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Introduction 
The Existing Vegetation Classification, Mapping, and Inventory Technical Guide, Version 2.0, 
(hereafter, the technical guide) provides guidance for developing existing vegetation 
classification, map, and inventory data and information products that (1) comply with Federal 
and agency standards, (2) are consistent and continuous across the landscape, and (3) are 
responsive to the evolving business needs of the U.S. Department of Agriculture, Forest Service 
and its partners.  The technical guide also includes geospatial and tabular database standards and 
guidelines that apply to existing vegetation data and information products. 
 
The technical guide employs a conceptual framework based on the relationships among 
vegetation classification, mapping, and inventory processes to provide vegetation information 
products needed to support Forest Service and partner decisionmaking.   
 
The purpose of appendixes A–K is to provide Forest Service personnel involved with existing 
vegetation classification, mapping, and inventory activities with additional details and examples 
about the guidance and methods described in the technical guide.  These appendixes will be 
updated as new information becomes available (e.g., new vegetation types are added to the 
National Vegetation Classification [NVC] Standard, new remote sensing satellites are launched, 
or additional tools are developed and added to the Design and Analysis Toolkit for Inventory and 
Monitoring [DATIM]).  
 

• Appendix A provides a variety of land cover definitions and describes Forest Service 
physiognomic units. The appendix should be used as a crosswalk to ensure compliance 
with the Federal Geographic Data Committee NVC Standard described in section 1.5.1 of 
the technical guide.   

• Appendix B introduces more detailed methods for designing and implementing an 
accuracy assessment of existing vegetation map products.  

• Appendix C presents principles of remote sensing for vegetation mapping and provides a 
summary description of current active and passive remote sensing systems.  

• Appendix D provides background information on the basics of image interpretation and 
presents an image interpretation workflow.  

• Appendix E is list of regional tools for vegetation mapping, project examples, and 
protocols.  

• Appendix F describes the DATIM project, which is a joint effort between the Forest 
Inventory Analysis (FIA) program and the National Forest System regional FIA 
coordinators to improve inventory and monitoring designs and data analyses by 
developing nationally consistent tools and by leveraging existing data.  

• Appendix G focuses on methods to develop spatially balanced plot locations.  
• Appendix H is a list of recommended field gear that is necessary to conduct an existing 

vegetation field inventory.  
• Appendix I provides detailed guidelines on detecting and reconciling errors in existing 

inventory data. 
• Appendix J provides a summary of the imputation of inventory data from sampled areas 

to populate unsampled units with data to create data surfaces for modeling. 
• Appendix K is an example of job hazard analysis for inventory fieldwork.   
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Appendix A. Land Cover Definitions 
Compiled by C. Kenneth Brewer and Monique L. Nelson 
 
Both land cover classes and Forest Service physiognomic units are typically used in existing 
vegetation classification and mapping. Use of land cover classes ensures all land areas are 
classified and mapped, even if no vegetation exists on the site. The purpose of this appendix is to 
describe Forest Service physiognomic units (figure A-1). The appendix should be used as a 
crosswalk to ensure compliance with the Federal Geographic Data Committee National 
Vegetation Classification Standard described in section 1.5.1 of the Existing Vegetation 
Classification, Mapping, and Inventory Technical Guide, Version 2.0. The appendix also 
describes Anderson Land Cover classes, which include other land cover and land use classes 
besides existing vegetation, and National Land Cover Database classes. These three systems, 
which are widely used for vegetation and land cover classification and mapping, address Forest 
Service business needs. 
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Figure A-1.—Key to Forest Service physiognomic units. 
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A.1 Forest Service Physiognomic Unit Definitions1 
agricultural vegetation (AG). Areas that are dominated by vegetation grown for producing 
crops (food, nonwoody fiber, and ornamental horticulture), including land in any stage of annual 
crop production and land being regularly cultivated for the production of crops from perennial 
plants. Agricultural vegetation shows (1) rapid turnover in structure, typically at least annually, 
either through harvesting or planting, or by continual removal of aboveground structure (e.g., 
cutting, haying, or intensive grazing), or (2) strong linear (planted) features. The soil surface may 
be bare at various times of the year (FGDC 2008). Examples include row crops and closely sown 
crops; sod farms, hay, and silage crops; orchards (tree fruits and nuts, Christmas trees, nurseries 
of trees and shrubs), small fruits, and berries; vegetables and melons; unharvested crops; and idle 
cropland (can include land in cover and soil-improvement crops and cropland on which no crops 
were planted). When idle or fallow land becomes predominantly covered with nonmanipulated 
vegetation, then it is no longer agricultural vegetation. 
 
aquatic vegetation (AQ). Areas where floating or submerged aquatic vegetation is the dominant 
vegetation layer, totaling at least 10 percent cover.  
Note: Terrestrial and emergent plants must total less than 10 percent cover (Jennings et al. 2006). 
 
cultural forest (CF). Cultivated or planted forest vegetation with a distinctive structure, 
composition, and development determined by regular human activity (Küchler 1969). 
 
developed vegetation (DV). Areas predominantly covered by vegetation with highly 
manipulated growth forms (usually by mechanical pruning, mowing, clipping, etc.), but are not 
used for crop production (FGDC 2008). Examples include lawns, planted gardens, maintained 
utility rights-of-way, office parks, and cemeteries. 
 
forest and woodland (FW). Tropical, temperate, and boreal forests, woodlands, and tree 
savannas characterized by tree life forms with at least 10 percent cover, where a tree is defined as 
a woody plant that, in general, has a single main stem and a more or less definite crown. For 
instances in which growth form cannot be determined, woody plants equal to or greater than 5 
meters in height at maturity shall be considered trees (adapted from FGDC 2008). The definition 
of a tree also includes dwarf trees (Brohman and Bryant 2005) or “treelets” (Box 1981). Forest 
and woodlands include native forests as well as managed forests and some plantation forests, 
where human management is infrequent. 
Note: The National Vegetation Classification (NVC) Forest and Woodlands Formation Class, 
when finalized, may not fully correspond to the Forest Service Forest and Woodland 
physiognomic unit. The NVC Forest and Woodlands Formation Class may include krummholz 
and other stunted tree communities, while the Forest Service physiognomic classification places 
stunted tree communities in shrublands.  
Note: The 10 percent threshold for the Forest and Woodland physiognomic unit was selected to 
be consistent with the Forest Inventory and Analysis cover criteria within the definition of forest, 
the National Forest Management Act definition of forest, and the Food and Agriculture 

1 Definitions adapted from FGDC-STD-005-1998, FGDC-STD-005-2008 (Version 2), and Faber-Langendoen and others (2012) to meet Forest 
Service business needs. 
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Organization of the United Nations definitions of forests and forest change (FAO 1999, 2001). 
The Society of American Foresters Forest Cover Type definitions (Eyre 1980) use a 25 percent 
canopy cover threshold. 
 
herbland (HB). Herbaceous vascular plants total greater than or equal to 10 percent canopy 
cover, where herbaceous vascular plants are defined as vascular plants without perennial 
aboveground woody stems, with perennating buds borne at or below the ground surface (FGDC 
1997, Whittaker 1975). Includes forbs (both flowering forbs and spore-bearing ferns), 
graminoids, and herbaceous vines.  
Note: Tree canopy cover or shrub canopy cover must be less than 10 percent. 
 
no dominant life form (ND). Total vegetation cover, including nonvascular, constitutes greater 
than or equal to 10 percent cover, but with no single physiognomic class type equal to or 
exceeding 10 percent.  
Note: This physiognomic unit ranges from 10 to 36 percent total vegetation cover comprising 
any combination from 9 percent nonvascular with 1 percent herb cover to 9 percent cover each of 
trees, shrubs, herbs, and nonvascular. 
 
nonvascular vegetation (NV). Nonvascular plants total greater than or equal to 10 percent 
cover, where nonvascular plants are defined as plant or plant-like organisms without specialized 
water or fluid conductive tissue (xylem and phloem). Includes mosses, liverworts, hornworts, 
lichens, and algae (FGDC 2008). Growth is often concentrated on soil and rock surfaces 
(Jennings et al. 2006) 
 
nonvegetated (NO). Cover of less than 1 percent vegetation during the peak of the growing 
season. A category used to classify lands with limited capacity to support life and typically 
having less than 1 percent vegetative cover. Vegetation, if present, is widely spaced. The surface 
of barren land typically is sand, rock, exposed subsoil, or salt-affected soils. Subcategories 
include salt flats; sand dunes; mud flats; beaches; bare exposed rock; quarries, strip mines, gravel 
pits, and borrow pits; river wash; oil wasteland; mixed barren lands; and other barren land 
(Faber-Langendoen et al. 2012). Exceptions include vegetation that exhibits a distinct 
composition under very sparse conditions (e.g., sea rocket coastal shore vegetation or amaranth 
coastal vegetation). These types rarely have greater than 1 percent cover. 
 
shrubland (SH). Shrubs total greater than or equal to 10 percent canopy cover, where a shrub is 
defined as a woody plant that, in general, has several erect, spreading, or prostrate stems, which 
give it a bushy appearance. For instances in which growth form cannot be determined, woody 
plants with less than 5 meters in height at maturity shall be considered shrubs. Shrubland also 
includes dwarf shrubs and low or short woody vines (adapted from FGDC 1997 and Box 1981).  
Note: Tree canopy cover must be less than 10 percent.  
Note: Some species may be shrubs or trees and height thresholds may vary depending on the 
ecological setting and range of the species.  
Note: The National Vegetation Classification (NVC) Forest and Woodlands Formation Class, 
when finalized, may not fully correspond to the Forest Service Forest and Woodland 
physiognomic unit. The NVC Forest and Woodlands Formation Class may include krummholz 
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and other stunted tree communities, while the Forest Service physiognomic classification places 
stunted tree communities in shrublands. 
 
sparse vegetation (SV). Total vegetation cover, including nonvascular, constitutes less than 10 
percent cover. 
 
A.2 Anderson Land Cover Classification Descriptions 
The Anderson Land Cover classifications (Anderson et al. 1976) are hierarchical, with Level 2 
providing more detail of what types of land cover are included in Level 1. Forest Service 
physiognomic units correspond with Anderson Level 1 classifications (table A-1). 
 
Level 1 

Urban or Built-up Land comprises areas of intensive use with much of the land covered 
by structures. Included in this category are high-density developed areas, such as cities, 
commercial complexes, industrial areas, compact residential clusters, and strip areas along 
transportation corridors. Urban or Built-up Land is further classified into six subcategories. 

Level 2 
Residential Land uses range from high-density, multiunit structures located in urban 
centers to low-density, single-family homes located in areas on the periphery of suburban 
expansion, where houses are on lots greater than 1 acre. Rural residential and recreational 
subdivisions are also included in this category because this type of land is typically almost 
entirely committed to residential land use. 
 
Commercial and Service Areas include urban central business districts, shopping centers, 
and commercial strips. These areas may also include some noncommercial uses too small 
to be identified separately. Institutional land uses, such as the various educational, 
religious, health, correctional, and military facilities, are also part of this category. 
 
Industrial Areas range from light manufacturing facilities designed for assembly, 
finishing, processing, and packaging to heavy manufacturing facilities that use raw 
materials, such as iron ore, timber, or coal. These heavy manufacturing facilities can 
include mills, electrical power plants, tank farms, chemical plants. Stockpiles of raw 
materials and waste-product disposal areas are usually visible, along with transportation 
facilities capable of handling heavy materials. 
 
Transportation, Communication, and Utility Land uses occur in some degree with all 
other urban or built-up land use categories. They will be included in each category unless 
they can be mapped separately from the land use in which they occur. For this reason, the 
statistical summary of these areas is only a portion of the total. Transportation 
classification typically includes highways, railways, parking lots, rail stations, rail yards, 
and airport facilities. Communication classifications include areas used for radio, radar, or 
television and phone towers. Utilities can include facilities and stations used in treating, 
processing, and transporting water, oil, gas, and electricity substations. 
 
Mixed Urban or Built-up Land classification is used for a mixture of Level 2 categories 
in which individual uses cannot be separated. This use typically includes development 
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along transportation routes and in cities, towns, and other areas where separate land uses 
are mixed. 
 
Other Urban or Built-up Land typically consists of uses such as golf courses and driving 
ranges, urban parks, cemeteries, waste dumps, water control structures, and ski resorts. It 
also includes land that is considered vacant or undeveloped within urban areas. 

