
Incorporating Photoperiod in the Prediction of Biocontrol 
Agent Phenology and Voltinism 

 
Co-Principal Investigators 

Fritzi Grevstad, Assistant Professor (Senior Research), Department of Botany and Plant 
Pathology, Oregon State University, Corvallis, OR 97331.  Dr. Grevstad will oversee the 
completion of all objectives of this proposal and will provide progress and final reports.  She 
will be responsible for field surveys and chamber experiments and will contribute to model 
development and implementation. 
Leonard B. Coop, Assistant Professor (Senior Research), Integrated Plant Protection Center 
and Department of Botany and Plant Pathology, Oregon State University.  Dr. Coop will take 
lead on the technical aspects of the model and produce maps and tools for predicting 
phenology and voltinism in biological control organisms.     

Cooperators and Other Participating Institutions 
Eric Coombs, Biological Control Entomologist, Noxious Weed Control, Oregon Department 
of Agriculture, 635 Capitol St. NE, Salem, OR 97301.  Mr. Coombs will suggest field survey 
locations, share records of Galerucella releases made in Oregon, help with field surveys, and 
contribute to publications.  His time on the project has been committed as cost share. 
Peter McEvoy, Department of Botany and Plant Pathology, Oregon State University.  Dr. 
McEvoy will contribute technical advice toward the project and allow use of environmental 
chambers located in his laboratory. 
Other collaborators:  We plan to recruit numerous other collaborators across U.S.  to help 
with rapid assessment for presence or absence of second generation in Galerucella spp. 

BCIP Contact  
Lia Spiegel, Entomologist, USDA Forest Service, Forest Sciences Lab, 1401 Gekeler Lane, 
LaGrande, OR 97850.  Dr. Spiegel will serve as the Forest Service technical contact and will 
be responsible for monitoring the progress of the cooperative agreement.    

Amount Requested:  Year 1: $47,217  Year 2: $52,634  Total: $99,851 
Project Leveraging: Year 1: $31,720  Year 2: $29,212  Total: $60,932 
   (sources Oregon State University and Oregon Department of Agriculture) 
 
 
Project Goals and Supporting Objectives 
 
The overall goal of this project is to increase the effectiveness of biological control of weeds by 
developing methods and tools that can be used to predict and measure phenology and voltinism 
(number of generations) of introduced biological control agents.  Unique to our approach is the 
incorporation of photoperiod as the cue for induction of hibernal diapause.  Common among 
insects, reliance on a photoperiod cue can have important consequences for insects introduced 
into locations with climates or latitudes that differ from the source location to which they are 
adapted.  The model that we develop will be generally applicable to nearly all introduced insects 
and will be tested extensively for two leaf beetles (Galerucella spp.) that were introduced into 
North America over a wide geographic range against purple loosestrife (Lythrum salicaria). 
 
Our specific objectives are as follows: 
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1. Develop and implement a combined phenology/voltinism model that incorporates continent-
wide degree-day and photoperiod data with biocontrol agent development rates and 
photoperiod response.  An online version of the model will be made available as a tool for 
producing voltinism maps for introduced insects. 

2. Using the model, develop standardized methods for rapid assessment of the presence or 
absence of a second generation in Galerucella beetles and use these methods, with help of 
collaborators, to assess patterns of voltinism at sites across the continent.  

3. Compare field observations of voltinism to model predictions and assess possible 
explanations, including adaptation, where field observations do not align with predictions. 

4. Using selected field-collected populations of Galerucella, carry out environmental chamber 
experiments to test the hypothesis that the critical photoperiod and/or development rates have 
evolved since their introduction in correspondence with the selective pressures of their new 
environment.   

