Forest Health Monitoring

Program Overview

Borys M. Tkacz
National Program Manager
Forest Health Monitoring Program

- Initiated in 1990 to provide information on the status, changes, and trends in forest health and sustainability.
- The FHM program provides information on all forested lands to land-managers and policy makers that affects, directly or indirectly, all Americans.
Forest Health Monitoring (FHM)

Objectives:

- Establish a monitoring system throughout the forests of the United States to determine detrimental changes or improvements that occur over time.
- Provide baseline and health trend information that is statistically precise and accurate.
- Report annually on status and changes to forest health.
DETECTION MONITORING
• Satellite
• Aerial Surveys
• Ground Plots & Surveys

INTENSIVE SITE MONITORING
• Processes

RESEARCH ON MONITORING TECHNIQUES

EVALUATION MONITORING
• Problem Areas

Forest Health Monitoring Program
Detection Monitoring

- Nationwide grid of permanent sample points
 - Integrated w/ FIA since 1999
- Aerial damage detection surveys
- Special ground surveys
Integrated Monitoring Framework

- **Ecosystem Index Sites**: 21 permanent intensive-site ecosystem monitoring locations across U.S.
- **Phase 3 Forest Health**: 8,000 permanent forest plots, 15 mile (22 km) grid
- **Phase 2 Forest Inventory**: Permanent 125,000 forest plots, 3 mile (5 km) grid
- **Local management Inventories**: Temporary or permanent 100,000+ plots, various scales
- **Phase 1 Remote Sensing**: Millions of 1m-1km pixels
- **Ground**
Since 1999 FHM ground plots have been integrated with Forest Inventory and Analysis (FIA) plots.

Phase 2 – Tree Measurements (~125,000 plots, each representing ~6,000 ac.)

Phase 3 – Health Indicators (~8,000 plots, each representing ~96,000 ac.)

Each plot measured once every 5 to 10 years.
Rotating Panel Design
Forest Health Indicators

- Tree Growth
- Tree Regeneration
- Tree Crown Condition
- Tree Damage
- Tree Mortality
- Lichen Communities
- Ozone Bioindicator Plants
- Soil Morphology and Chemistry
- Vegetation Structure
- Plant Diversity

http://fia.fs.fed.us
Crown Condition

- Live crown ratio
- Density
- Foliage transparency
- Dieback
- Diameter
Lichen Communities

- Fungi that live in association with algae
- Sensitive to environmental stresses such as air pollution or climate change
- Indicators of forest biodiversity
- Biotic indexes are developed based on pollution and climate gradients

Photo by Stephen Sharnoff
Ozone Injury

- Ozone causes direct foliar injury to many species
- Bio-indicator plants are evaluated for severity of foliar injury
- Sampled on separate plots

Photo by Gretchen Smith
Ozone Biomonitoring
Down Woody Material

- Measurement of fallen trees, dead branches along transects
 - Diameter
 - Length
 - Stage of decay
 - Species
 - Cavities

- Assess fire risk, wildlife habitat, carbon

Photo by Chris Woodall
Vegetation Diversity and Structure

- Type, abundance, and arrangement of plants on plots
- Allows reporting on diversity of native and introduced species
- Monitoring for change over time will be possible by re-measurement

Photo by Will McWilliams
Soil Condition

- Measurement of soil physical properties, compaction, erosion potential
- Soil samples collected for chemical analyses
 - Acidity
 - Exchangeable cations
 - Nitrogen and carbon
 - Toxics
 - Bulk density
Detection Monitoring

- **Aerial Detection Surveys**
 - Observers in aircraft at 1,000 to 2,000 ft. elevation
 - Create maps visible damage
Special Detection Surveys
Pine mortality in the Southwest

Ponderosa pine in Arizona - 2003
Photos – FHP R3

Piñon pine in New Mexico - 2003

Special aerial and ground surveys conducted in 2003 covering 15 million acres in AZ, NM, CO, UT, NV
Sudden Oak Death Detection and Monitoring

Objectives:

- Multi-scale approach to distribution, incidence, and impact of SOD in CA
- Detection, effectiveness of eradication in OR
- Detection outside infested areas in CA and OR

Maps and photos
Courtesy R5, ODF, SRS
Evaluation Monitoring

- Determine the extent, severity, and causes of undesirable forest health changes.
- Address likely cause-and-effect relationships, identify associations between forest health and forest stress indicators.
- Identify management consequences and alternatives for reducing the effects of forest stress.
- Identify research needs.
Research on Monitoring Techniques

- Urban Monitoring – design sampling strategies for urban forests and street trees
- Riparian Monitoring – design sampling strategies for riparian forests
Intensive Site Monitoring
– Linking Multiple Scales

In depth monitoring of indicators to determine detailed information on key components and processes of selected forest ecosystems.
- Water quality
- Total Carbon
- Calcium Depletion
- Invasive Species
Reporting Highlights

National Reports
- FHM National Technical Reports
- 2003 Sustainability Report – Montreal Process Criteria and Indicators for Sustainable Forests
- Heinz Center – The State of the Nation’s Ecosystems
- EPA – US/Canada Air Quality Agreement Progress Reports

Regional Reports
- Northeast Forest Stressor Report
- Aspen Forest Cover Change in Rockies

State Reports
- Utah Baseline Report
- Forest Health Highlights

http://fhm.fs.fed.us
Fragmentation

This map shows the relative amount of “interior” forest at 7-ha scale shaded from low (red) to high (green) for areas containing >60% forest overall.
Crown Condition

Crows: 1999-2002

Avg. % of BA associated with poor crowns

- 0 - 1
- 1.001 - 2.5
- 2.501 - 5
- 5.001 - 10
- 10.001 - 12.316
- Insufficient Data

A tree was considered to have poor crown condition if its adjusted-ZB-index was greater than 0.25.
Mortality

Tree mortality expressed as the ratio of annual mortality volume to annual gross growth volume (colored polygons).
Down Woody Material
National map of observations of soil pH in the top 10 cm of soil (2001-2003)
National map of effective cation exchange capacity in the top 10 cm of soil (2001-2003)
Sensitivity of tree species in the high and moderate ozone risk areas of the conterminous United States
Future Challenges

- Stress key strengths of FHM
 - Partnership-based
 - Innovative
 - Comprehensive
 - Science-based

- Be “Real Time”
 - Timely detection, analysis, and reporting of adverse changes in forest health to facilitate effective management response

- Look Beyond the Grid
 - Look back – analyze trends, integrate diverse data sources
 - Look forward – forecast future conditions, analyze risks
 - Design new approaches for detection of invasives