inferred from equation (9) and the time series of the
logged (or regrowing) portion of the pixel were calculated
based on equation (10), which are shown in Figure 6b.
[47] These simulated changes in gap fraction corre-

sponded to a suppression in NPP at the pixel level. Prior
to logging, NPP in the three test pixels averaged 1.0 Mg C/
ha/month, but pixels with a lower damage level (lower
postlogging gap fraction) maintained higher NPP after

Table 1. Carbon Budgets of the Simulations of the Control and Logged Plots at Tapajos

Values for Calibration

Control Plot Logged Plot

Spin-up/Simulation Spin-up 1 year 2 years 5 years 10 years 20 years 30 years 40 years

Annual NPP (Mg C/ha/a) 6.7–16.8 [Clark et al., 2001] 10.9 10.9 9.4 9.9 10.0 10.0 10.1 10.1 10.1
AGB (Mg C/ha) 151–203 [Clark et al., 2001] 169.3 169.1 155.6 155.6 155.6 155.6 155.8 156.0 156.2
Total biomass (Mg C/ha) 186 [Keller et al., 2001] 184.0 184.0 169.1 169.1 169.3 169.4 169.6 169.8 170.1
CWD (Mg C/ha) 25.4 (prelogging)

38.1 (1 year postlogging)
[Keller et al., 2004]

27.7 27.7 36.7 35.3 32.3 29.1 26.5 25.7 25.5

Soil C (Mg C/ha) 31.92 [Silver et al., 2000;
Olander et al., 2005]

31.5 31.4 31.8 32.1 32.5 32.4 31.4 30.6 30.1

Annual respiration
(Mg C/ha/a)

N/A 10.9 10.9 12.0 11.0 10.8 10.6 10.3 10.2 10.1

Annual NEP (Mg C/ha/a) %(0.8 ± 2) [Miller et al., 2004] 0.0 0.0 %2.6 %1.0 %0.8 %0.5 %0.2 %0.1 0.0
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harvest (Figure 7a). Following logging, NPP in each pixel
was calculated for the intact and logged portions separately
and then summed to estimate total NPP. The NPP of the
intact part was scaled by 1 % flogged (Figure 7b), whereas
NPP of the logged fraction was scaled by flogged (Figure 7c).
[48] Figure 7 highlights our observations that NPP in

pixels with higher damage levels returns to prelogging
levels most rapidly because the larger canopy openings in
those pixels allow more light to penetrate into the gaps for
photosynthesis. As shown in Figures 7a and 7c, NPP
increases at a higher rate at pixels with larger logged
fractions. Interestingly, Pereira et al. [2002] and Asner et
al. [2004a, 2004b] documented similar trends in terms of
photosynthetic leaf area across hundreds of logged pixels.
Similarly, Asner et al. [2006] remotely measured more rapid
canopy closure in high-damage than in low-damage pixels
throughout the Brazilian Amazon. However, our simula-
tions also showed that following logging, pixel-scale NPP
drops to a level proportional to 1 % flogged so that a pixel
with a higher logged fraction flogged would have a lower
NPP level. This modeling result is corroborated by time
series field measurements of photosynthetic leaf area in
low- to high-damage logging scenarios [Pereira et al.,
2002; Asner et al., 2005a, 2005b].
[49] Results for heterotrophic respiration and NEP simu-

lations in the three test pixels are shown in Figures 7d and
7e, respectively. The respiration in pixels with larger gap
fractions was higher in the initial 2–3 years following
logging due to the large pools of CWD and other surface
C pools. However, at around 6th year after harvest, respi-
ration rates from the three pixels became the same. By 10–
15 years after harvest, respiration rates from pixels with
larger gaps dropped to levels that were lower than pixels
with smaller gaps. As a consequence of faster NPP recovery,
higher initial respiration and lower respiration in later years,
the pixels with larger gap fractions (higher damage levels)

were initially a larger C source immediately following
logging, but then recover to near neutral levels within a
similar time frame as those pixels with smaller initial gap
fractions (Figure 7e). The corresponding change in above-
ground C stocks within each pixel is shown in Figure 8.
After logging, aboveground C in all the logged pixels was
reduced because a substantial fraction of the wood C pool
was extracted and shipped to offsite sawmills, or it was
damaged and entered the CWD pools. Those C fluxes were
calculated based on equations (3)–(7). Changes in total
aboveground C, and its fraction belonging to the intact
portion of the forest in each pixel (weighted by 1 % flogged),
as well as the logged portion (weighted by flogged), are
illustrated in Figures 8a, 8b, and 8c, respectively. With its
faster rate of NPP recovery, aboveground C stocks in the
pixel with 60% logged fraction also accumulated faster than
the other two pixels with lower initial damage levels.
[50] In field studies, and thus in CASA-3D, three distinct

plant functional types contribute to the regrowth dynamics
of tropical forests following disturbance and logging:
(1) pioneers, (2) shade-tolerant species, and (3) light-de-
manding species. The latter functional types include cohorts
that may or may not reach upper-canopy positions in the
forest. Figure 9 shows the CASA-3D aboveground biomass

Figure 7. Change of (a) total NPP, (b) NPP of the intact
portion of canopy, (c) NPP of the regrowth portion of
canopy, (d) total respiration, and (e) total NEP before and
after logging at three selected pixels with logged fractions
of 20% (solid line), 30% (dashed line), and 60% (dot-
dashed line), respectively.