 
Level 1 

Agricultural Land may be defined broadly as land used for producing food and fiber. 
Agricultural Land is further subdivided into three subcategories. 
 

Level 2 
Cropland and Pasture include cropland harvested, summer-fallow cropland on which 
failure occurs, cropland in soil improvement grass and legume areas, cropland used in 
pasture rotation with crops, and pastures on land more or less predominately used for the 
purpose of animal grazing. 

 
Orchards, Groves, Vineyards, Nurseries, and Ornamental Horticultural Areas 
include orchards, groves, and vineyards that produce fruit and nut crops. Nurseries and 
horticultural areas include floricultural, seed-and-sod areas, greenhouses, and nurseries that 
provide seedlings for planting. Many of these areas may be included in other categories, 
such as cropland and pasture. 

 
Confined Feeding Operations include large-scale, specialized livestock production 
enterprises, such as beef cattle feed lots, dairy operations with confined feeding, poultry 
farms, and hog feed lots. 

 
Level 1 

Forest Land contains a tree-crown aerial density (crown closure percentage) of 10 percent 
or more. These areas are stocked with trees capable of producing timber or other wood 
products, and they exert an influence on the climate or water regime. Forest Land is further 
subdivided into three subcategories. 

Level 2 
Deciduous Forest Land includes all forested areas having a predominance of trees that 
lose their leaves at the end of the frost-free season or at the beginning of a dry season. In 
most areas these forest lands include the hardwoods. 
 
Evergreen Forest Land includes all forested areas where the trees are predominately 
those that remain green throughout the year. Both coniferous and broad-leaved evergreens 
are included in this category. 
 
Mixed Forest Land includes all forested areas where both evergreen and deciduous trees 
are growing and neither is predominant. When more than one-third intermixture of either 
evergreen or deciduous species occurs in a specific area, it is classified as Mixed Forest 
Land. 

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 7 



 

 
Level 1 

Water includes all areas that are persistently covered with water; provided these areas are 
at least one-eighth mile wide and if extended cover at least 40 acres. Water is further 
subdivided into three subcategories. 

 
Level 2 

Streams and Canals include rivers, creeks, canals, and other linear bodies of water. When 
the watercourse is interrupted by a control structure, the impounded area will be placed in 
the Reservoir category. 

 
Lakes are nonflowing, naturally enclosed bodies of water, including regulated natural 
lakes, but excluding reservoirs. Islands that are too small to be delineated are included in 
the water area. 

 
Reservoirs are artificial impoundments of water used for irrigation, flood control, 
municipal water supplies, recreation, hydroelectric power generation, and so forth. Dams, 
levees, other water-control structures, and the excavation of water-control structures and 
spillways are included in the Other Urban or Built-up Land category. 

 
Level 1 

Wetlands are areas where the water table is at, near, or above the land surface for a 
significant part of most years. Wetlands are usually associated with topographic lows, even 
in mountainous regions. The Wetlands classification is subdivided into one subcategory. 

 
Level 2 

Forested Wetlands are wetlands dominated by woody vegetation. They include flooded 
bottomland hardwoods, shrub swamps, and wooded swamps, including those around bogs.  
 

Level 1 
Barren Land is land with a limited ability to support life where less than one-third of the 
area has vegetation or other cover. In general, it is an area of thin soil or rock. Vegetation, 
if present, is thin, widespread, and scrubby. Barren Land is further subdivided into two 
subcategories. 

 
Level 2 

Strip Mines, Quarries, and Gravel Pits include mining activities that have significant 
surface cavities. Vegetation cover and overburden are removed to expose such deposits as 
coal, iron ore, limestone, and copper. Quarrying of building and decorative stone and 
recovery of sand and gravel deposits also result in large open surface pits and are included 
in this classification. Current mining activity is not always distinguishable, and inactive, 
unreclaimed, and active strip mines, quarries, borrow pits, and gravel pits are included in 
this category until other cover or use has been established. 

 
Transitional Areas are categorized as areas in transition from one land use category to 
another. They are categorized when the data cannot be interpreted. These areas usually 

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 8 



 

include forests that are cleared for agricultural use, wetlands being drained for 
development, or when any type of land use ceases as areas become temporarily bare during 
construction for future uses. 
 

Table A-1.—Relationship between Anderson Level 1 and Forest Service physiognomic unit 
classifications.* 

 
 
A.3 National Land Cover Database 2006 Classes 
The National Land Cover Database (NLCD) 2006 is a 16-class land cover classification scheme 
that has been applied consistently across the conterminous United States at a spatial resolution of 
30 meters (Fry et al. 2011). The classification system used by NLCD 2006 is modified from the 
Anderson (1976) system and is included in table A-2 as a general reference. 
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Table A-2.—National Land Cover Database 2006 classification. 
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Table A-2 (continued).—National Land Cover Database 2006 classification. 
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Appendix B. Map Assessment 
By Kevin Megown, Andrew J. Lister, Tom Mellin, and Mark Riley 
 
B.1. Overview 
This appendix introduces methods for designing and implementing an accuracy assessment of 
existing vegetation map products produced in accordance with the guidance in section 3 of the 
Existing Vegetation Classification, Mapping, and Inventory Technical Guide, Version 2.0. This 
overview demonstrates four main points: (1) the links among inventory, classification, and 
mapping; (2) the purpose of the guidance provided; (3) key concepts related to accuracy 
assessment in the context of sample design, response design, and analysis protocol; and (4) 
applications and uses for existing vegetation map product accuracy assessments. 
 
B.1.1 Conceptual Framework 
As stated in section 1.4 of the technical guide, vegetation mapping is the process of delineating 
the geographic distribution, extent, and landscape patterns of vegetation types and structural 
characteristics. An accuracy assessment for vegetation map products produces statistical 
summaries or metrics, comparing the mapped classes with reference data or “truth.” For accuracy 
assessment results to be interpreted correctly, statistical design principles should be used and 
detailed methods should be provided along with results. 
 
B.1.2 Purpose 
This appendix, Map Assessment, outlines a process to design and implement an accuracy 
assessment for map products developed following the protocol in section 3 of the technical 
guide. It also provides guidelines for processing and interpreting accuracy assessment data and 
results. The purpose of this appendix is to— 
 

• Inform Forest Service employees about the importance of accuracy assessments for 
existing vegetation map products. 

• Educate inventory users about the theory of accuracy assessment approaches. 
• Illustrate how these approaches are implemented and how results are interpreted. 

 
B.1.3 Key Concepts 
Accuracy assessment is the process of characterizing the relationship between mapped feature 
labels and reference (true) map feature labels (Woodcock 1996). It involves statistical summaries 
or the calculation of metrics that compare mapped feature labels with reference feature labels. 
The accuracy assessment provides information about the quality or reliability of the map and can 
be used to determine the efficacy of the map regarding specific uses. 
 
Accuracy assessments are essential parts of all remote sensing projects. During the project design 
process (see section 3.2 of the technical guide), accuracy metrics and requirements are used to 
establish the criteria for “quality,” or usefulness, of the desired product, and thus affect decisions 
about map design, methodology, and subsequent planning and implementation steps. The 
concept of “accuracy” is predicated on the potential use of the map. For example, if a map is to 
be used for stand-level management, accuracy metrics applied to average, overstory tree-size 
classes might be useful for determining precommercial versus commercial thinning 
opportunities. If a vegetation map is used as input to a geospatial habitat suitability model, then 
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an accuracy assessment of the final habitat suitability map would help determine the value of the 
habitat map in support of land management decisions. It is thus critical that during the planning 
process, accuracy metrics relevant to the specific uses of the map are developed. An accuracy 
assessment characterizes the spatial data used in the decisionmaking processes. 
 
Measuring Agreement/Accuracy Within a Mapped Area 
 
Accuracy assessment depends on the collection of reference data. Reference data (commonly 
referred to as “ground truth”) are composed of data that represent the map categories of interest 
at specific locations, and are assumed to be collected without error. The reference data can be 
obtained from ground visits, photo interpretation, video interpretation, or some combination of 
these methods. They generally co-occur and are coincident with the input data and map features 
used to create the map. 
 
One important objective of an accuracy assessment is to quantify the level of agreement between 
mapped and observed attributes within an area. This assessment is performed for categorical 
maps by creating an error/contingency matrix, and deriving the accuracies from that matrix. The 
error matrix is the standard way of presenting results of an accuracy assessment (Story and 
Congalton 1986). This matrix shows the number of reference sites found in every combination of 
reference data category and map unit category. Agreement can also be measured by comparing 
the similarity of the mapped and observed proportions of the attributes within the mapped area. 
Thus, agreement can be presented in at least two ways: 
 

1. An error matrix supports agreement as overall, producer’s and consumer’s/user’s 
statistics as developed for the area from which results are tallied. 

-or- 
 

2. An error matrix supports agreement as marginal distributions comparing mapped and 
observed proportions as developed for the area from which results are tallied. 

 
In the first case, we are interested in the agreement for specific locations within the area. In other 
words, we are interested in determining the correspondence between map features and accuracy 
assessment sites. In the second case, we want to know if the proportions of observed and mapped 
types agree within the area. The first case is discussed in detail in the “error matrix” discussion 
section B.2.7 (Build the Error Matrix) and B.3.1 (Evaluating Producer’s and Consumer’s 
Accuracy; the second is discussed in detail under the comparing marginal distribution part of 
section B.3.1 (Evaluating Producer’s and Consumer’s Accuracy-KHAT/Kappa; discussion on 
Marginal Distributions; and method to develop KHAT statistic). 
 
Scale of Agreement in an Accuracy Assessment 
 
The interpretation of an accuracy assessment depends on its design. For example, if reference 
data are collected only near rivers, the accuracy assessment applies only to areas of unspecified 
size “near rivers,” something that might not be very helpful when attempting to use the map to 
help manage vegetation communities away from rivers. Data that are distributed uniformly 
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across the landscape (e.g., Forest Inventory and Analysis [FIA] data) are thus helpful because 
they represent the full map extent. 
 
In a mapping project, samples are typically collected for use as training data for the mapping 
process. Sometimes these samples are withheld and used to assess the accuracy of the map. It is 
important to ensure that data used for the accuracy assessment are collected using the principles 
of sampling theory. The probability of selecting each reference datum must be known and 
nonzero for accuracy results to be generated and reported in a way that enables users to interpret 
them through the lens of sampling theory. In contrast, a probability of selection is typically not 
placed on the collection of training data. 
 
During the final mapping stages, modeling units (individual polygons) are usually aggregated to 
larger polygons, referred to as map features with a minimum mapping unit size (i.e., they are 
labeled and merged). This aggregation process may result in final map features that are more 
heterogeneous than envisioned during the map unit design process. Therefore, it is important to 
consider the relationship between available accuracy assessment data and final map features 
regarding homogeneity and map unit definition. It is important to maintain both spatial and 
definitional similarity between accuracy assessment data and map features. 
 
FIA plots can be a viable source of accuracy assessment data if several assumptions are made: 
(1) they can be classified to correspond with map unit definitions; (2) the FIA plot, which 
consists of an array of four subplots, characterizes the map feature in which it sits; and (3) a 
sufficient number of FIA plots represent each of the map unit categories on the map. 
Furthermore, FIA has traditionally not collected vegetation data in portions of plots that do not 
meet FIA’s definition of forest. One benefit of using FIA data for accuracy assessment, however, 
is that the cost savings associated with using existing data can be substantial, thus making it an 
attractive alternative to collecting new data for the sole purpose of accuracy assessment. 
 
An accuracy assessment is typically done for the entire study area being mapped. When working 
with smaller subsets of the mapped area, the accuracy assessment for the larger map does not 
necessarily estimate the accuracy of a smaller geographic area. If smaller, unique areas, are being 
considered for use (e.g., a single ranger district within a forest) accommodations should be made 
to support an accuracy assessment in this area. 
 
Accuracy Assessment Definitions 
 
Some of the terms used most commonly when describing or performing an accuracy assessment 
are included here. 
 
accuracy. The degree to which a measured quantity approaches the true value of what is being 
measured. 
 
accuracy assessment. A process that quantitatively estimates the quality of a map for a specific 
use.  
 