 
Project Justification and Background 
 
Consequences of photoperiod-cued diapause in biocontrol agents  
 
Many insects, if not most, use the indirect cue of photoperiod to synchronize their life cycle with 
the timing of favorable seasonal conditions (Tauber et al. 1986; Danks 1987; Denlinger 2002). 
This response often takes the form of termination or induction of a diapause state when the insect 
is exposed to a photoperiod that lengthens (or shortens) beyond a critical threshold (the critical 
photoperiod).  Diapause is a physiological state of dormancy in which development and 
reproduction cease and energy is conserved until conditions or resources once again become 
favorable.  Most temperate zone insects diapause during the colder months and emerge in the 
spring or summer when their food resources become available.  Photoperiod serves as an indirect 
predictor of near future conditions that is more reliable than direct cues such as temperature and 
moisture, which can be highly variable.  Since both photoperiod and climate vary geographically, 
the particular critical photoperiod used by a population to synchronize its life cycle to the 
seasons is specific and adaptive to a particular location.  In their native ranges, insects that cue 
on photoperiod exhibit clinal variation in the critical photoperiod length corresponding with 
gradients of climate and latitude (e.g. Danilevski 1965; Masaki 1961, 1999; Gomi 1997).  In 
addition, there may be corresponding variation in rates of development, with faster development 
occurring where degree-days are limited and slower development where they are not (Masaki 
1967, 1978; Mousseau and Roff 1989; Blanckenhorn and Demont 2004). 
 
In classical biological control, natural enemies are usually collected from a single source location 
in the native range and introduced into many locations across a climatically variable target range.  
These introduced populations will suddenly find themselves in a climate that differs to varying 
degrees from the one in which they evolved.  Traditionally, estimation of the suitability of the 
new climate (if done at all) is carried out using a direct climate matching approach (e.g. Climex 
®) without regard to photoperiod response.  However, because climate and photoperiod are not 
likely to align in the same way in the introduced location as in the source location, an insect’s 
reliance on a photoperiod can lead to asynchrony of the life cycle with the seasons and rather 
extreme shifts in the duration of the reproductive phase of its life cycle.  Two recent field studies 
of biocontrol agents reveal the potential effects of photoperiodicity for the outcomes of 
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biological control introductions.  Bean et al. (2007) showed that the tamarisk leaf beetle 
(Diorhabda elongata deserticola), normally a multi-voltine species, was unable to establish 
south of 38 º N latitude because the day length was never long enough to allow a second 
generation.  Instead adult beetles entered diapause early in the summer and were unable to 
survive the extended period of diapause to the following spring.  In another study, Grevstad et al. 
(2012) found that populations of the planthopper Prokelisia marginata that were collected from 
four different source locations and introduced into Willapa Bay, WA for control of Spartina 
alterniflora emerged out of synchrony with the new climate, but consistent with a photoperiod 
cue that was adaptive for their respective source locations.  These two cases illustrate that the 
effect of photoperiod response on phenology and voltinism in the new range is predictable.  
Needed are conceptual models and tools to help biocontrol researchers understand and predict 
these outcomes. 
 
The ecological response for introduced populations that are sensitive to photoperiod can be 
counter intuitive.  For example, it is often assumed that insects with the potential for multiple 
generations will have more generations when introduced into warmer southern locations and 
fewer generations in the north where heat accumulation is limited.  However, the opposite is 
likely to be true when insects rely on photoperiod as their cue for entering diapause. While 
degree-day accumulation tends to increase from north to south, photoperiod during the summer 
decreases from north to south.  This means that introduced insects adapted to a certain 
latitude/climate may have fewer generations when introduced into more southern locations, 
which have shorter day lengths, even though the degree-days are sufficient for more.  The case of 
the tamarisk leaf beetle mentioned above is a published example of this.  A similar situation 
appears to be present in the loosestrife leaf beetles (Galerucella calmariensis and G. pusilla). 
Early reports suggest only one generation in southern latitudes such as Virginia (McAvoy et al. 
1997), a partial second generation at mid-latitidudes (Matos and Obrycki 2007), and 2 full 
generations in several northern locations such as Michigan, Ontario, Manitoba, and British 
Columbia (Dech and Nosko 2002; Lindgren et al. 2002; Landis et al. 2003).  A second 
generation can mean greater impact on the weed, but a second generation could also be 
detrimental if there are insufficient degree-days to support it.  Cueing on the long days of 
northern latitudes, a late second generation of Galerucella could fail to survive the onset of cold 
fall weather and senescing host plants. 
 