Figure 6. Change of (a) gap fraction of the entire pixel
and (b) gap fraction of the regrowth portion of canopy
before and in 96 months after logging at three selected
pixels with logged fractions of 20% (solid line), 30%
(dashed line), and 60% (dot-dashed line), respectively.
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(AGB) simulations of these five groups following logging at
20%, 30%, and 60% of the pixel area. The AGB of pioneers
accumulated rapidly in the first four years following distur-
bance and decreased thereafter (Figure 9a) because pioneers
have high light-use efficiency but also high mortality rates.
The AGB of both the shade-tolerant and light-demanding
species steadily increased throughout the simulation period
following logging (Figures 9b and 9c), whereas AGB of
subcanopy trees initially increased but then leveled off as
understory radiation levels decreased during the regrowth
simulation (Figures 9d and 9e). However, the simulations
also showed that subcanopy, shade-tolerant trees remained
productive for much longer than did the light-demanding
species. This result mirrors field-based observations of
Vieira et al. [2005].
[51] Figure 10 illustrates the change of stem densities

within the three selected pixels after logging. Pixels with
greater logging intensity have higher overall stem densities
in the resulting forest gaps because more light is able to pass
through the larger openings. The stem densities of shade-
tolerant and light-demanding species in all three pixels were
identical as shown in Figures 10c and 10d. Thus for a pixel
with a logged fraction <25%, the resulting initial stem
density is the same as that of the pixel with a logged
fraction of 20% (solid line). If the logged pixel fraction is
>25%, pioneer species establish with a stem density pro-
portional to the logged fraction within the pixel, as shown in
Figure 2. In addition, Figures 10e and 10f demonstrate that
if the logged fraction is very large, more trees establish and
grow into the canopy. Intuitively, this result seems reason-

able because higher light levels occur in larger gaps, which
likely support higher levels of initial tree establishment.

4. Sensitivity Analyses and Uncertainties

[52] To understand the importance of various input fac-
tors associated with regrowth in CASA-3D, we first tested
the absolute sensitivity of modeled NPP and respiration to a
range of parameters. We then tested the relative sensitivity
of the most important factors regulating NPP and respira-
tion. Uncertainties in the simulated NPP and respiration
were then estimated based on results from the sensitivity
analyses.

4.1. Sensitivity Analyses

[53] We considered 13 factors (including model parame-
ters and variables) in the sensitivity analyses (Table 2), and
some of these factors were combined into groups during the
analyses. For example, the maximum light-use efficiencies
of the three functional types were grouped during the
sensitivity analyses. That is, when e*pioneers was increased
by 20% from its mean value, e*st and e*ld were also
increased by 20%. Other factors, such as gap fraction, were
treated individually. As shown in Table 2, 22 parameters
were evaluated in the sensitivity analyses, and they were
selected based on the degree of uncertainty in Appendix A.
[54] In the absolute sensitivity analyses, for each factor,

500 Monte Carlo simulations were executed by randomly
varying the factor uniformly within its given range with
other factors fixed (as shown in Table 2). Therefore in the

Figure 8. Change of (a) total AGB, (b) AGB of the intact portion of canopy, and (c). AGB of the
regrowth portion of canopy at three selected pixels with logged fractions of 20% (solid line), 30%
(dashed line), and 60% (dot-dashed line), respectively.
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absolute sensitivity analyses, 500 " 13 simulations were
executed. In the relative sensitivity analyses the contribution
of each tested factor was evaluated by randomly selecting
all the factors of interest within their respective ranges 500
times in order to obtain NPP and respiration for 500 base
scenarios. For every base scenario, each group of factors in
Table 2 was, in turn, perturbed by ±10% of its value, and the
simulation repeated. The ±10% range was selected based on
the notion that a smaller range in each variable would be
difficult to detect in observation. A database was created for
all model simulations with a total of 500 + 500 " 13 = 7000
simulations. Then the merit-of-change values (defined as

the sum of the squares of differences) between the annual
NPP or respiration from the base case scenarios and those
from the perturbed simulations were recorded. A principle
component analysis (PCA) was then performed on the 500
by 13 matrix with the merit-of-change values to reduce the
dimension of such a matrix so that it is suitable for display
in Figures 13 and 14. Since the first principal component
axis represents the direction of maximum variance, the
weighting of each perturbed factor’s contribution to that
axis was a measure of the model’s sensitivity to the
perturbed variable (see Asner [1998] and Asner et al.
[2001] for details on the development and application of