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 16 



 

accuracy assessment site. A ground location where both the mapped and observed types are 
known. 
 
chance agreement. The accuracy achieved when the observed and mapped marginal 
distributions, as derived from an error matrix, are assumed to be statistically independent (Jensen 
2004). 
 
commission error. Given all the samples that were mapped as a certain type, the percentage of 
those samples that were observed not to be of that same type. Commission error is calculated as 
100 percent minus the user’s accuracy (Campbell 2002). 
 
consumer’s/user’s accuracy. The number of samples that are both mapped and observed to be 
of a particular type divided by the number of samples that are mapped as that same type. Given 
all samples that are mapped to be of a particular type, the percentage of those samples that are 
observed to be of that same type (Jensen 2004). 
 
error matrix. A two-dimensional table of observed versus mapped samples. Each entry in the 
table accounts for one combination of mapped and observed types (Jensen 2004). 
 
fuzzy logic. A type of reasoning designed to accommodate ambiguity. Using fuzzy sets in 
accuracy assessment permits explicit recognition of the possibility of ambiguity regarding 
appropriate map labels for some locations on a map/classification (Jensen 2004). 
 
Kappa/KHAT statistic. A linear remapping of the overall accuracy to a scale in which a value 
of 0 indicates that the overall accuracy is equal to the chance agreement, and a value of 1 
indicates that the overall accuracy is equal to 100 percent. Kappa is calculated as overall 
accuracy minus chance agreement divided by 100 percent minus the chance agreement (Jensen 
2004). Some controversy is associated with the use of the Kappa statistic because it tends to take 
the observed categories’ frequencies as known values. It is sometimes considered an overly 
conservative measure of agreement (Czaplewski 2003, Pontius and Millones 2011, Stehman 
1997). 
 
mapped marginal distribution. A listing of the error matrix row totals expressed as 
frequencies. 
 
mapped type. The assignment of an attribute to a particular location on the ground as the result 
of a mapping process. 
 
observed marginal distribution. A listing of the error matrix column totals expressed as 
frequencies. 
 
observed type. The assignment of an attribute to a particular location on the ground as the result 
of direct observation either on the ground or from a higher source of truth. 
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omission error. Given all the samples that were observed to be of a certain type, the percentage 
of those samples that were not mapped as that same type. Omission error is calculated as 100 
percent minus the producer’s accuracy (Campbell 2002). 
 
overall accuracy. The number of samples in which observed and mapped types agree divided by 
the total number of samples, or the percentage of all samples in which the observed and mapped 
types agree (Jensen 2004). 
 
producer’s accuracy. The number of samples that are both mapped and observed to be of a 
particular type divided by the number of samples that are observed to be of that same type. Given 
all samples that are observed to be of a particular type, the percentage of those samples that are 
mapped as that same type (Jensen 2004). 
 
 
Overview of Accuracy Assessment Design Principles 
 
The inventory design principles discussed in this section should be used to help ensure statistical 
validity and improve consistency when conducting an accuracy assessment. The principles 
described here are not exclusive of one another; rather, they are complementary and can each be 
applied to any inventory project. 
 
The three basic components of an accuracy assessment are the sample design, the response 
design, and the analysis protocol (Stehman and Czaplewski 1998). The sample design addresses 
how and where the sites are located, while the response design describes the classification 
system. The analysis protocol determines the estimation procedures. For accuracy assessment 
data, the sample design should meet certain criteria to ensure that the assessment is statistically 
rigorous and scientifically valid. These criteria place restrictions on the collection of accuracy 
assessment data that do not apply to the collection of training data. Training data for generating a 
map may be collected according to a preferential (purposive) or representative sampling scheme, 
taking into account accessibility as well as distribution across the landscape. Accuracy 
assessment data are typically collected according to a sample design independent of the map 
being evaluated and evenly distributed across the landscape. For this reason, it is usually 
advisable to collect an alternate dataset to support an accuracy assessment. 
 
Accuracy Assessment Sample Unit 
 
The three types of accuracy assessment sample units are raster cells, polygons/map features, and 
fixed-area plots. It is not required that sample units for accuracy assessment correspond exactly 
with the spatial extent of the map features in the map product. The reference data, however, 
should be a generalization of the conditions within the map feature with which they are 
associated. Each type of sample unit has advantages and disadvantages outlined in Stehman and 
Czaplewski (1998). Because of locational accuracy issues, a cluster of pixels is often used as a 
surrogate for a polygonal map feature when map features are composed of pixels. Polygon 
sample units ideally correspond with individual map features. Reminder: If the map is updated, 
the accuracy assessment polygons may no longer correspond to the updated map polygons 
(section 3.4 of the technical guide). Fixed-area plots are independent of mapped polygons but 
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may include more than one map feature label within a plot (split conditions) that may make the 
plots undesirable for use as accuracy data. 
 
Use of Forest Inventory and Analysis Data for Accuracy Assessments 
 
FIA (http://www.fia.fs.fed.us/) is a nationwide census of forest resources using a systematic 
random sample design and three phases of sampling to provide information about status and 
trends of forest area, location, composition, and health. Bechtold and Patterson (2005) provide 
the details of the sample design, but it is essentially a nationwide array of 6,000-acre hexagons, 
each of which contains at least one permanent ground plot (section 4.3 of the technical guide). 
The advantage of using FIA data is that it represents an equal probability sample frame, and thus 
is well suited for accuracy assessment purposes. FIA collects sufficient plot data on tree structure 
and composition to address its business needs. FIA plots can be used for continuous or 
categorical data accuracy assessments for existing vegetation maps (Riemann et al. 2010). Using 
data that have already been collected using well-documented, standard protocols can 
significantly reduce costs of accuracy assessment sampling, but a number of issues should be 
considered. 
 

1. The spacing of the plots dictates that the data are most useful for assessment of mapping 
efforts covering large areas, such as mid-, broad-, and national-level maps. Rare types 
may not be represented, and not all classes may have a sufficient number of samples to 
provide acceptable standard errors. A number of Forest Service regions have intensified 
their FIA sample grid, mitigating this issue to some extent (Milliken et al. 1998). In the 
event that rare types are of interest, a prestratified sampling design can be implemented, 
in which extra plots are put in map features thought to contain the rare type. Another 
option is to purposively collect reference data containing the rare type of interest, with 
known ground locations. This approach makes the assessment difficult to interpret 
because it is difficult to make inferences about the site as a whole, as opposed to just the 
areas that were chosen for assessment. In either method (prestratified from the map, or 
using known locations on the ground for obtaining rare map features for the accuracy 
assessment), the interpretation of the accuracy assessment metrics may be confounded. 

2. Although the sample frame covers all vegetation types, trees are measured only on what 
FIA defines as forest land. Trees in nonforest areas are not recorded, so it is often 
difficult to classify FIA data into a nonforest vegetation type based on the ground plot 
data alone. There are, however, several areas where all vegetation on at least a subset of 
the plots is measured (see section 4.3 of the technical guide). 

3. It is important to recognize that the year the FIA data (like other ground data) were 
collected needs to correspond as closely as possible with the date of the imagery used for 
the mapping to avoid violating the assumption that the sample and image data 
correspond. 

4. Access to actual plot coordinates is restricted because of privacy concerns of private 
landowners and the need to ensure that FIA plots are not specifically targeted or avoided 
in land management activities. Therefore, field sampling protocols and data access 
permissions will need to address these issues when mapping outside Forest Service 
boundaries. Mapping efforts on Forest Service lands may have inclusions (i.e., private 
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landholdings) that would lower the expected number of available FIA plots, but this 
lower number may be overcome by intensification efforts.  

5. Spatial and attribute mismatch issues exist between FIA plots and mapped features and 
map units. FIA plots are located randomly on a systematic grid (Bechtold and Patterson 
2005), so their placement may straddle multiple map features or map units (called split 
plots), making them undesirable for use as accuracy data without further analyses. 
Additional analyses can include spatial and definitional crosswalks or appropriate 
filtering of FIA plots that have mixed conditions and thus do not represent a single map 
unit. 

 
Despite these issues, FIA data represent a statistically valid sampling scheme and a very useful 
dataset for accuracy assessment of large areas. The potential savings in data collection costs and 
the rigor of the sample design and plot data merit serious consideration of FIA data for accuracy 
assessment purposes. 
 
B.1.4 Applications and Use 
Accuracy assessments of existing vegetation map products may be initiated to meet a number of 
Forest Service business needs, including the following: 
 

• Accuracy assessments support the resource management decision process by providing a 
quantification of map accuracies that provide a scientifically sound and defensible 
analysis of the data and maps for use in management decisions and activity planning. 

• Accuracy metrics and requirements are used during the planning process to establish the 
criteria for quality, or usefulness, of the desired product, and thus affect decisions about 
map design, methodology, and subsequent planning and implementation steps. 

• Accuracy assessments of completed map products enable the producer to compare 
different methods to determine the reliability and usefulness of alternative remote sensing 
techniques. 

 
B.2 Methods 
Conducting an accuracy assessment is a multistep process; successful completion requires a 
number of decisions and an awareness of the challenges previously described. The following 
steps are the general steps in accuracy assessment: 
 

1. Develop the sample design. 
2. Choose the appropriate reference data. 
3. Delineate the accuracy assessment sites on the reference data. 
4. Interpret the assessment sites from the reference data. 
5. Compile the classified data for accuracy assessment sites. 
6. Perform quality control. 
7. Build the error matrix. 
8. Summarize and present accuracy assessment results. 

 
B.2.1 Step 1: Develop the Sample Design 
The key to a valid accuracy assessment sample design is that it is based on sampling theory and 
each sample has a known, nonzero probability of selection (Foody 2002). Valid accuracy 
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assessment can be accomplished via a variety of sample designs. If the assumption of known, 
nonzero inclusion probabilities is not valid then the results of the accuracy assessment cannot be 
interpreted with the same level of confidence as an assessment designed with this assumption 
intact. Assumptions can be made concerning the similarity of areas with unknown selection 
probabilities to the rest of the mapped area, but results cannot be validly defended using the 
principles of sampling theory. A common example of a weak sample design is an assessment of 
a map covering various land ownership categories in which only Federal lands contain accuracy 
assessment points. Simple random and systematic sampling designs are common equal 
probability sampling designs. Stratified random and cluster sampling can also represent equal 
probability sample designs depending on how they are implemented. Simple random sampling 
without replacement (each sample unit selected only once) ensures equal probability but may 
miss sampling rare types. Systematic sampling, in which sample units are based on a fixed 
spatial interval, may provide a better spatial distribution of samples and usually results in better 
precision relative to simple random sampling (Stehman and Czaplewski 1998). The FIA program 
is an example of a systematic sample. 
 
Stratified random sampling, in which the sample area is divided into strata or groups based on a 
priori knowledge, is commonly used to ensure representation of all strata. Stratified sampling 
with proportional allocation (i.e., creating an equal point density in each strata) maintains equal 
inclusion probabilities, but using equal allocation (the same number of points put in each 
stratum, regardless of size), or optimal allocation (allocating points based on some optimization 
criteria, like minimizing cost) will result in unequal inclusion probabilities. The main thing to 
remember is that as long as one can calculate the areas of each stratum from the map (either by 
counting pixels in each stratum or summing polygon areas), valid estimates can be calculated by 
using a weighted averaging procedure. A special consideration is if polygons are the sample unit. 
Larger polygons are more likely to be selected by a random point and thus have higher inclusion 
probabilities. One of the most common stratifications uses the mapped classes themselves, as 
described by Stehman (2004). Although this approach may ensure representation of all mapped 
classes, it can be completed only after the mapping is finished, which may result in longer 
timeframes and weather or phenological-related sampling issues. Another concern associated 
with stratifying by map classes is the situation in which, after the accuracy assessment is 
conducted or the map is updated, the updated strata no longer contain the initial sample 
intensities, necessitating a reallocation of plots to account for the new strata. If the proportions of 
the mapped classes are not represented similarly in the updated map, the producer’s and 
consumer’s accuracy may be biased. 
 