It is reasonable to expect that populations that are not well adapted to their new climates would 
eventually adapt, as has been shown in some introduced pest species (Riedl and Croft 1978; 
Gomi and Takeda 1996).  Demonstrations of evolved adaptation to climate in weed biocontrol 
agents are rare, but perhaps only because few researchers have looked.  Three very recent studies 
appear to be the first to do so.  The tamarisk leaf beetle evolved a shorter critical photoperiod in 
just 7 years, allowing it to expand its range further south than its original limit (Bean et al.  
2012).  Two biocontrol agents introduced against tansy ragwort, the moth Tyria jacobaeae 
(McEvoy et al. 2012) and the flea beetle Longitarsus jacobaeae (Szűcs et al. 2012) were found to 
have evolved shorter generation times allowing them to occupy high elevation habitats.  
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Need for improved effectiveness of biological control of purple loosestrife 
 
While our research will have broad implications for improving classical biological control in 
general, it will have the most immediate and direct implications for improving effectiveness of 
the biocontrol program against purple loosestrife, the system that we have chosen to focus on.  
Purple loosestrife is an aggressive invader of wetlands, occurring in 44 states and 10 Canadian 
provinces.  It is officially designated as noxious in 33 states.  Invasion by purple loosestrife leads 
to decreased native plant diversity (Gabor et al. 1996; Schooler et al. 2006) and a reduction of 
the quality of nesting and foraging habitat for a variety of specialized wetland bird species 
(Rawinski and Malecki 1984; Hickey and Malecki 1997; Whitt et al. 1999; Lor 2000).  Purple 
loosestrife also alters decomposition rates and nutrient cycling, thus altering the ecosystem 
services provided by wetlands (Emery and Perry 1996; Barlocher and Biddiscombe 1996; Grout 
et al. 1997; Templer et al. 1998).   
 
Four insects have been introduced as biocontrol agents against purple loosestrife:  the two leaf 
beetles Galerucella calmariensis and G. pusilla, a root feeding weevil Hylobius 
transversovittatus, and a seed feeding weevil Nanophyes marmoratus.  Of these, the two 
Galerucella beetles have been the most widely released and have had the most visible impact to 
the weed.  However, the biological control program against purple loosestrife has been only 
partially successful (Denoth and Myers 2005; Grevstad 2007).  Control of purple loosestrife 
appears to be greater where there are two beetle generations.  For example, stem count 
reductions of 90 to 100% have been reported in central Canada (Lindgren et al. 2002), compared 
to no significant decline in stem density in New York State where one generation is typical 
(Grevstad 2004).  Our research will help identify locations where populations are not reaching 
their potential and where they are having just one generation but could be having two.  It will 
also help identify sources of adapted agents in similar climates that could be redistributed to sites 
where the existing population was not effective.   
 
Galerucella spp. biology 
 
Galerucella pusilla and Galerucella calmariensis are leaf beetles (family Chrysomelidae) 
originating from 2 locations in Northern Germany:  Gelnhausen at 50.2o N and Meggerdorf at 
54.3o N.  Beginning in 1992, they were released across North American from central California 
to British Columbia in the West and from Virginia to Maine in the East (Hight et al. 1995).  The 
beetles are host-specific to purple loosestrife with both larvae and adults feeding on the leaves 
and stems of the plant.  Both Galerucella species overwinter as adults and emerge to mate and 
reproduce in direct response to warming temperatures.  Based on local and published 
phenological reports, emergence timing corresponds to approximately 150 accumulated degree-
days, which is followed by a pre-oviposition period of approximately 50 degree-days.  They have 
one to two full generations per year depending on location and require 473 (G. calmariensis) and 
490 degree-days (G. pusilla) to complete development from egg to eclosed adult (lower 
threshold 7.9 and 8.0o C, respectively) (McAvoy and Kok 2004).  During late summer or early 
fall, diapause is induced by short photoperiod experienced by newly eclosed adults (Velarde et 
al. 2002), with a critical threshold likely to be somewhere between 15.2 and 15.3 hours (Bartelt 
et al. 2008).   
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The two leaf beetles (Galerucella spp.) introduced against purple loosestrife make up an ideal 
system for investigating the ecological and evolutionary consequences of a photoperiod response 
for insects moved into a new climate.  First, development rates, degree-day requirements, and 
critical photoperiod details are available (McAvoy and Kok 2004; Velarde et al. 2007; Bartelt et 
al. 2008) making it possible to parameterize models of phenology.  Second, they have been 
introduced over a very wide geographic range with varying observable responses.  Third, as a 
wetland system, the plant and insect phenologies are largely dependent on seasonal temperatures 
and not complicated by variation in moisture levels.  Fourth, for many of the release sites, we 
know both the source and the year of release, which will allow us to determine rates at which 
adaptation may have occurred.  Finally, with this biocontrol system we will be able apply the 
model to two beetle species at once, helping to validate the model as a general predictive tool for 
introduced insect species that use photoperiod to induce diapause. 
 