Figure 9. (a) AGB of the pioneer species; (b) AGB of the shade-tolerant species; (c) AGB of the light
demanding species; (d) AGB of the subcanopy portion of the shade-tolerant species; (e) AGB of the
subcanopy portion of the light demanding species in the regrowing forest at three selected pixels with
logged fractions of 20% (solid line), 30% (dashed line), and 60% (dot-dashed line), respectively.
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this method). In both the absolute and relative sensitivity
analyses, the sensitivity of 13 factors was assessed with
respect to annual NPP and respiration at 1, 2, 5, 10, 20, 30,
and 40 years after selective logging.
[55] The absolute sensitivity of NPP and respiration are

shown in Figures 11 and 12, respectively. From Figure 11, it
is clear that gap fraction is the most important factor
controlling NPP in disturbed forest. The maximum light-
use efficiencies of the gap species, the meteorological
variables, and the GOMS parameters played a secondary
role in determining NPP for years following timber harvest.
The impact of other regrowth parameters (i.e., rho, SD, Tp,
allocation of NPP, and gapth) was small. Canopy gap

fraction affects NPP in our model because it controls (1)
the absorbed photosynthetically active radiation, (2) the
species composition in gaps, and (3) the light transmission
into gaps as simulated with the radiative transfer module.
Gap fraction was also the most important factor determining
heterotrophic respiration after logging. The decay rates of
coarse woody debris and the allocation of NPP into leaf,
wood, and root carbon pools also contributed significantly
to respiration in the initial stage of regrowth, but their
importance decreased after 10 years of regrowth. The impact
of the regrowth parameters (i.e., LUE, rho, SD, Tp) and the
GOMS parameters was increasing with the regrowth in the
logged portion. Gap fraction affects respiration in the model

Figure 10. (a) Total stem density; (b) stem density of the pioneers; (c) stem density of the shade-tolerant
species; (d) stem density of the light-demanding species; (e) stem density of the potential canopy trees of
the shade-tolerant species; (f) stem density of the potential canopy trees of the light-demanding species
after logging within three selected pixels with logged fractions of 20% (solid line), 30% (dashed line),
and 60% (dot-dashed line), respectively.
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because: (1) the damaged fractions of wood, leaf, and root
carbon pools caused by logging are linked to the postlog-
ging gap fraction of each pixel; and (2) the larger gaps with
more pioneer species turnover quickly and serve as a source
of C back to the atmosphere.
[56] The results from the relative sensitivity analysis are

shown in Figures 13 and 14. Only the factors with PCA
weights larger than 10%4 are shown. Gap fraction and the
GOMS parameters had the largest impact on simulated NPP
after logging. The control of gap fraction on NPP became
less and less important after the initial recovery in foliage
and establishment of species in the gaps. Similarly, the
impact of gapth was significantly in the first year through its
control over species composition. The GOMS parameters
started to take over after 10 years because they regulated the
light transmission into the regrowth forest. The parameters
controlling the regrowth of the gap species (i.e., LUE, rho,
allocation of NPP, SD, Tp) and the meteorological variables
(i.e., airt, ppt, solrad) on NPP also had measurable impacts
on NPP. The regrowth parameters became more and more
important after 10 years of regrowth.
[57] Gap fraction and the GOMS parameters also played a

major role in controlling respiration, but the CWD decay
rates were dominant factors in the initial five years after
logging. Air temperature and the allocation of NPP became
significant factors by the 10th year following simulated
timber harvest. The maximum light-use efficiencies also
affected respiration, especially by the 20th year following
disturbance. The other regrowth parameters and meteoro-
logical variables contributed to the respiration too, although
with much smaller weights. Gap fraction determined the
amount of C in the detrital C pools available for respiration in
a relative short period (i.e., 10 years) after the disturbance,

and the GOMS parameters and the regrowth parameters
affected respiration through their control on NPP and even-
tually on carbon that is available for turnover and respiration
in late stages of regrowth.
[58] The relative and absolute sensitivity analyses point to

the same factors. The maximum sensitivity of model pro-
ductivity to forest canopy gap fraction was most pro-
nounced in the relative sensitivity simulations; even when
there is only a 10% bias in gap fraction from satellite
imaging, the simulated carbon budget is significantly al-
tered. Simulated NPP and respiration in late stages of
regrowth were also very sensitive to the GOMS parameters,
which interacted with the canopy gap fraction closely
through l. Therefore it is critical for us to control the
quality of gap fractions obtained from the CLAS remote
sensing approach because a small error in gap fraction
would propagate and introduce large uncertainty to the
simulated carbon pools and fluxes.