Cluster sampling is a method that employs two types of sample units—the cluster or primary 
sampling unit (PSU), and the individual samples or secondary sampling units (SSU) that 
constitute the cluster. The PSU is used for identifying the SSUs, which are the units used for 
comparison with the mapped classification. The appeal of cluster sampling is the potential 
savings in sampling costs. The clustering of samples has the potential to decrease the information 
in the samples, however, because of spatial correlation of the samples. It is also recommended 
that a qualified statistician be a member of the mapping team, or consulted with to implement a 
complex estimator required for this method. The tradeoffs are specifically addressed in 
guidelines provided by Moisen et al. (1994). 
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Whichever sampling scheme is used, the requirement of known, nonzero opportunity of selection 
for accuracy assessment sites for each part of the study area can be expensive. This cost is the 
primary reasons that valid accuracy assessments are often not completed for mapping projects. 
Designing an efficient sampling strategy can address some of these issues, however, and if 
tradeoffs between cost and quality need to be made, they should be made with explicit 
understanding of the effect on interpretation of results. Stehman (2001) provides an excellent 
overview of these issues. Examples of tradeoffs for lowering costs include reducing sample size 
(and thus precision), lowering population representation, introducing assumptions, or collecting 
lower quality or more targeted reference data. A specific case of the latter might be using photo-
interpreted data instead of ground-sampled data for the accuracy assessment. Whether this 
approach results in lower quality data will depend on the nature of the attributes being evaluated. 
Canopy cover, for example, may be more accurately determined from aerial photography than 
from ground plots, while the same may not be true of other attributes, such as tree diameter. 
 
The appropriate sample number and size are other important considerations. The number of 
sample sites should be large enough to meet map accuracy requirements (e.g., is statistically 
sound, and confirms map objectives have been met) but not larger than necessary for the sake of 
efficiency. If overall accuracy is to be considered, more samples will be needed to examine the 
nature of errors in individual categories (the off-diagonal elements in the error matrix). A general 
rule of thumb is that at least 20 sites are required for each category in the classification. Congalton 
and Green (1999) suggest 50 sites for each category and 75 to 100 sites per map unit for large areas 
with many categories. Evaluating the frequency distribution of each class by each mappable 
attribute can support an estimate of the appropriate sample size. 
 
The need for statistical validity should be balanced with practical considerations, such as time and 
budget constraints. Documentation should include an explanation of any statistical compromises. 
Accuracy assessment sites are expensive and time consuming to delineate, characterize, and 
ground check. In determining the number of accuracy assessment sites to investigate, a hybrid 
approach is recommended. By mixing two different approaches, the proportion of field-visited to 
photo-interpreted sites can be adjusted to balance statistical and practical considerations. For 
example, more photo sites may be collected than ground sites, and the ground-visited sites may be 
selected partly because of their accessibility. 
 
B.2.2 Step 2: Choose the Appropriate Accuracy Assessment Reference Data 
Data used for accuracy assessment include existing maps, existing resource inventory data, 
image interpretations of accuracy sites, or data collected on the ground. Because a major 
assumption in quantitative accuracy assessment is that the reference data are 100 percent correct, 
every effort should be made to secure the highest quality reference data. The analyst should be 
aware that, in many cases, reliable maps do not exist and inventory data do not match the 
temporal vintage of the geospatial data and imagery being used for mapping. Often, the available 
data are in a form that is incompatible with the classification scheme. To provide anything other 
than qualitative information, reference data are assumed to conform to the same classification 
scheme as the classified data. 
 
Using imagery interpretations as reference data requires taking special care. Image-interpreted 
sites have traditionally been accepted as 100 percent correct when used to assess the accuracy of 
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digital classifications; however, as Biging and Congalton (1989) observed, perfect accuracy is 
rarely attributable to image interpretations. To help minimize errors, apply the following three 
principles:  

1. The date of the imagery used for accuracy assessment should ideally be the same as the 
date of the digital imagery used for mapping.  

2. Experienced interpreters familiar with both the vegetation and the classification scheme 
should conduct the image interpretations of accuracy sites. 

3. To ensure the accuracy and consistency of the reference data, image interpretations should 
be closely inspected. 

 
Using precise ground measurements or image interpretations as reference data are frequently used 
methods of assessing the accuracy of the classified map. To minimize costs and maximize 
efficiency, data from accuracy assessment sites can be collected during the same field visit for 
collecting training site data, albeit at different locations. Accuracy assessment sites should be 
independent of the training sites. Experienced interpreters with knowledge of the project area can 
collect additional image-interpreted sites after the field season. This combined approach can be a 
cost-effective means of acquiring accurate reference data. 
 
Existing datasets other than FIA may also be used for accuracy assessment. The requirements of 
known, nonzero inclusion probabilities still apply, however. If these datasets do not meet these 
criteria, they may more appropriately be used for training samples. Stand exam data collected 
according to stratified random sample design would be an example of data suitable for use as 
training data but not accuracy assessment because of the selection of the stand/area being 
assessed to support a purposive objective. Another key issue is whether the information in an 
existing dataset is sufficient for the response design. 
 
B.2.3 Step 3: Delineate the Accuracy Assessment Sites on the Reference Data 
After the sampling scheme, sample size, and reference data requirements are determined, the 
accuracy sites can be delineated. For large projects, developing and maintaining a relational 
database is an efficient way of organizing and working with accuracy assessment data. Because 
pinpointing the location is critical to determining the accuracy of the classified image, all 
assessment site locations should be precisely delineated on base maps or high-resolution imagery, 
or they should be collected with a global positioning system (GPS). Sites should be assumed 
homogeneous regarding map category or modeling unit (e.g., homogeneous crown closure class or 
homogeneous species mix), and unambiguous delineation rules should be established. The 
sampling procedure should also be unbiased. For cases in which the accuracy assessment sample 
unit does not represent the entire map feature, an assumption of representativeness is required. It 
is imperative to recognize this assumption, document it, and ensure a bias or errors are not 
incurred because of this assumption. 
 
B.2.4 Step 4: Interpret the Assessment Sites From the Reference Data 
As mentioned in step 2, the same lookup table (map key) used in the map unit design process 
must be used to classify the accuracy assessment data, and accuracy assessment data must 
conform to the same classification scheme as the data used to produce the map. This need for 
conformity is true regardless of whether the process uses field-verified or image-interpreted sites. 
The same labeling rules (classification key) used to assign labels to features in the map must be 
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used to label accuracy assessment sites. To eliminate bias, the person collecting the reference data 
should be very familiar with the classification scheme, but not with the classified map. This person 
should have no prior knowledge of the map label for the corresponding accuracy assessment sites.  
 
Response design is the protocol for determining the classification label that is assigned to each 
accuracy assessment sample (Stehman and Czaplewski 1998). Sampling undertaken specifically 
for a particular accuracy assessment involves identifying what data elements should be collected 
to allow for each sample unit to be assigned an appropriate label. When using an existing dataset, 
determine whether the existing information is sufficient for assigning a classification label that is 
consistent with the mapping classification, or if additional information or interpretations will be 
needed. 
 
The advantages of collecting new data specifically for accuracy assessments are that the sample 
design and the data elements collected are under the user’s control. The data collection can range 
from making a qualitative assessment of the sample unit and assigning an appropriate label to 
collecting quantitative information on vegetation type, tree canopy cover, or tree size class or 
other attributes to describe the sample unit. Quantitative information can take more time to 
collect but can provide more accurate, less subjective information, and it may be used for other 
applications or assessments. 
 
Accuracy assessment data may be collected by visiting the sites on the ground or by interpreting 
aerial photography. Although use of image interpretation can greatly lower costs and decrease 
time required, it is important to consider three factors:  
 

1. The acquisition date of the photography relative to the acquisition date of imagery used in 
the classification. 

2. The scale of available photography. 
3. Whether the information required can be interpreted from the photography with a very 

high degree of confidence.  
 
Whether visiting the sites on the ground or interpreting aerial photography, the data collected can 
be used for accuracy assessment reference data. 
 
B.2.5 Step 5: Compile the Classified Data for Accuracy Assessment Sites 
Accuracy sites should be precisely located on the classified image or map coverage. Accuracy sites 
delineated on resource photography can be digitized directly over the satellite imagery or digital 
orthophotos. GPS data can be digitally transferred to the geographic information system, or GIS, 
environment. When cross-referencing the vegetation map with the accuracy assessment data, the 
accuracy assessment site may overlap more than one map feature. When this overlap occurs, 
determine if the reference site data can be subdivided to follow map feature boundaries. The 
spatial accuracy of the reference data relative to the spatial accuracy of the map features should be 
considered. If the reference site data cannot be confidently assigned to one or more map features, 
it should not be used to for map accuracy. The goal is to develop a label for the accuracy 
assessment site to compare with the map feature label corresponding to the exact location of the 
reference site. 
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B.2.6 Step 6: Perform Quality Control 
Although quality control is listed as a separate task, in practice it is an ongoing and iterative 
process. Errors identified in accuracy assessments will appear as errors in the map classification. 
Some common errors include data entry mistakes, incomplete accuracy assessment forms, 
incorrect registration of accuracy sites to the thematic map, incorrect interpretation of the 
accuracy site, failure to enter accuracy sites into the database, and accuracy sites missing from the 
analysis. 
 
B.2.7 Step 7: Build the Error Matrix 
Tallying each accuracy site according to its accuracy assessment label and map classification 
creates the error matrix. A series of metrics (consumer’s, producer’s, and overall accuracy) that 
supports the determination of map quality for various uses can be calculated by using 
information found in the error matrix; a lower value represents lower spatial efficacy, while a 
higher value represents improved spatial efficacy. Table B-1 shows a simplified error matrix 
along with different metrics. See section B.3.2 for details on building and interpreting the error 
matrix using a fictitious mapping example. 
 
Table B-1.—Metrics created from the error matrix support a determination of map accuracy. 
Note: The metrics include consumer’s, producer’s, and overall accuracies. The table shows 
accuracy and KHAT values. 
 

 
 
B.2.8 Step 8: Summarize and Present Accuracy Assessment Results 
The error matrix, a description of the design of the accuracy assessment, and an analysis and 
discussion of the accuracy results should accompany any use of the classified map. 
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A relatively recent innovation in accuracy assessment is the use of fuzzy sets for accuracy 
assessments (see Fuzzy Classification in section B.3.2) as defined by Zadeh (1965). Traditional 
accuracy assessments often suffer from certain limitations. First, is the assumption that each 
accuracy site can be unambiguously assigned to a single map unit (Gopal and Woodcock 1994), 
when in reality it may be difficult to assign portions of a landscape found on a gradient to a discrete 
class. Second, the traditional error matrix makes no distinction between magnitudes of error. For 
example, in a traditional error matrix, misclassifying “conifer forest” as “deciduous” carries the 
same weight as the error of misclassifying it as “conifer/hardwood mix.” Fuzzy sets enable the 
user to account for ambiguities and magnitudes of error by allowing for more than one possible 
answer. For a complete description of applying fuzzy sets to accuracy assessment, see Gopal and 
Woodcock (1994). 
 
B.3 Evaluation 
B.3.1 Evaluating Producer’s and Consumer’s Accuracy 
For many, producer’s and consumer’s accuracy seem intuitively to be the same thing. To better 
understand the difference, imagine that an entire map is labeled as “herbaceous.” If one travels to 
every location on the ground that is mapped as herbaceous (corresponding with every location 
shown on the map), one will often find that the mapped and observed values are NOT in 
agreement, and thus consumer’s accuracy will be very low. Conversely, if one travels to every 
location on the ground that is herbaceous, one will find that the map says that it is herbaceous, 
because ALL the points on the map are labeled as herbaceous. This situation gives us a 100 
percent producer’s accuracy. 
 
In the preceding example, we have greatly overestimated the number of herbaceous locations on 
our map, and we have underestimated the number of locations that are evergreen or deciduous. 
The following relationships hold for consumer’s accuracy and producer’s accuracy: 
 

• IF consumer’s accuracy is GREATER THAN producer’s accuracy for a given attribute, 
THEN we have underestimated the amount of that attribute on the map. 

• IF consumer’s accuracy is LESS THAN producer’s accuracy for a given attribute, THEN 
we have overestimated the amount of that attribute on the map. 

• IF consumer’s accuracy is EQUAL TO producer’s accuracy AND greater than 0 percent 
for a given attribute, THEN we have the correct amount of that attribute on the map. 

• IF consumer’s and producer’s accuracy are BOTH 0 percent, THEN we cannot say 
anything about an overestimation or underestimation of the mapped and observed 
attribute by comparing the two accuracies. 