Preliminary observations and results from the west coast 
 
Recent observations have motivated our hypothesis that Galerucella populations have already 
evolved toward adaptation to local conditions.  In California, populations were initially very 
difficult to establish.  This is likely due to the fact that the short day lengths trigger diapause 
early in the summer after just one generation.  However, in recent years, the beetles near 
Palermo, CA are reported to have at least two generations per year (B. Villegas, personal 
communication), which is only be possible if there has been a change to a shorter critical 
photoperiod.  Our second line of evidence comes from a preliminary experimental test of 
divergence in the rates of development. We collected adult G. calmariensis from Palermo 
(California), Sutherlin (Oregon), and Bellingham (WA) and reared their offspring on each of 6 
replicate caged plants in a common environmental chamber. Beetles from the most northern site 
(Bellingham) developed 2 days faster on average than beetles from the Sutherlin or Palermo sites 
(Fig. 1). Selection for faster development may have occurred because individuals that developed 
faster were able to fit in a second generation whereas those that developed slower would 
confront the declining conditions and reduced host quality in the late second generation.   
 
 

 
 
Figure 1.  Timing of adult emergence for 
three geographic sources of Galerucella 
calmariensis when reared from eggs in a 
common environmental chamber.  The 
beetles from the northernmost location 
(48.8o N lat.; Bellingham) developed 
significantly faster than the central (43.4o 
lat.) and southern (39.4o lat.) locations 
(ANOVA on mean eclosion date per 
plant:  F = 4.24,  p = 0.039).  The faster 
development could allow this northern 
population to fit in a second generation.   
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Approach 
 
Model and online tool 
 
We propose to integrate available spatial and temporal climate data with development rates and 
photoperiod response into a model that can be used to predict both the timing of life cycle events 
and the number of generations for newly introduced insect populations. The model will be 
similar to standard degree-day phenology models, but will incorporate delay of reproduction 
(induction of diapause) in response to photoperiods that are shorter than the population-specific 
critical photoperiod.  With recent advances in spatial climate modeling technology (Daly et al. 
2008, Coop 2010), degree-day maps (both 30-year normal and near-realtime) can be produced 
for any location in the contiguous US (CONUS) plus southern Canada to 52º N.  One version of 
this technology, the Oregon State University IPPC degree-day mapping calculator 
(http://uspest.org/cgi-bin/usmapmaker.pl), will be modified to include photoperiod response via 
user-input critical photoperiods.  The current degree-day mapping tool is written in the Perl and 
GRASS GIS languages, and the submodels needed for this new product have been similarly built 
and tested as prototypes.  In the simplest form of the model, input parameters will include the 
minimum and maximum threshold temperatures for development, the development time to the 
sensitive stage (in degree-days) and the critical photoperiod (hrs) that induces diapause.  Outputs 
will include detailed (800m) maps of expected voltinism for all CONUS regions.  Following peer 
review and testing, the proposed model will be integrated within existing on-line IPPC services 
and made freely available to support a wide array of collection, release, survey, and assessment 
strategies. The IPPC services have been in continuous operation since 1997 supported by OSU 
with additional grants and contracts. 

Figure 2.  Predicting the consequence of a population’s reliance on photoperiod as a cue for diapause.  If the day 
length is longer than the critical photoperiod (horizontal gray line) at the time when adults eclose (vertical gray line), 
the insects remain reproductively active for a second generation.  If it is shorter, they enter diapause.  The critical 
photoperiod and timing of adult eclosion are estimated for the original populations of Galerucella introduced from 
Germany.  Evolution of these population-specific traits (seasonal adaptations) would be represented by a change in 
position of the horizontal and vertical lines, potentially resulting in a change in the number of generations per year. 
Photoperiod calculations were made following Forsythe et al. (1995). 
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For illustrative purposes we can make initial model predictions for Galerucella spp. based on 4 
point locations in the western U.S. (Fig. 2).  The eventual model will do the same over 
continuous space.  By plotting seasonal photoperiod on a degree-day scale, we can directly 
compare photoperiods between geographic locations at the time when the F1 adults are expected 
to eclose (the photoperiod sensitive stage (Velarde et al. 2002)).  The number of degree-days to 
adult eclosion is estimated to be 690 based on the development rates of McAvoy and Kok (2004) 
and published and personal observations of spring emergence timing.  Plotting on a degree-day 
scale also allows us to gauge whether there is sufficient heat accumulation for a second 
generation following the emergence of the F1 adults.  Using the four point locations as examples, 
we demonstrate four possible outcomes for introduced Galerucella populations that will 
eventually be mapped as geographic zones (see Table 1).  
 