4.2. Uncertainties

[59] Table 3 summarizes the uncertainties in simulated
annual NPP and respiration associated with the 13 factors in
the absolute sensitivity analysis. To estimate the uncertain-
ties, the mean and standard deviation of annual NPP and
respiration from the 500 Monte Carlo simulations for each
factor were calculated and the error corresponding to the
95% confidence interval was estimated as:

Ea ¼ 100" 1:96" s=!xð Þ ð21Þ

where !x and s are the mean and standard deviation of
annual NPP or respiration.

Table 2. List of Factors for Sensitivity Analyses

Factors Meaning Parameters Included Mean Value ± Error

LUE Maximum light-use efficiency e*pioneers 0.50 gC MJ%1 ± 20%
e*st 0.42 gC MJ%1 ± 20%
e*ld 0.38 gC MJ%1 ± 20%

rho Specific density of wood rpioneer 0.4 g cm%3 ± 20%
rst 0.6 g cm%3 ± 20%
rld 0.45 g cm%3 ± 20%

SD Maximum stem density
of primary species

SD1st 300 ± 50 stems/ha
SD1ld 300 ± 50 stems/ha

Tp Time for primary species
to reach SD

Tp_st 5 ± 1 years
Tp_ld 4 ± 1 years

age_pioneers Average age of woody
tissues of pioneers

Pioneerage 10 ± 4 years

ppt Precipitation – Mean monthly value ± 20%
airt Air temperature – Mean monthly value ± 10%
solrad Solar radiation – Mean monthly value ± 10%
gap gap fraction gap0 0–0.8
allocation Allocation of NPP to live

carbon pools
Pf 0.30 ± 0.025
Pr 0.30 ± 0.025
Pw 1 % Pf % Pr

k_cwd Decay rates of the CWD pools kcwd_large 0.21 yr ± 10%
kcwd_medium 0.25 yr ± 10%
kcwd_small 0.47 yr ± 10%

gapth Threshold of gap fraction
agove which pioneer species
can be found

gapth 0.25 ± 0.1

goms Parameters in the GOMS module b 8.74 ± 0.5
h 26.38 ± 1.0
brratio 0.63 ± 0.06
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[60] With the mean parameter values and error estimates
of the 13 factors given in Table 2, the uncertainties of
simulated NPP and respiration associated with each factor
were different. Gap fraction introduced the largest uncer-
tainty to the simulated NPP and respiration. The error can
be as large as 58.2% for NPP and 52.3% for respiration with

gap fraction varying between 0 and 0.8. The CWD decay
rates affected respiration by 6–9% in the first 5 years after
timber harvest and its impact decreased thereafter. The
uncertainty introduced by the meteorological variables
was about 3% for NPP and 2% for respiration. The impacts
of all regrowth parameters (i.e., LUE, rho, Tp, SD, alloca-

Figure 11. Absolute sensitivity of annual NPP to different factors in (a) 1 year, (b) 2 years, (c) 5 years,
(d) 10 years, (e) 20 years, (f) 30 years, and (g) 40 years after logging.
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tion of NPP, gapth) and the GOMS parameters were in-
creasing with the regrowth of the forest. The maximum light
use efficiencies introduced up to 7% and 5% uncertainty to
NPP and respiration, respectively. The specific densities of
timbers and Tp affect NPP by up to 3% and respiration by
up to 2%. The GOMS parameters could introduce up to 3%

uncertainty to NPP and 2% to respiration. Other parameters
(i.e., SD, allocation of NPP, gapth) had smaller effect on
simulated NPP and respiration.
[61] The uncertainties associated with the 13 factors in

the relative sensitivity analysis were estimated with the
following procedure:

Figure 12. Absolute sensitivity of annual respiration to different factors in (a) 1 year, (b) 2 years,
(c) 5 years, (d) 10 years, (e) 20 years, (f) 30 years, and (g) 40 years after logging.
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[62] (1) Calculate the error associated with each of the 13
factor as:

x0j ¼ xj % xbj

' (

=xbj ð22Þ

where j 2 (1, ' ' ', 500) is the index of the Monte Carlo
simulations for the factor of interest, xj

b is the simulated NPP
or respiration from the jth base scenario, and xi,j is that from
jth simulation;
[63] (2) Calculate the standard deviation s of x0j;

[64] (3) The uncertainty corresponding to the 95% confi-
dence interval is then given by:

Er ¼ 100" 1:96" sð Þ ð23Þ

[65] The values of Er are listed in Table 4 and represent
the uncertainties associated with the 13 factors when each
factor was perturbed by ±10% within its range. Gap fraction
introduced up to 15% and 7% uncertainty for NPP and
respiration, respectively, by the first year after timber
harvest. The impacts of the GOMS parameters were relative