 
The relationship between producer’s accuracy and consumer’s accuracy helps determine only if 
we obtained the proper proportions of the attributes on the map, not if  point-by-point agreement 
of those attributes exists between the map and observations. For example, if both producer’s and 
consumer’s accuracies are 1 percent for herbaceous, we know that we have the same number of 
mapped and observed points for that attribute. Because the accuracies are extremely low, not 
many locations on the ground have mapped and observed attributes that are both herbaceous. 
Revisiting the mapping procedures used or reassessing the initial map unit design will enable the user 
to decide how to address the poor map quality for that class. 
 

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 26 



 

KHAT/Kappa 
 
A commonly used but often misunderstood measure is the Kappa statistic, or KHAT, value. This 
value compares the results that were obtained from mapping with those results we would expect 
if the mapped and observed distributions are assumed to be statistically independent. The 
statistical independence criteria can be thought of as the error matrix one would obtain if one 
were to randomly draw samples from the marginal distributions, match them, and deposit that 
match in the core error matrix. This expected core error matrix is the one obtained on average 
from this experiment. The Kappa statistic is used to account for the chance that two observations 
may agree or disagree simply by chance as discussed in Viera and Garrett (2005). 
 
KHAT can be considered to be a “chance agreement” of a row or column of overall agreement. It 
has been defined many times in the literature; two relevant considerations are presented here. 
 

1. …the proportion of agreement after chance agreement is removed from 
consideration (Cohen 1960). 

 
2. …the proportion of reduction in error generated by a classification process 

compared with the error of a completely random classification (Congalton 1991). 
 
The value of Kappa typically ranges from 0 to 1, with a low value representing a less accurate 
map product. Kappa implies that a map is a percentage of improvement of an observed 
classification over that of a random classification. 
 
B.3.2 Developing the Error Matrix for Accuracy Assessment 
The Error Matrix 
 
The Core Error Matrix 
 
An error matrix is a two-dimensional table that summarizes the occurrences of mapped and 
observed pairs at singular locations on the ground. To create an error matrix, one starts with an 
input data table of ground locations, mapped and observed attributes, and weights (table B-2). 
  

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 27 



 

 
Table B-2.—Mapped and observed samples. 

 
 
The “x,y” columns describe the ground locations in the data table. For each coordinate, the 
“mapped” and “observed” entries in the table describe the attributes that are assigned to that x,y 
location by the map, and what attributes were observed at that location, respectively. Depending 
on the sampling strategy, a weight may be assigned to each x,y location (if prestratification is 
used, a weight is assigned based on the area of each stratum). 
 
Tables B-3 through B-6 demonstrate how the input data table is transformed into an error matrix. 
Table B-3 provides a simple description of a sample taken from a map of evergreen, deciduous, 
and herbaceous. These samples were obtained by a random sample of 50 locations across the 
entire map area. Because this sample was a true simple random sample, the assigned weight for 
each sample was a value of 1. When the sample is something other than random (e.g., stratified), 
the weights can be values different from 1. Mapped observations are determined by identifying 
the features individual location on the map. In this example, each point is described as being 
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evergreen, deciduous, or herbaceous. This identification provides the entry into the “mapped” 
column of the table. In a similar way, one can visit each location on the ground, observe the 
vegetative features, and assign that attribute to the “observed” column in the table. This action 
completes the entry in the table for that particular location. 
 
To transform this table into an error matrix, one looks at each and every cell in the error matrix. 
 
Table B-3.—An empty core error matrix. 
 

 
 
For a given cell, say mapped = deciduous and observed = herbaceous, one creates a new table 
that has in it only those samples/rows/entries from the original table where mapped = deciduous 
and observed = herbaceous. 
 
Table B-4.—Deciduous-herbaceous combination table extracted from table B-2. 
 

 
 
*The value entered into this cell is simply the sum of the weights from this new table. 
 
Table B-5.—Deciduous-herbaceous entry into the core error matrix. 
 

 
 
After this process is complete for all cells in the error matrix, one has a table that describes the 
number of occurrences of “mapped” and “observed” pairs. 
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Table B-6.—The fully populated core error matrix. 
 

 
 
Marginal Distributions 
 
After the core error matrix has been created, it is a simple matter to calculate the marginal 
distributions. These distributions are obtained by summing across the rows and down the 
columns (table B-7). These marginal distributions describe the proportions of mapped and 
observed data types in table B-2. 
 
Table B-7.—Creating marginal distributions. 
 

 
 
Derived Values From the Error Matrix 
 
Overall Agreement 
 
Having created the error matrix and its associated marginal distributions, one is now in a position 
to derive a number of values that summarize the map accuracy (i.e., how well the mapped values 
agree with the observed values). A natural first question might be “What percentage of ground 
locations from the sample have mapped and observed attributes that agree?” In other words, 
“How often do the samples have mapped and observed attributes that are paired as deciduous-
deciduous, evergreen-evergreen, or herbaceous-herbaceous?” One can easily find this value by 
summing all the elements along the descending diagonal in the error matrix (i.e., where the 
mapped and observed attributes are the same), and dividing by the total number of samples in the 
error matrix (i.e., the sum of all cell values in the matrix). 
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Table B-8.—Computing overall accuracy. 
 

 
 
Consumer’s/User’s Accuracy 
 
For a given attribute (for example, herbaceous), it is often desirable to know: 
 

Of all the values marked on the map as herbaceous (in this example), how often 
will one actually find herbaceous if one travels to those locations? 

 
This value is termed consumer’s or user’s accuracy. One can obtain this value by dividing the 
value in the mapped = “herbaceous” observed = “herbaceous” cell of the error matrix by the 
value of the herbaceous cell in the mapped marginal distribution. In statistical terms, this value is 
the probability (p) that the observed value is herbaceous GIVEN that the mapped value is 
herbaceous (p (observed = herbaceous | mapped = herbaceous)). 
 
An error of commission occurs when the mapper incorrectly maps a class on a reference site 
where the class does not exist; this error leads to lower consumer’s or user’s accuracy. 
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Table B-9.—Computing consumer’s accuracy. 
 

 
 
Producer’s Accuracy 
 
Producer’s accuracy simply swaps the roles of mapped and observed attributes in the consumer’s 
accuracy: 
 

Of all the places on the ground that are herbaceous (in this example), how 
often will the map indicate that it is herbaceous if one travels to those 
locations? 

 
Again, one can simply obtain this value by dividing the value in the mapped = “herbaceous,” 
observed = “herbaceous” cell of the error matrix by the value of the herbaceous cell in the 
observed marginal distribution. In statistical terms, this value is the probability that the mapped 
value is herbaceous GIVEN that the observed value is herbaceous (p (mapped = herbaceous | 
observed = herbaceous)). 
 
An error of omission occurs when the map fails to agree with a reference site; this error leads to 
lower producer’s accuracy. 
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Table B-10.—Computing producer’s accuracy. 
 

 
 
Kappa is a metric to verify that agreement exceeds chance. Researchers disagree about the 
usefulness of the metric. For example, some claim that Kappa is seldom comparable across study 
areas, Kappa may be much lower than the overall accuracy, or it is misleading and easily 
misapplied; hence, one should consider the use of the metric in accordance with its application. 
The following equation will support an overall value of Kappa. 
 
Observed Distribution[Herbaceous] x Observed Distribution[Deciduous]/Total Samples = 11 x 
14/50 = 3.08 (table B-11 and table B-12). 
 
Table B-11.—Computing expected statistically independent error matrix entry. 
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Computing each of these statistically independent cells yields the numbers found in the 
following table B-12. 
 
Table B-12.—A fully populated statistically independent error matrix. 
 

 
 
Kappa (KHAT) defines a new scale that rescales each measured accuracy (table B-10) to a scale 
between 0 and 1. (In rare situations, a negative Kappa of KHAT is interpreted as an agreement 
between the map and accuracy assessment data that is less than would be expected just by 
chance.) A value of 0 indicates a result that is no better than the previous experiment (in this 
case, an accuracy of 35 percent; after rescaling), and a value of 1 indicates that we achieved 
perfection (an accuracy of 100 percent). Using overall accuracy as an example, this mapping can 
be described as follows: 
 
KHAT = (actual overall accuracy - expected statistically independent accuracy)/(100% - 
expected statistically independent accuracy) = (actual overall accuracy - 35%)/(100% - 35%) = 
(actual overall accuracy - 35%)/65%. 
 
In our mapping efforts, we achieved an actual accuracy of 70 percent, so our KHAT value is— 
 
KHAT = (70% - 35%)/65% = 0.54. 
 
In other words, our actual accuracy is about halfway between the expected statistically 
independent accuracy and 100 percent accuracy. 
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KHAT can be measured for producer’s and consumer’s accuracy and for overall accuracy (table 
B-13). 
 
Table B-13.—KHAT for all accuracies in the error matrix. 
 

 
 
KHAT values are best used when looking at the actual and statistically independent accuracies. 
A KHAT value less than 0 indicated that our mapping process had a performance poorer than a 
random draw. A low KHAT indicates that our mapping process did not perform much better than 
a mapping process that uses random draws from the mapped and observed distributions. If the 
map is dominated by a particular attribute, however, then the statistically independent agreement 
can be quite high. Achieving additional accuracy may be quite difficult. As a rule of thumb 
(Jensen 2004), KHAT values can be broken into the ranges depicted in table B-14. 
 
Table B-14.—KHAT strength. 
 

 
 
Fuzzy Classification 
 
A fuzzy classification for accuracy assessment supports the notion that more than one possible 
answer exists for a point on the ground. This classification can relate to mixed types, potential 
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classification similarities, or recognition of remote sensing ambiguity (because of radiance 
issues; i.e., seedling undergrowth). The fuzzy assessment allows for the correct/relevant (on 
diagonal) classification, thus each assessment point with multiple/fuzzy calls moves to the most 
correct classification. 
 
In the process of fuzzy classification, it is possible for each point on the ground to belong to 
multiple classes. The following example is derived from Jensen (2004). Table B-15 presents an 
error matrix that contains both “hard” and fuzzy information. In this example, the off-diagonal 
entries have a format of “3/1.” This notation indicates that three samples were mapped as one 
type but observed to be another. The second number indicates that one of these samples is 
considered by the image analyst to be correct (perhaps because of the presence of mixed types). 
One can think of all samples contributing to an on-diagonal cell in the error matrix as a “good” 
attribute assignment, and certain (but not all) off-diagonal samples as an “acceptable” attribute 
assignment. In a similar way, notations such as “70%/76%” indicate that the “hard” accuracy is 
70 percent and the fuzzy/soft accuracy is 76 percent. 
 
Table B-15.—Fuzzy classification example. 
 

 
 
One obvious hazard exists when applying a fuzzy assessment. In the previous example, one 
could achieve 100 percent accuracy by allowing all off-diagonal samples to be classified as 
“acceptable.” To avoid this temptation, Woodcock and Gopal (2000: 157) recommend the use of 
a “blind evaluation”: 
 

A blind testing procedure is used, meaning the expert has no knowledge of the 
map data while assessing a site. The expert has to evaluate all map categories at 
each test site using the [agreed-upon] scale, so there is no need or temptation to 
provide the expert with the actual mapped category for each test site. 

 
For additional examples of how fuzzy logic can be used in an accuracy assessment, see Jensen 
(2004). 
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Appendix C. Principles of Remote Sensing for Vegetation Mapping 
By Mark Riley and C. Kenneth Brewer 
 
C.1 Overview 
Models come and go, but a good dataset lasts forever. Accurate, defensible, and current thematic 
datasets of vegetation, vegetation structure, land cover, or land use provide baseline information 
for understanding the landscape and natural resources for land managers, decisionmakers, and 
resource specialists. Remote sensing is the art, science, and study of acquiring, interpreting, 
analyzing, and reporting information about the landscape and Earth surface features without 
being in physical contact (Avery and Berlin 1992, Jensen 2004, Lillesand et al. 2008). Remote 
sensing for mapping vegetation for land management planning, landscape assessment, inventory, 
and monitoring has historically been conducted at the stand level. Delineating and labeling 
floristically, physiognomically, and structurally homogenous patches across a large landscape 
extent have been and continue to be fundamental components of vegetation mapping. In 
addition, the exploitation of remotely sensed digital airborne and space-borne satellite imagery 
has greatly improved vegetation map product development. Remote sensing technology enables 
the resource specialist to map large, uninterrupted swaths of vegetation on the landscape with 
relative consistency, while providing information about vegetation composition.2 
 
The uses of remotely sensed imagery for vegetation mapping anywhere in the world are 
essentially limitless as new uses continue to evolve, with new data and data exploitation methods 
constantly being developed to meet resource and management needs. The use of remote sensing 
data and technology is growing as the industry expands investments and resources to meet the 
growing need. Integrating remote sensing data and technology with geographic information 
systems (GISs) and global navigation satellite systems is now a commonplace and an essential 
multidisciplinary business need. Remote sensing data and image classification techniques, such 
as data mining, serve a fundamental business need for the Forest Service. Remote sensing 
provides the means to map existing vegetation and to identify and record land cover and land use 
information including change. 
 
