Introducing a New Index of Soil Wetness, and its Potential as a Landscape/Landform Visualization Tool

Randall Schaetzl1, Frank Krist2 and Kristine Stanley1

1: Dept. of Geography, Michigan State University, East Lansing, MI, 48824 soil@msu.edu
2: USDA-Forest Service, 2150 Centre Ave., Blgd. A Suite 331, Fort Collins, CO 80525

Background
We apply an ordinal system, the Natural Soil Drainage Index (D\textsubscript{I}), intended to reflect the amount of water that a soil can supply to growing plants under natural conditions, to the US General Soil Map. The result is a map of soil wetness in the lower 48 United States. The DI ranges from 0 for the driest soils and exposed bedrock, to 99 for areas of open water. It can be calculated for any soil by knowing its taxonomic subgroup and, if GIS applications are desired, map unit slope. The DI mainly operates on the assumption that soils in drier climates and with deeper water tables have less plant-useable water, other things being equal. The soil’s natural drainage class and soil moisture regime figure prominently in the DI calculation. The index has many applications in the geosciences, forestry, ecology, geography, and environmental modeling, especially when examined spatially. DI values for all soils currently classified by the Natural Resources Conservation Service can be accessed from the DI web site: http://www.drainageindex.msu.edu/

A Drainage Index Map of the Conterminous United States (based on the US General Soils Map)

This graph illustrates how DI values correlate to our color ramp, and the various soil taxonomic subgroups.

Acknowledgments: Funding for this project was provided by the USDA-Forest Service.