Figure 13. Relative sensitivity of NPP to (a) gap fraction, (b) goms, (c) gapth, (d) LUE, (e) rho, (f) air
temperature, (g) allocation of NPP, (h) SD, (i) Tp, (j) precipitation, and (k) solar radiation in different
years after logging. Note that the scales of y axes vary among the figures for a clear presentation.
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small in the first few decades but gradually increased to
19% for NPP and 14% for respiration by the 40th year of
regrowth. gapth affected NPP significantly by 9% by the
first year after timber harvest. The uncertainty introduced by
maximum light use efficiencies increased from 1% and 0%
by the first year after harvest to 8% and 6% by the 40th year
for NPP and respiration, respectively. Solar radiation affect-
ed NPP by about 5% and respiration by about 4%, and its
impact was the largest among the meteorological variables.
Specific wood density and allocation of NPP could affect
NPP by 5% and respiration by 4%. Tp and stem densities

affected NPP by 4% and 3%, and respiration by 3% and 2%,
respectively. Again, all regrowth parameters showed in-
creasing impacts on simulated NPP and respiration with
the regrowth, except for the age of pioneers, which seemed

3to have no impact on NPP or respiration.

5. Discussion

[66] CASA-3D was designed to simulate the effects of
disturbance on carbon pools and fluxes in terrestrial eco-
systems, and to do so at high spatial resolution commensu-

Figure 14. Relative sensitivity of respiration to (a) gap fraction, (b) goms, (c) kcwd, (d) air temperature,
(e) allocation of NPP, (f) LUE, (g) rho, (h) gapth, (i) precipitation, (j) SD, (k) Tp, and (l) solar radiation in
different years after logging. Note that the scales of y axes vary among the figures for a clear presentation.
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rate with regional ecological studies incorporating high
spatial resolution remotely sensed data. Compared to the
original version of CASA, this new model includes: (1) an
alternative approach for calculating APAR that takes ad-
vantage of the remotely sensed gap fraction at a spatial
resolution of 28.5 m by 28.5 m; (2) a pulse-disturbance
module to modify the carbon pools after a forest disturbance
such as selective logging; (3) a module to simulate the
regrowth of gap species considering community ecology;
and (4) a crown radiative transfer module to simulate the
dynamic light environment in the postdisturbance gaps.
[67] The regrowth module features a new set of param-

eterizations on the basis of field studies of gap dynamics in
tropical rainforests [Whitemore, 1998; Brokaw, 1985, 1987],
which have existed in literature for a few decades but not
yet been implemented in any other ecosystem models. With
these parameterizations, the simulation of gap phase regen-
eration at a landscape scale becomes possible without
detailed site- and/or species-specific information. Gap phase
regeneration is not only important under a human distur-
bance scenario but also in intact forests, which have been
described as shifting mosaics of different-sized patches
cycling through gap, building, and mature phases [Brokaw,
1985]. CASA-3D provide a means to simulate dynamic
changes in forest architecture, composition, and tree popu-
lation dynamics, all of which have profound effects on
forest carbon cycles.
[68] We recognize that CASA-3D was developed with a

number of assumptions and with the use of several simpli-
fied phenomenological relationships pertaining to commu-
nity ecology of species and plant functional types. However,
Swaine and Whitmore [1988] pointed out that when the
species in a tropical forest ecosystem are grouped into a few
coarse functional types, the characteristics or assumptions

for these functional types can be made sufficiently general
to facilitate their use and application in many tropical forest
types. In this paper, species in tropical forest are categorized
into three functional types, whose regrowth parameters can
be adjusted based on field observations or through an
inverse modeling approach. The relationship between gap
size and community composition was documented in gen-
eral terms by Whitemore [1998] for lowland rainforest as
well as by Brokaw [1985, 1987] for Panamanian rainforests.
Unfortunately, a detailed study of community composition
in gaps, such as the one in the work of Brokaw [1985, 1987]
is not available for the Brazilian Amazon. Therefore pa-
rameter values from Panama are our best knowledge avail-
able for species composition in tropical rainforest.
[69] Furthermore, from our results of sensitivity analysis

in section 4, the model is not very sensitive to the param-
eters for community composition (i.e., SD, Tp, age of
pioneers, etc.). Instead, gap fraction and the crown dimen-
sion (GOMS) parameters, which can be measured from
remote sensing, had the most significant impact on model
simulations. Therefore we felt it appropriate to apply the
Panama parameterization to the Amazon sites, especially
given that the emphasis of the model is on the carbon
budget and not on species composition within postdisturb-
ance gaps.
[70] With the new features in CASA-3D, now we are able

to consider how different biophysical and physiological
characteristics modulate the C cycle in pre disturbance
and postdisturbance scenarios. In addition, by closely cou-
pling an integrated set of parameterizations with remotely
sensed canopy gap fraction from space, CASA-3D is
suitable for applications at large scale such as the carbon
cycle modeling of the entire Amazon Basin. We note that
edge effects caused by gaps and impact of gaps on envi-

Table 3. Uncertainties Associated With the 13 Factors in the
Absolute Sensitivity Analyses (Ea)