C.2 Introduction 
All contemporary passive remote sensing systems are electro-optical, meaning they function 
based on the interaction between optical electromagnetism (e.g., sunlight) and the electronic state 
of the material in the sensor that records the optical signal. Although passive remote sensing 
systems are more advanced and costly than consumer-grade digital cameras, the basic 
operational premise is the same: sunlight is reflected off objects such as plants, people, or 
buildings and this reflected light is recorded by the sensor on the camera. The optical sensor in 
the camera is made from a material that is sensitive to reflected light. This same concept is true 
of photographic film. Airborne photographic film-based remote sensing products have been 
replaced in recent years, however, by direct digital as digital has met or exceeded the spatial, 
spectral, and radiometric qualities of film. Outdated film-based remote sensing will not be 
discussed in this appendix. 

2 Resource specialist is a general term used to describe several natural resource specialists, including remote sensing specialist, geographic 
information system specialist, silviculturalist, geologist, soil scientist, timber manager, hydrologist, ecologist, botanist, wildlife biologist, and 
statistician. 
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The primary purpose of this appendix is to provide a comprehensive description of the 
relationship between remote sensing and vegetation mapping. This appendix covers sensor 
system characteristics, remote sensing and the electromagnetic (EM) spectrum, and remote 
sensing vegetation-mapping applications. 
 
Recent advancements in digital imaging technology have dovetailed with vegetation-mapping 
needs, resulting in a singular product for vegetation mapping that combines the high-spatial 
resolution of a large-scale aerial image with the geometric accuracy of an orthorectified image. 
This new image-based remote sensing product, when used with more powerful GIS computers 
and GIS and remote sensing software (e.g., ArcGIS and ERDAS Imagine), provides the resource 
specialist with a far more efficient means to plan, analyze, and produce geographically 
meaningful and geospatially accurate information. Scale is no longer as meaningful as it once 
was with photographic products. Today’s user of remote sensing data relies on spatial resolution 
or resolving power, which provides the software or image interpreter the capability to see, 
identify, measure, and define objects as small as a branch or as large as a watershed. New 
spectral capacities of aerial and satellite imagery go well beyond natural color and into parts of 
the EM spectrum, such as far-infrared, that provide information about vegetation that was not 
previously available. Contemporary digital aerial and satellite product suites can include three-
dimensional (3-D) stereo pair data that can be used in the desktop environment for enhanced 
image interpretation, vertical measurement capability, and digital elevation model (DEM) 
generation. 
 
C.3 Characteristics of Remote Sensing Systems and Data 
Remotely sensed imagery falls into one of two fundamental categories: (1) passive or (2) active. 
All passive remote sensing systems operate by recording sunlight or heat that has been directly 
reflected, transmitted, or absorbed and retransmitted from Earth surface features. Active remote 
sensing systems like Light Detection and Ranging (LIDAR) and RADAR transmit, receive, and 
record the reflected signal from the object on the Earth’s surface. Whether a remote sensing 
system or device is active or passive, the basic principle that allows for the differentiation of 
vegetation, land use, and land cover types are the chemical, cellular, or physical properties of an 
object that reflect or transmit EM energy with a spectral signature. Because digital imaging 
systems do not have wings, this electro-optical instrumentation is supported typically on one of 
three types of platforms: (1) fixed-wing aircraft, (2) helicopter, or (3) satellite. 
 
C.3.1 Remote Sensing System Resolution 
Four characteristics define all remote sensing systems, whether active or passive: (1) spatial 
resolution, (2) spectral resolution, (3) temporal resolution, and (4) radiometric resolution. While 
each of these characteristics is independently measureable, they are also intransigently integral to 
a remote sensing imaging system. 
 
Spatial Resolution  
 
The spatial resolution is the maximum size of an object that can be resolved in an image and the 
area coverage on the ground (or the footprint) of the image. The spatial resolution of the Ikonos 
satellite is 1 meter, meaning that each pixel (picture element) is 1 meter planimetrically in size. It 
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is typical that the higher the spatial resolution is, the smaller the image footprint will be. For 
example, a high-resolution satellite image may have a 50-centimeter resolution but only a 10- 
kilometer footprint, whereas another satellite may have a 5-meter resolution but a 60-kilometer 
footprint. Spatial resolution has as much to do with the physical size of the actual imager that 
records reflected sunlight as it does with the physical dimensions of the actual pixel, focal length, 
and altitude above ground level of the instrument. Spatial resolution has a significant effect on 
the calculated values of landscape metrics, levels of detail, and measurable ecological landscape 
patterns. For example, a higher spatial resolution of 1 to 2 meters will produce a finer delineation 
than an image with a coarser resolution of 30 to 50 meters. Higher spatial resolution image data 
offer greater interpretive potential (figure C-1) but, from a mapping standpoint, the level of 
detail, which includes increased shadow, will need to be weighed against project needs. 
 
For digital cameras, whether these are consumer-grade or designed specifically for airborne 
remote sensing, the megapixel (MP) designation is simply obtained by multiplying the actual 
number of rows and columns of imager pixels. For example, an imager with an array of 8,976 by 
6,724 pixels (60,354,624 total pixels) is 60 MP. The number of pixels, actual physical size of the 
pixels, and physical size of the imager, regardless of platform type, when combined with focal 
length and altitude above ground, affect the spatial resolution and the spatial extent of image 
footprint size of resolvable features and landscape extent. 
 
Spatial resolution is also sometimes referred to in terms of granularity. When selecting remotely 
sensed imagery, it is important to consider the relationship between the grain, or minimum 
resolvable landscape element on the image (Forman and Godron 1986, Turner 1989), and the 
size and shape of the landscape elements of interest on the ground. When the landscape pattern 
of interest is finer than the grain of the data, the pattern cannot be detected (Wiens 1989). 
Conversely, when the landscape pattern of interest is much coarser than the grain of the data, that 
pattern can be easily identified. This ease of identification is particularly true when the pattern is 
composed of spectrally homogenous units organized in regular shapes. It is also essential to 
consider the temporal and spectral characteristics of the imagery. Often spatially detailed 
imagery does not contain the spectral information that is needed to separate various map units. 
For example, information in the near-infrared range of the EM spectrum is useful for 
distinguishing between evergreen needleleaf and deciduous broadleaf vegetation.  
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Figure C-1.— High-spatial resolution direct digital images are highly interpretable. Note: 
Although high-spatial resolution images have greater interpretability, they tend to have a smaller 
footprint because of the physical limitations of imaging technology. 
 

 
 
Spectral Resolution  
 
Spectral resolution, or spectral sensitivity, is the bandwidth, number, and position of specific EM 
wavelengths (figure C-2) that a sensor is capable of recording. The greater the range and number 
of spectral bands a sensor has, the higher the spectral resolution. For example, a panchromatic 
sensor has very low-spectral resolution, whereas other sensors may have hundreds of bands with 
sensor sensitivity confined to very narrow wavelengths, thus a very high-spectral resolution (e.g., 
hyperspectral). The higher the spectral resolution, the greater the likelihood of spectral 
separability among various spectral values of land cover types.  

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 42 



 

Figure C-2.—The electromagnetic spectrum. 
 

 
 
The visible region (blue, green, red) of the EM spectrum provides spectral information about 
cultural features, such as buildings and roads, soil and water differentiation, hydrography, and 
vegetation types. The near-infrared part of the spectrum allows for a high degree of vegetation 
differentiation, vegetation biomass estimates, and soil information. Shortwave-infrared and mid-
infrared is partly reflected and partly emitted EM radiation that provides spectral information 
about moisture absorption, vegetation, and wildfire effects. Far-infrared (shown as thermal-
infrared in figure C-2) includes emitted thermal imagery and is a good indicator of vegetation 
stress, thermal pollution, pervious and impervious layers, and wildfire activity. 
 
Spectral Signatures 
 
All Earth surface features reflect, absorb, transmit, and emit EM energy from the Sun. Spectral 
signatures (figure C-3) are the direct result of the spectral response that vegetation and other land 
cover types have with sunlight. Imaging sensors are capable of recording this transmitted and 
reflected energy. Sometimes multiple image dates are necessary to identify specific map units, 
such as deciduous forest types, that exhibit spectral similarity during certain times of the year but 
have different seasonal senescing periods that result in foliage distinguishable spectral signatures 
for foliage variation. 
  

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 43 



 

Figure C-3.—An example of spectral signatures or spectral response curves for healthy 
vegetation, dry bare soil, and clear water. 
 

 
 
Temporal Resolution  
 
Temporal resolution is the frequency at which a sensor can record image information over an 
area and the time of day that the information is recorded. For satellites, temporal resolution is 
usually measured in days with a fairly static repeat cycle. For example, the temporal resolution 
of a satellite may be three days until its orbit around the Earth brings it back to the same location 
at about the same time. Some satellites are pointable and may have increased temporal 
resolution. For airborne systems the temporal resolution can be at any time of day or any day and 
is usually weather dependent. Systems with a higher frequency of collection have a higher 
temporal resolution. 
 
Radiometric Resolution  
 
The number of potential intensity values that a remote sensor can record is the radiometric 
resolution. A system with 8-bit radiometric resolution means that it is capable of recording from 
0 to 255 or 256 (28) possible different intensity values, where 0 is a low intensity and 256 is a 
very high energy or intensity. Most active and passive remote sensing systems have between 8-
bit (28 or 256 possible values) and 16-bit (216 or 65,536 possible values) radiometric resolution. 
A higher radiometric resolution generally provides better separation of subtle vegetation 
differences that may be obfuscated by Sun shading or variations in spectral response. 
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C.4 Passive Remote Sensing 
The most common of remote sensing imaging systems are currently passive. Passive remote 
sensing systems receive and record sunlight that has been reflected, or absorbed and 
retransmitted as heat, from Earth surface features. Both aircraft (fixed-wing, helicopter, 
unmanned aerial systems) and satellites provide platforms for passive remote sensing 
instruments. Other, less common platforms are manned and unmanned balloons. 
 
Until recently, what used to be very time-consuming and often frustrating work can now be done 
with a single product or with a more logically integrated and complementary suite of 
orthorectified remotely sensed products. Digital orthorectified imagery, whether it is from a 
satellite or aerial platform, provides the fundamental basis and augmented applicability for the 
efficient mapping of vegetation as it occurs on the landscape. 
 
C.4.1 Digital Airborne Imagery 
The Forest Service traditionally has had two formal and unique aerial photography products. 
These products are digital orthorectified imagery and resource photography. Both products are 
intended to be complementary, with one providing a high level of interpretability and the other 
providing the capacity to make accurate measurements. The finer scale (1:15,840) resource 
photography are prints that have a very high resolution that enables the resource specialist to 
identify, for example, individual trees or streams to a high level of detail. Making accurate 
measurements on a resource image, however, is a very difficult and time-consuming endeavor. 
Digital orthorectified imagery, delivered as digital orthoimage quarter quadrangles, or DOQQs, 
and orthorectified satellite imagery have been geographically corrected so that Earth surface 
features and terrain are accurately and geometrically represented, whereby the resource specialist 
can make accurate measurements of landscape surface features and distances between surface 
features. One key use of high-resolution (less than 50 centimeters) digital airborne imagery is for 
image interpretation. Although fieldwork is essential, making field observations on two-
dimensional (2-D) or 3-D imagery can save a considerable amount of time and funding. 
 