Table 1. Predicted ecological and evolutionary responses of introduced populations with short-day diapause 
induction.  The introduced range can be divided into 4 zones, each with a different ecological and evolutionary 
response from the introduced population.   
 
Phenology and voltinism field surveys 
 
We will carry out two types of field surveys.  For a limited number of field sites that have 
differing climates but still convenient to Oregon State University, we will carry out weekly 
surveys of life stages to obtain detailed plant and insect phenology that can be used with already 
published phenology reports to help calibrate our model.  In these surveys, the number of 
individuals in each stage (egg, larva, adult) will be counted weekly on 10 focal loosestrife  
plants at each site between April and October, 2013.  In addition, the stage of plant development 
will be recorded for 20 randomly selected plants per site. 
 
The second type of survey is a rapid assessment intended only to confirm the presence or 
absence of a second generation of Galerucella spp. at sites across the continent.  Our model can 
be used to determine the best timing for such a survey in various geographic regions.  Survey 
timing is critical because the adults are active on the plants for only a couple weeks before 
descending into the soil to diapause and we intend that the confirmation of a second generation 
will require only one visit to the site.  The standardized methods will be used in our own surveys 
in the western U.S. and will also be sent to colleagues familiar with the biocontrol system who 
will help gather data points on the number of generations in different regions.  The P.I. will take 
at least one trip to the Eastern or Midwestern U.S. to help fill regions where collaborators might 

 Photoperiod at emergence < CP 

Ecological Evolutionary 

Photoperiod at emergence > CP 

Ecological Evolutionary  
 
Degree-days 
sufficient for one 
generation 

 
One generation, 

good winter survival 
(e.g. Astoria, OR) 

 
 

Little or no change 

Two generations, late 
diapause/fall 

mortality 
(e.g. Bellingham, WA) 

Longer CP leading to 
one generation 

OR 
faster development 
for two generations 

 
Degree-days 
sufficient for two 
generations 

 
One generation, poor 

winter survival 
(diapause too early) 
(e.g. Palermo, CA) 

Shorter CP leading to 
2 generations 

OR 
Slower development, 

later diapause 

 
Two generations, 

good winter survival 
(e.g. Sutherlin, OR) 

 
 

Little or no change 
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be lacking.  These rapid assessment methods will also be made available to land managers who 
want to troubleshoot a Galerucella population that has not been effective at controlling purple 
loosestrife.  Where only one generation occurs, it may be possible to move insects from another 
source location to increase the number of generations and have a greater impact on the weed.    
 
Testing for evolution of development rates and critical photoperiod 
 
Where the number of generations observed in the field does not match the model prediction 
based on parameters from the original source populations, we can hypothesize that adaptation to 
local climate may have occurred.  We will select at least one G. calmariensis population from 
each of the four zones identified in Table 1, including (if available) at least two populations that 
show evidence for adaptation based on divergence from model predictions.  Adult beetles will be 
collected shortly after they emerge from overwintering and reared for a generation in the 
laboratory to eliminate maternal effects.  In the first experiment, we will compare rates of 
development from egg to adult among the four populations when reared at a common 
temperature. Our hypothesis is that populations occurring in regions where degree-days are 
limited will have evolved faster rates of development.  In the second experiment, we will 
determine and compare the critical photoperiod used by each population to induce diapause 
using methods similar to Verlarde et al. 2002.  Newly eclosed adults will be exposed to four 
light:dark treatments selected to bracket the reported initial critical photoperiod of approximately 
15.25 hours (Bartelt et al. 2008).  Two additional treatments will be used to test whether the 
photoperiod response varies with temperature as has been found in some cases (e.g. Gomi 1997).  
Our hypothesis is that photoperiods will have evolved in a direction to allow the optimal number 
of generations for the available degree days.  This experiment requires 6 environmental 
chambers which are available to us in the lab of Dr. Peter McEvoy at Oregon State University. 
 