Factors
1

year
2

years
5

years
10

years
20

years
30

years
40

years

LUE NPP 1.1 2.5 3.5 4.5 5.2 6.1 7.0
RESP 0.0 0.3 1.0 2.0 3.1 4.2 5.2

rho NPP 0.0 0.1 0.8 1.4 1.7 2.4 3.1
RESP 0.0 0.0 0.2 0.6 0.9 1.5 2.2

SD NPP 0.1 0.2 0.4 0.7 0.9 1.2 1.5
RESP 0.0 0.0 0.1 0.3 0.5 0.8 1.1

Tp NPP 0.1 0.3 0.6 1.3 1.5 2.1 2.8
RESP 0.0 0.0 0.1 0.5 0.9 1.4 1.9

agepioneer NPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RESP 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ppt NPP 1.8 1.6 1.6 1.7 1.7 1.7 1.7
RESP 1.5 2.1 1.8 1.4 1.0 1.0 1.2

airt NPP 2.9 2.9 2.9 3.0 3.0 3.1 3.1
RESP 2.0 2.5 2.2 2.0 1.9 2.1 2.4

solrad NPP 1.6 1.9 2.1 2.3 2.3 2.5 2.7
RESP 0.3 0.4 0.7 1.1 1.5 1.8 2.1

gap NPP 52.3 58.2 54.7 49.9 44.6 40.0 35.8
RESP 47.6 .17.8 .6.7 7.9 26.9 36.1 38.6

Allocation
of NPP

NPP 0.0 0.1 0.5 0.9 1.0 1.5 1.9
RESP 1.0 1.2 2.1 2.4 2.6 2.1 1.5

kcwd NPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RESP 6.8 9.0 5.5 1.9 0.8 1.0 0.7

gapth NPP 0.1 0.1 0.3 0.5 0.6 0.8 1.1
RESP 0.0 0.0 0.0 0.2 0.3 0.5 0.7

goms NPP 0.3 0.6 0.9 1.4 1.8 2.4 2.9
RESP 0.0 0.1 0.2 0.6 1.0 1.5 2.0

Table 4. Uncertainties Associated With the 13 Factors in the
Relative Sensitivity Analyses (Er)

Factors
1

year
2

years
5

years
10

years
20

years
30

years
40

years

LUE NPP 1.4 2.5 3.6 4.2 5.8 7.0 8.4
RESP 0.0 0.2 0.7 1.5 3.1 4.6 6.3

rho NPP 0.0 0.2 1.0 1.4 3.0 3.9 5.1
RESP 0.0 0.0 0.2 0.5 1.5 2.3 3.7

SD NPP 0.1 0.2 0.5 0.6 1.2 1.9 2.6
RESP 0.0 0.0 0.1 0.2 0.6 1.2 1.9

Tp NPP 0.1 0.2 0.6 0.9 1.8 2.8 3.8
RESP 0.0 0.0 0.1 0.3 0.9 1.8 2.7

agepioneer NPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RESP 0.0 0.0 0.0 0.0 0.0 0.0 0.0

ppt NPP 0.9 0.9 1.0 1.0 1.3 1.7 2.0
RESP 0.8 1.1 1.0 0.8 0.7 1.1 1.5

airt NPP 3.0 3.1 3.2 3.3 3.5 3.8 4.1
RESP 1.9 2.5 2.3 2.1 2.1 2.6 3.1

solrad NPP 2.0 2.3 2.5 2.7 3.2 3.9 4.5
RESP 0.4 0.5 0.8 1.2 1.8 2.7 3.5

gap NPP 15.0 8.1 7.1 6.2 5.4 4.6 4.5
RESP 6.8 3.0 1.1 1.1 3.2 4.0 4.4

Allocation
of NPP

NPP 0.0 0.2 0.9 1.3 2.5 3.8 5.1
RESP 0.8 1.1 1.8 2.0 2.0 2.2 2.8

kcwd NPP 0.0 0.0 0.0 0.0 0.0 0.0 0.0
RESP 3.3 4.3 2.6 0.9 0.8 0.8 0.5

gapth NPP 9.1 0.6 0.3 0.3 0.5 0.8 1.1
RESP 1.2 0.4 0.3 0.2 0.3 0.5 0.8

goms NPP 9.2 1.9 4.1 6.9 12.0 15.7 19.2
RESP 1.2 0.4 0.8 2.2 6.1 10.1 14.2

G01002 HUANG ET AL.: MODELING FOREST DISTURBANCE AND LOGGING

19 of 23

G01002



Table A1. Summary of Model Parameters, Their Values, and Ranges As Employed in CASA-3D

Parameter
Location
in the Text

Degree of
Uncertainty Meaning and Citation Mean ± Uncertainty (If Any)

Parameters for Intact Forest
litcn – L Litter C/N ratio 24.5
lignin – L Lignin fraction of litter 0.072
lrage – L Average age of leaves and fine roots

[Hirsch et al., 2004]
2 ± 0.5, year

woodage – M Average age of woody tissues
[Hirsch et al., 2004]