C.4.2 Satellite Imagery 
Satellite imagery for vegetation mapping was first used in the 1970s by a very small, innovative 
group of scientists, managers, resource specialists, and researchers. The need, understanding, 
availability, and use of satellite imagery have grown tremendously since this time. In the past 
few years, satellite imagery has started to have a more critical role and has become far more 
available than it has been in the past. With more satellites being deployed annually than ever 
before, the options and availability of satellite-based remotely sensed imagery is more prolific 
than ever. Optical satellites have a wide range of spatial and spectral resolutions that can meet 
the needs of regional and project-level management activities. From the 50-centimeter spatial 
resolution of the 8-band Worldview-2 satellite and the 10- to 30-meter resolution of SPOT 5 and 
Deimos-1, to the coarse 250-meter, large swath width of the Moderate-Resolution Imaging 
Spectroradiometer, or MODIS, sensor, an image product is offered to suit most any need, from 
vegetation mapping and species-level interpretation to regional change detection and general 
land cover classification. Many of these systems are represented in table C-1. 
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C.5 Active Remote Sensing 
An active remote sensing system transmits, receives, and records a signal. RADAR, SONAR, 
and LIDAR are the only active remote sensing system technologies being used today. SONAR 
technology, however, is currently well beyond the scope of vegetation mapping for this appendix 
and will not be addressed. 
 
C.5.1 Aerial LIDAR and InSAR 
The vegetation-mapping technical strengths of LIDAR and Interferometric Synthetic Aperture 
RADAR (InSAR) lies in the ability to better identify and accurately measure vertical and 
structural components of vegetation. An understanding of canopy structure is essential to 
understanding the composition of the landscape. Moreover, structure information obtained 
through LIDAR or InSAR technology can help users get to a better understanding of carbon 
stocks. 
 
C.6 Digital Elevation Models 
Also crucial to planning and management activities are DEMs. Whereas an optical satellite or 
aerial image provides information about vegetation and other surface features, a DEM provides 
information about elevation, slope, and aspect. DEMs are developed photogrammetrically from 
stereo pair imagery or derived directly from LIDAR or InSAR. DEMs have two categories: (1) 
digital terrain models that represent a bare, featureless Earth and (2) digital surface models 
(DSM) that represent the elevation of Earth surface features, such as forested landscapes. A 
DEM can help delineate vegetation types based on occurrence at different elevations. A DSM, in 
particular, can help delineate spectrally similar vegetation types, such as shrub and deciduous 
trees, by representing relative height differences. 
 
C.7 Remote Sensing Data Types 
C.7.1 Coarse-Resolution Optical Data 
Coarse-resolution optical data are suitable only for broad-level mapping, unless they are coupled 
with other data that have better spatial resolution. When integrated with higher resolution 
imagery or field datasets, coarse-resolution imagery can effectively map land cover. The main 
advantage of coarse-resolution datasets is the short revisit time. The same scene may be available 
from daily to once every 10 days, depending on the sensor. When a specific area of interest has 
long periods obscured by clouds, it is important to have a multitude of available imagery dates to 
create a viable dataset. Often these data are free or inexpensive compared with higher resolution 
imagery. These data also cover large areas in one scene, as opposed to higher resolution data, 
which requires multiple scenes. Land cover maps created from coarse datasets contain far less 
detail than those created with higher resolution imagery. Coarse-resolution imagery also reduces 
the ability to identify small changes in land cover. The following paragraphs describe examples 
of coarse-resolution imaging sensors. 
 
AATSR (Advanced Along-Track Scanning Radiometer) is a sensor onboard the Envisat satellite 
owned by the European Space Agency. Its primary purpose is to measure the temperature of the 
sea surface. The sensor revisits a scene every 3 days and records seven bands of data, ranging 
from visible to thermal. The spatial resolution is 1 kilometer and the swath width is 500 
kilometers. See https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/ 
envisat/instruments/aatsr. 
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ATSR (Along-Track Scanning Radiometer) is a combination of data from two sensors on the 
Earth Resources Satellite ERS-1 and ERS-2 satellites, one infrared radiometer that records 
visible bands, and one sounder that measures emitted microwave radiation. The European Space 
Agency administers these satellites and uses them for monitoring oceans, natural resources, and 
atmospheric phenomena. The imagery has 1-kilometer spatial resolution for visible and infrared 
data and 20-kilometer spatial resolution for the microwave sensor. The two satellites are in orbit 
exactly 1 day apart so that ERS-1 covers the same area that ERS-2 covered the day before. The 
total revisit time is variable and can extend to 35 days. The swath width is 500 kilometers. See 
http://earth.esa.int/object/index.cfm?fobjectid=4006. 
 
MERIS (Medium Spectral Resolution Imaging Spectrometer) is a fully programmable 
instrument on the Envisat satellite owned by the European Space Agency. Data are collected in 
15 bands in the visible and infrared regions of the EM spectrum. The sensor can collect data on 
any of the bands starting at 300-meter pixel resolution. The swath width is 1,150 kilometers and 
the revisit time is 3 days. See http://envisat.esa.int/instruments/meris/. 
 
MISR (Multi-angle Imaging Spectroradiometer) is one of the instruments on the Terra satellite 
owned by National Aeronautics and Space Administration (NASA). It contains cameras pointed 
at the Earth from nine different angles. The primary purpose of this sensor is to understand what 
happens to sunlight as it interacts with the atmosphere. Data are recorded in visible and near-
infrared bands. The spatial resolution ranges from 250 to 275 meters. The revisit time is between 
2 and 9 days, and the swath width is 360 kilometers. See http://www-misr.jpl.nasa.gov. 
 
MODIS (Moderate-Resolution Imaging Spectroradiometer) is on the Terra and Aqua satellites, 
both operated by NASA. It provides 36 bands of data in the visible to thermal range of the EM 
spectrum. The imagery has a spatial resolution of 250 to 1,000 meters, depending on the band. A 
unique feature of MODIS is that it has daily coverage of the entire Earth with a swath width of 
2,330 kilometers. See http://modis.gsfc.nasa.gov/. 
 
SeaWiFS (sometimes called SeaStar) was developed by Orbital Sciences Corporation to deliver 
daily images of the oceans, but it has proven useful in studying land phenomena. It has 
multispectral image datasets with a spatial resolution of 1 kilometer. It rides on NASA’s 
OrbView-2 satellite with a revisit time of fewer than 3 days and a swath width of 2,800 
kilometer. See http://oceancolor.gsfc.nasa.gov/SeaWiFS/SEASTAR/SPACECRAFT.html. 
 
VMI (Vegetation Monitoring Instrument, also simply called VEGETATION) is on the SPOT-4 
and SPOT-5 (Système pour l’Observation de la Terre) satellites, which were designed and 
developed by the French Space Agency with the participation of Sweden and Belgium. The VMI 
was developed for vegetation monitoring; the imagery has a spatial resolution of 1 kilometer and 
a swath width of 2,250 kilometers. Four bands of imagery from blue to mid-infrared are recorded 
by the VMI. The revisit time for the VMI is 1 day. See 
http://uregina.ca/piwowarj/Satellites/SPOT.html. 
 
HRCCD (High-Resolution Charged Coupled Device) is a pointable sensor on the China Brazil 
Earth Resources Satellite, CBERS-2. The CBERS series of satellites was developed as a joint 
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effort between China and Brazil. It has a spatial resolution of 1 kilometer and a swath width of 
113 kilometers. Spectral data in the visible to very-near-infrared range are recorded every 3 days. 
The primary goal of CBERS is to provide data to Brazil and China for land monitoring. See 
http://www.satimagingcorp.com/satellite-sensors/cbers-2.html. 
 
WFI (wide-field imager) is mounted on the CBERS-2. This satellite was developed as a joint 
effort between China and Brazil and was launched in 2003. The WFI operates in the very-near-
infrared region of the EM spectrum. The spatial resolution is 260 kilometers. This imagery is 
suitable for forestry evaluations over large areas. The revisit time is every 3 to 5 days, and the 
swath width is 890 kilometers. See http://www.eoportal.org/directory/pres_ 
CBERSChinaBrazilEarthResourcesSatelliteZiYuanSatelliteSeries.html. 
 
C.7.2 Moderate Resolution Optical Data 
These data types, in general, are higher spatial resolution than the coarse optical systems and can 
map land-cover change more accurately. They have a revisit time ranging from 5 to 26 days. 
Moderate-resolution imagery is usually free or less expensive than high-resolution data, while 
also providing more detail than coarse-resolution sensors. Fewer scenes for a given location 
because of less-frequent revisit times can be a drawback, however, if an area is frequently cloud 
covered. These data should still be combined with ground or higher spatial resolution data to 
create detailed mapping products. 
 
AWFI (Advanced Wide-Field Imager, also referred to as WFI-2) is an instrument aboard the 
CBERS-4 satellite, scheduled to launch in 2014. Four bands of imagery from green to mid-
infrared are recorded with 64-meter spatial resolution. Scenes are revisited every 5 days, and the 
swath width is 866 kilometers. See http://www.cbers.inpe.br/ingles/satellites/ 
cameras_cbers3_4.php. 
 
ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) is a sensor riding 
on the Terra satellite. ASTER is a cooperative effort among NASA, Japan’s Ministry of 
Economy, Trade and Industry, and Japan’s Earth Remote Sensing Data Analysis Center. Data are 
collected in the very-near-infrared, shortwave-infrared, and thermal-infrared portions of the EM 
spectrum. The datasets’ spatial resolutions range from 15 to 90 meters. The sensor’s primary 
purpose is to support the study of change in the Earth’s systems. The revisit time is 4 to 16 days, 
and the swath width is 60 kilometers. ASTER is currently plagued by faulty shortwave-infrared 
sensors that do not properly collect data. See http://asterweb.jpl.nasa.gov/obtaining_data.asp. 
 
AWiFS (Advanced Wide-Field Sensor) rides on the IRS-P6, also known as the ResourceSat-1, 
which is operated by the Indian Space Research Organization. The pointable sensor records four 
spectral bands with a spatial resolution of 56 meters. Its applications include forestry, agriculture, 
topography, water, and tectonics. The swath width is 370 kilometers and the revisit time is 5 
days. See http://www.isro.org/satellites/irs-p6resourcesat-1.aspx. 
 
DMC (Disaster Monitoring Constellation) is designed to provide data comparable with Landsat 
to leverage the expertise of those familiar with that system. The sensors are housed in a series of 
satellites operated by several countries, including Algeria, Nigeria, and Turkey. Multiple sensors 
in orbit give the constellation a better opportunity to capture imagery over areas affected by 

Existing Vegetation Classification, Mapping, and Inventory Technical Guide 48 



 

natural disasters, which is the primary mission of the DMC. Any other time available is focused 
on capturing data for sale. The DMC collects data in only the green, red, and near-infrared 
wavelengths at a resolution of 22 or 32 meters. See http://www.dmcii.com. 
 
ETM+ (Enhanced Thematic Mapper+) is on board the Landsat 7 satellite operated by NASA, 
and the data can be downloaded from the U.S. Geological Survey. Eight bands of data are 
recorded from the blue to the thermal zones of the EM spectrum. The visible and near-infrared 
imagery is available in 30-meter spatial resolution. The panchromatic band has a 15-meter spatial 
resolution while the thermal band has a 60-meter spatial resolution. The swath width is 185 
kilometers and the revisit time is 16 days. Landsat 7 is currently plagued by a scanner 
malfunction that results in a banding effect that may render resulting imagery unusable. See 
https://lta.cr.usgs.gov/LETMP. 
 
HRG (High-Resolution Geometric) is an instrument on board the SPOT-5 (Système Pour 
l’Observation de la Terre) satellite, which was designed and developed by the French Space 
Agency with the participation of Sweden and Belgium. The spatial resolution is between 5 and 
20 meters, depending on the band of data. Information is collected in the visible, near-infrared, 
shortwave-infrared, and panchromatic ranges. The revisit time is 2 to 3 days; this satellite has a 
pointable design, so data requests can easily be filled for a specific location. This sensor has a 
high degree of geometric fidelity. It can create a paired set of images that can be viewed in stereo 
and used to create DEMs. The swath width is 60 kilometers. See http://www.spot.com/ 
?countryCode=US&languageCode=en. 
 
HRV (High-Resolution Visible) is mounted on the SPOT-2 satellite, and collects visible and 
near-infrared data with a spatial resolution of 20 meters and panchromatic data with a 10-meter 
resolution. This sensor also has a pointable design, a revisit time of 2 to 3 days, and a swath 
width of 60 kilometers. See http://www.spot.com/?countryCode=US&languageCode=en. 
 