Expected Products and Outcomes 
 
1. Concept/theory paper describing the implications of photoperiod-cued diapause for 

biological control agents and other introduced insects.  
2. Publicly accessible online tool for generating maps to predict phenology and voltinism for 

biological control agents and other introduced insects that have life-cycles cued to 
photoperiod.    

3. Technology transfer document describing methods for rapid assessment of the presence or 
absence of second generation in Galerucella and its implications for biocontrol effectiveness. 

4. Paper on observed patterns of the number of generations of Galerucella populations at sites 
throughout the continent.   

 
This research will produce concepts and tools intended to improve approaches to selection and 
release of biocontrol agents leading to greater success in establishment and effectiveness.  Lack 
of attention to photoperiod-regulated voltinism has likely led to failures in the past; we intend to 
improve on this record with the proposed combined phenology/voltinism mapping tools and 
survey timing guidelines.  These “expert assist” tools can help biocontrol researchers and 
practitioners better understand and predict the ecological and evolutionary implications of 
introductions of organisms into new climates and at varying latitudes.  
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Time Table 
 
 
Task 2013 2013 2013 2013 2014 2014 2014 2014  

Winter Spring Summer Fall Winter Spring Summer Fall 

Build model and 
incorporate into 
USPest.org website 

X X X      

Update and improve 
model based on user 
feedback 

    X X X  

Write concept/theory 
paper 

X X       

Start plants from seed in 
greenhouse 

 X       

Field phenology surveys  X X X     

Recruit volunteers for 
voltinism survey 
 

  X      

Field voltinism surveys    X     

Compare field voltinism 
to model 

    X    

Write paper on observed 
voltinism in Galerucella 

    X X   

Start plants from seed in 
greenhouse 

     X   

Beetle collections from 
selected field sites 

     X   

Environmental chamber 
experiments 

      X X 
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Department of Botany and Plant Pathology 
Oregon State University 
Corvallis, OR   97331 
(541)737-8371  fritzi.grevstad@science.oregonstate.edu 
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Year 1 Year 2 Both Years
Salaries

F. Grevstad, 25% FTE for 2 years 18,786 19,537 38,323
L. Coop, 18% FTE for 2 years 11,336 11,789 23,125
(salaries include 4% cost of living increase per year)

Benefits
F. Grevstad, rate=49% (year 1), 50% (year 2) 9,205 9,573 18,778
L. Coop, rate = 53.73% 6,090 6,334 12,424

Supplies Web server support (web hosting costs) 400 200 600
Supplies for collecting and rearing Galerucella beetles 200 200

Equipment

Travel Travel to field sites within the western U.S. 1,200 1,200 2,400

Travel to field sites on East Coast 1,500 1,500

Travel to International Symposium on Biological 
Control of Weeds March 2014 2,500 2,500

Total Requested: 47,217 52,634 99,851

Matching Contributions Year 1 Year 2 Both Years
Oregon State University unrecovered indirect costs at 
46% 21,720 24,212 45,931
Participation by Eric Coombs, Oregon Department of 
Agriculture 10,000 5,000 15,000

Total Match: 31,720 29,212 60,931

Budget
January 1, 2013 - December 31, 2014



 

 
 
 
 
 
 
October 26, 2012 
 
 
Dr. Fritzi Grevstad: 
 
Please accept this letter as my intention to contribute to your USFS grant application to 
conduct biological control research on purple loosestrife (Lythrum salicaria) leaf beetle 
(Galerucella sp.) phenology and voltinism.  
 
My contribution will consist of In-Kind services to consist of: field surveys, travel, beetle 
collection, assisting in propagation, data consultation, reviewing manuscripts, and 
project maintenance. I will be able to contribute an equivalent of $10K in my time and 
expenses during the first year and $5K for each of the following years. 
 
This research is critical in helping us to better understand the purple loosestrife 
biocontrol system and how to better manage the biocontrol agents and improve 
efficacy.  I appreciate your willingness to seek funding and conduct a project that is 
important to helping to protect Oregon’s precious natural resources and agricultural 
economy. 
 
 
Sincerely, 

 
 
Eric M. Coombs 
Biological Control Entomologist 
Plant Division / Weed Control 
Oregon Department of Agriculture 
635 Capitol St NE 
Salem, OR 97301-2532 
 
Email: ecoombs@oda.state.or.us 
(503) 986-4624 Office 
(503) 986-4786 Fax 
(503) 871-0635 Cell 
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