52 ± 5, year

laimax – L Maximum LAI [Nepstad
et al., 2004]

5.7

Pw – H Fraction of NPP allocated to
wood [Hirsch et al., 2004]

0.35 ± 0.04

Pf – H Fraction of NPP allocated to
foliage [Hirsch et al., 2004]

0.30 ± 0.025

Pr – H Fraction of NPP allocated to
fine roots [Hirsch et al., 2004]

0.35 ± 0.035

ksurfmet – L Turnover rate of the surface
metabolic pool [Potter et al.,
1993a, 1993b]

14.8 a%1

ksurfstr – L Turnover rate of the surface
structure pool [Potter et al.,
1993a, 1993b]

3.9 a%1

ksoilmet – L Turnover rate of the soil metabolic
pool [Potter et al., 1993a,
1993b]

18.5 a%1

ksoilstr – L Turnover rate of the soil structure
pool [Potter et al., 1993a,
1993b]

4.9 a%1

kcwd_large – H Turnover rate of the large CWD
pool [Palace et al., 2007]

0.21 a%1 ± 10%

kcwd_medium – H Turnover rate of the medium
CWD pool [Palace et al., 2007]

0.25 a%1 ± 10%

kcwd_small – H Turnover rate of the small CWD
pool [Palace et al., 2007]

0.47 a%1 ± 10%

ksurfmic – L Turnover rate of the surface microbial pool 6.0 a%1

ksoilmic – L Turnover rate of the soil microbial pool 7.3 a%1

kslow – L Turnover rate of the slow carbon
pool [Potter et al., 1993a, 1993b]

0.22 a%1

kpassive – L Turnover rate of the passive carbon
pool [Potter et al., 1993a, 1993b]

0.0045 a%1

" equation (1) M Average light use efficiency of the
intact forest [Field et al., 1995]

0.40 gC/MJ ± 20%

Parameters for Simulating Regrowth Within Gaps
a0 equation (8) L Parameter in the gap recovery

function [Asner et al., 2006]
f(gap)

a1 equation (8) L Parameter in the gap recovery
function [Asner et al., 2006]

f(gap)

a2 equation (8) L Parameter in the gap recovery
function [Asner et al., 2006]

f(gap)

"*pioneer – H Maximum light use efficiency
of the pioneer species [Field et al., 1995]

0.50 gC MJ%1 ± 20%

"*st – H Maximum light use efficiency
of the shade-tolerant primary
species [Field et al., 1995]

0.42 gC MJ%1 ± 20%

"*ld – H Maximum light use efficiency
of the light-demanding primary
species [Field et al., 1995]

0.38 gC MJ%1 ± 20%

rpioneer – H Specific wood density of the pioneer
species [Lawton, 1984]

0.4 g cm%3 ± 20%

rst – H Specific wood density of the shade-tolerant
primary species [Lawton, 1984]

0.6 g cm%3 ± 20%

rld – H Specific wood density of the light
demanding primary species [Lawton, 1984]

0.45 g cm%3 ± 20%

gapth equation (11) M The threshold of gap fraction above which
pioneer species can be found [Brokaw, 1985]

0.25 ± 0.1

ISDmax equation (11) M Maximum initial stem density of pioneer
species one year after logging [Brokaw,
1985, 1987]

300 ± 50 stems/ha

ISDmin equation (11) M Minimum initial stem density of pioneer
species one year after logging [Brokaw,
1985, 1987]

50 stems/ha
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ronment (e.g., temperature, soil moisture, etc.) were not
considered in the current version of CASA-3D. We will
investigate these factors in the future development of the
model.
[71] Detailed studies at the pixel level show that regrowth

following timber harvest is tightly regulated by the light
environment in the postlogging gaps. Our sensitivity anal-
yses showed that gap fraction, the signal generated from
processing satellite images using CLAS [Asner et al.,
2005a, 2006], is critical for an accurate estimation of C
budget under a selective logging scenario. Gap fraction
affects NPP because it determines the absorbed photosyn-
thetically active radiation, tree functional types within gaps,
and light transmitted into gaps. The simulated NPP is also

very sensitive to the GOMS parameters, especially in 30–
40 years after timber harvest because it determines the
radiation available for photosynthesis of the gap species.
The fact that the GOMS parameter introduced large uncer-
tainties in the relative sensitivity analyses but not in the
absolute sensitivity analysis suggests that the interaction of
gap fraction and the GOMS parameters through l plays an
important role in determining the light environment in gaps.
Gap fraction and the GOMS parameters combined introduce
up to 19% uncertainty to NPP. The maximum light-use
efficiency of gap species and meteorological variables also
contribute significantly to NPP by modifying APAR or light-
use efficiency. The value gapth affects the species composi-

Parameter
Location
in the Text

Degree of
Uncertainty Meaning and Citation Mean ± Uncertainty (If Any)

SD1_st section 2.3.1 H Final stem density of shade tolerant
primary species [Silva et al., 1995]

300 ± 50 stems/ha

SD1_ld section 2.3.1 H Final stem density of light demanding
primary species [Silva et al., 1995]

300 ± 50 stems/ha

SD0_st section 2.3.1 L Initial stem density of shade tolerant
primary species after logging

0 stems/ha

SD0_ld section 2.3.1 L Initial stem density of light demanding
primary species after logging

0 stems/ha

Tp_ld section 2.3.1 H Number of years for light-demanding
species to reach the final stem density
[Brokaw, 1985, 1987]

4 ± 1 year

Tp_st section 2.3.1 H Number of years for shade-tolerant species
to reach the final stem density [Brokaw,
1985, 1987]

5 ± 1 year

Pioneerage section 2.3.1 H Average age of woody tissues of
pioneer species

10 ± 4 year

ST_understoryage section 2.3.1 L Average age of woody issues of
shade-tolerant species presented in
the understory [Vieira et al., 2005]

100 ± 20 year

LD_understoryage section 2.3.1 L Average age of woody issues of
light-demanding species presented
in the understory [Vieira et al., 2005]

25 ± 10 year

funderstory section 2.3.1 M Contribution in percentage of the
understory trees to the total LAI
of the primary species

10 ± 5%

Tunderstory section 2.3.1 M Number of years for the contribution of
understory trees to the total LAI
decrease from funderstory % to 0%

40 ± 10 year

a0, a1, a2, a3 equation (12) M Parameters to estimate AGB of a tree
of the primary functional types based
on its DBH [Chave et al., 2005]

%1.50, 2.48, 0.21, %0.03

c1, c2, c3 equation (13) M Parameters to relate DBH with H
(M. Keller, unpublished manuscript,
year?)

3.63, 0.51, 1.17

a4, a5 equation (14) M Parameters to estimate AGB of the
pioneer functional type based on its
DBH [Nelson et al., 1999]

%2.51, 2.43

Ddiff equation (16) L Parameter to modify " based on light
condition [Anderson et al., 2000]

0.4 for C3 plants 0.15
for C4 plants

Parameters for GOMS [Asner et al., 2002b]
r section 2.4.2 H Average crown radius 13.96/2 ± 0.4 m
b section 2.4.2 H Vertical half axis of the tree crown 8.74/2 ± 0.5 m
h section 2.4.2 H Height of canopy from ground to crown

center of the intact forest
26.38 ± 1.0 m

hdiff section 2.4.2 L Height difference between intact trees
and regrowing trees

h % hrg

brratio section 2.4.2 H Crown vertical-to-horizontal diameter ratio 8.74/13.96 ± 0.06
hbratio section 2.4.2 L Crown height-to-vertical diameter ratio hdiff/b
l section 2.4.2 L Density of crowns per pixel (1 % gap(0))/(pr2)

Table A1. (continued)
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tion in gaps and therefore the NPP in the initial years of
regrowth significantly.
[72] Gap fraction and the GOMS parameters also affect

respiration because the detrital fractions of wood, leaf, and
root carbon pools are tightly correlated with the postlogging
gap fraction of each pixel and because the acquired carbon
is allocated into different carbon pools and will eventually
be turned over for respiration. In the initial 10 years after
logging, the decay rates of coarse woody debris, alters the
respiration from the ecosystem. Subsequently, heterotrophic
respiration is affected because a measurable fraction of
initial regrowth turns over rapidly. The uncertainties asso-
ciated with the GOMS parameters can be as large as 14% by
the 40th year of regrowth.
[73] The case presented here for the Tapajos National

Forest confirms that selective logging significantly impacts
the landscape-level C budget of a forest. Specifically, the
damage by logging initially suppresses NPP of the ecosys-
tem by removing a large fraction of foliage. On the other
hand, a significant amount of damaged biomass, including
leaves, wood, and roots, enters the detrital pools including
CWD, which increases the ecosystem heterotrophic respi-
ration for years following timber harvest. Our simulations
suggest that logging results in a switch from a forest near
steady state to a somewhat large C source. The C source
resulting from logging could increase Basin-wide estimates
of C losses, compared to current estimates limited to the
balance between clear-cut deforestation and regrowth. Our
results also show that although the ecosystem returns to a
new quasi-steady state for NEP with 20–30 years after
timber harvest, both NPP and heterotrophic respiration
remain lower than in prelogging conditions. The lower
heterotrophic respiration is caused by slower accumulation
of biomass in the wood carbon pool due to suppressed NPP
levels after logging. Our next step will be to use CASA-3D
to quantify Basin-wide carbon fluxes following selective
logging to assess the potential impacts of this form of forest
use on a broader geographic scale.

Appendix A

[74] Table A1 is a summary of model parameters, their
values, and ranges as employed in CASA-3D.

[75] Acknowledgments. This study was funded by NASATEP/LBA
grant NNG06GE32A to G. Asner and M. Bustamante.
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