HRVIR (High-Resolution Visible Infrared) rides on the SPOT-4 (Système pour l’Observation de 
la Terre) satellite. Data are recorded in the visible, near-infrared, shortwave-infrared, and 
panchromatic ranges. Spatial resolution for these data is 20 meters except for the panchromatic 
band, where it is 10 meters. This pointable sensor was developed with vegetation monitoring in 
mind. It has a revisit time of 2 to 3 days and a swath width of 60 kilometers. See 
http://www.spot.com/?countryCode=US&languageCode=en. 
 
IRMSS (Infrared Multispectral Scanner) is on CBERS-2 (China Brazil Earth Resources 
Satellite) and collects three bands of infrared and a band of panchromatic data. The spatial 
resolution is 40 meters except for the thermal band, where the resolution is 80 meters. Its revisit 
time is 26 days, and the swath width is 120 kilometers. See http://www.cbers.inpe.br/ 
ingles/satellites/cameras_cbers3_4.php. 
 
Landsat 8 (formerly called the Landsat Data Continuity Mission) is a sensor and platform that 
are became operational in 2013. The purpose is to continue the global coverage and historical 
record of imagery offered by previous Landsat systems. The sensor is planned to have nine 
bands, including visible, aerosol, near-infrared, two mid-infrared, thermal, panchromatic, and 
cirrus. The sensor and its platform were launched in December 2012. Landsat 8 is the most 
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current satellite in the Landsat continuity mission. After a shakedown period, it officially began 
operations on May 30, 2013, when operations transferred from NASA to the U.S. Geological 
Survey. See http://ldcm.nasa.gov/. 
 
LISS-III (Linear Imaging and Self-Scanning sensor) is on the IRS-P6 satellite, also known as 
the ResourceSat-1, operated by the Indian Space Research Organization. Data are recorded in 
four bands: green, red, near-infrared, and shortwave-infrared. The spatial resolution is 23.5 
meters with a revisit time of 24 days. The swath width is 70 kilometers. See 
http://www.isro.org/satellites/irs-p6resourcesat-1.aspx. 
 
MSS (Multispectral Scanner) rides on board the Landsat 5 satellite operated by NASA. This 
sensor records two bands of visible data and two bands of infrared data with a spatial resolution 
of 57 by 79 meters. The revisit time is 16 days. The properties of this MSS sensor are consistent 
with those aboard previous Landsat satellites. See http://landsat.gsfc.nasa.gov/. 
 
TM (Thematic Mapper) is also on the Landsat 5 satellite operated by NASA. This instrument 
records six bands of data, from blue to shortwave-infrared, with a 30-meter spatial resolution. 
The seventh band, the thermal band, has a 120-meter spatial resolution. The revisit time for this 
data set is 16 days with a swath width of 185 kilometers. The TM sensor was developed for use 
as a more advanced Earth-resources sensor than the MSS. Although TM failed in November 
2011, and is no longer collecting imagery, an archive of 30-plus years of TM data is available for 
retrieval and analysis. See http://landsat.gsfc.nasa.gov/. 
 
C.7.3 Fine-Resolution Optical Data 
Fine-resolution sensors have a spatial resolution of 10 meters or less. These data are more 
expensive but provide the highest amount of detail possible for space-borne optical sensors. One 
drawback to fine-resolution data is the greatly increased processing volume. The amount of 
imagery needed for complete coverage of a given area is often far greater than for a moderate-
resolution sensor. The amount of data and the cost associated with their fine resolution make 
them impractical for most countries to use for wall-to-wall coverage. 
 
LISS-IV (Linear-Imaging and Self-Scanning sensor) is mounted on the IRS-P6 (ResourceSat-1) 
satellite owned by the Indian Space Research Organization. Data are recorded in the green, red, 
and near-infrared locations of the spectrum. These three bands are useful for land cover mapping. 
The spatial resolution of the data is 5.8 meters. The sensor is pointable, so the revisit time is as 
little as 5 days with a swath width of 23.9 kilometers. See http://www.isro.org/satellites/irs-
p6resourcesat-1.aspx. 
 
CARTOSAT-1 is aboard the IRS-P5 satellite, built and operated by the Indian Space Research 
Organization. The sensor on this satellite records panchromatic data in stereo pairs in 0.50 to 
0.85 micrometer wavelengths. The revisit time for this sensor is 5 days. The primary use for 
these data is creating DEMs, based on the 3-D data from stereo pairs. See 
http://www.isro.org/satellites/cartosat-1.aspx. 
 
IKONOS is a commercial satellite owned and operated by GeoEye. The data are collected in the 
multispectral range with a 4-meter resolution and panchromatic with a 1-meter resolution. The 
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sensor is pointable, and, therefore, the revisit time is 1 to 3 days; it can also create stereoscopic 
images. The swath width for this sensor is 11 kilometers. See http://www.digitalglobe.com/ 
resources/satellite-information. 
 
PANMUX is currently in development and will be mounted on the CBERS-3 satellite. The data 
collected will be in the visible and near-infrared range at 10-meter spatial resolution and 
panchromatic with a resolution of 5 meters. With a swath width of 60 kilometers, these data can 
be used for land cover mapping. See http://database.eohandbook.com/database/ 
instrumentsummary.aspx?instrumentID=700. 
 
QuickBird is a commercial satellite owned by DigitalGlobe. Visible and near-infrared data are 
collected with a spatial resolution of 2.4 meters. Panchromatic data have a spatial resolution of 
0.61 meters. This sensor is also pointable with a revisit time of 2 to 3 days and a swath width of 
16.5 kilometers. See http://www.digitalglobe.com/resources/satellite-information. 
 
WorldView-2 is a commercial system owned and operated by Digital Globe. This sensor has 
eight multispectral bands, including coastal blue (narrow band in the low blue wavelength), 
visible, red-edge, near-infrared, and panchromatic bands. The multispectral spatial resolution is 
2.0 and 0.5 meters for the panchromatic band. Revisit time for this sensor is 3.7 days, and the 
swath width is 16.4 kilometers. See http://www.digitalglobe.com/resources/satellite-information. 
 
Pléiades-1A and Pléiades-1B are owned by the Astrium. The two satellites were launched in 
2012. Together they provide visible and infrared data with 2-meter resolution and a daily revisit 
time. The satellites also collect a panchromatic band with a resolution of 0.5 meters. This 
constellation offers excellent locational accuracy of 3 meters before orthorectification. The swath 
width for these sensors is 20 kilometers. See http://www.astrium-geo.com/pleiades/. 
 
AVNIR-2 (Advanced-Visible and Near-Infrared Radiometer type 2) was on the Advanced Land 
Observing Satellite (ALOS) developed by the Japan Aerospace Exploration Agency. This sensor 
provided data in the visible and near-infrared zones of the EM spectrum for land and coastal 
observation. The spatial resolution of the data was 10 meters with a revisit time of 2 days. The 
swath width for this sensor was 70 kilometers. The ALOS satellite ceased operation in May 
2011, and only archived data is available from the AVNIR sensor. See 
http://www.eorc.jaxa.jp/ALOS/en/about/avnir2.htm. 
 
C.7.4 Active Sensor Data 
Active sensor systems produce the energy they are recording. All the sensors discussed in the 
optical sections are passive; they record energy that was created by the Sun and have interacted 
with the Earth in some way. Active systems transmit energy to a surface and record the energy 
that is reflected back to the sensor. Radar systems provide information about the target’s 
moisture content and structure. The major benefit of active sensors is the ability of the 
wavelengths of the energy produced to penetrate clouds, allowing for them to be used at any 
time. Because the sensors do not depend on the Sun’s energy, they work at night as well as 
during the day. Also, depending on the wavelength of the radar system, problems with the 
presence of aerosols in the atmosphere can be eliminated. 
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C.7.5 Coarse-Resolution Passive Microwave Data 
AMSR-E (Advanced Microwave Scanning Radiometer for the Earth Observing System) was 
developed by the National Space Development Agency of Japan and is mounted on the Aqua 
satellite developed by NASA. It is a passive microwave radiometer that records data that are 
emitted from the Earth in six locations of the EM spectrum. It has a spatial resolution ranging 
from 6 to 74 kilometers depending on the data band. Its primary objective is to provide 
information about precipitation, water vapor, sea-surface temperatures, soil moisture, and snow 
cover. Possibilities for land cover mapping with these data are marginal, although research 
continues to investigate how moisture information relates to vegetation health and amount. See 
http://aqua.nasa.gov/about/instrument_amsr.php. 
 
C.7.6 Multiresolution Passive Microwave Data 
 
PALSAR (Phased-Array L-band Synthetic Aperture Radar) was on the ALOS satellite, which 
was launched by Japan. PALSAR collected data in single-, dual-, or quadrature-polarization. The 
polarization allows for greater interpretability of the data. The spatial resolution varies 
accordingly from 10 to 100 meters. In the quadrature-polarization mode, this sensor produced 
data suitable for global or regional scale land use classifications. These data have a spatial 
resolution of 7 to 100 meters and were collected in the L-band at 1.3 gigahertz (GHz). The 
ALOS satellite ceased operations in May 2011, and only archived data is available from the 
PALSAR sensor. See http://www.eorc.jaxa.jp/ALOS/en/obs/palsar_strat.htm. 
 
SAR (Synthetic Aperture Radar) is available from the RADARSAT-1 and RADARSAT-2 
satellites developed by the Canadian Space Agency. These sensors were developed to monitor 
land resource changes. The sensor’s beam can be steered to different incident angles, creating 
swath widths of 45 to 500 kilometers. The spatial resolution, therefore, varies between 1 and 100 
meters. The revisit time depends on the swath width, with the standard 100 meters width 
covering the Earth every 24 days, and its steerable mechanism allowing for a fewer number of 
days between acquisitions of a single place on Earth. The EM data recorded are at 5.3 GHz, also 
referred to as the C band. The system is horizontal transmit, horizontal receive (HH) polarized, 
which means energy emitted from and recorded by the sensor is polarized in the horizontal 
direction. The type of polarization has an effect on the interpretability of the data. The data are 
quadrature polarized, rather than HH polarized, which means they are polarized in HH;  
horizontal transmit, vertical receive; vertical transmit, vertical receive; and vertical transmit, 
horizontal receive directions. This difference in polarization provides greater object 
discrimination. See http://gs.mdacorporation.com/SatelliteData/Radarsat2/Features.aspx. 
 
SAR from ERS-2 (European Remote Sensing Satellite) is mainly used to observe the arctic 
regions. Data are collected in the C band at 5.3 GHz, with a spatial resolution of 30 meters. The 
swath width is 100 kilometers and the revisit time is 3 days. This system is vertical transmit, 
vertical receive polarized, meaning both the energy emitted and recorded by the sensor is 
vertically polarized. Data are collected in image form only when the vehicle is within line-of-
sight communication with an ERS ground location. Therefore, this system’s range of usability is 
limited to those ground locations. See http://southport.jpl.nasa.gov/polar/ers1.html. 
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C.7.7 Other Data Types and Sources 
InSAR (Interferometric Synthetic Aperture Radar) is a specialized radar technique that uses two 
or more SAR images to generate digital surface models (DSMs) and digital terrain models 
(DTMs). The two SAR images are often collected simultaneously aboard the same platform; 
however, they can be collected at different times. A number of different radar bands with 
different characteristics are used, including X-band, P-band, and L-band. The bands affect the 
sensor’s ability to penetrate surfaces such as tree canopy. The generated DSM is a topographic 
model of the Earth’s surface and includes vegetation, buildings, and other cultural features. The 
DTM is a topographic model of the bare Earth, where the vegetation, buildings and other 
features have been removed. Both are typically provided as off-the-shelf products. Subtracting 
the DTM from the DSM provides vegetation height information—useful for vegetation and 
biomass mapping. The unit cost of InSAR is much less than LIDAR, but the minimum project 
size is much larger. In some areas in Europe, the United States, and Asia, large inventories of 
InSAR data are available to purchase. 
 
LIDAR (Light Detection and Ranging) is an active remote sensing technique that sends a light 
beam to the target and measures the time it takes to return to the sensor and how much intensity 
is lost. This system requires a specific type of aircraft and equipment. The laser scanner, an 
onboard GNSS (global navigation satellite systems; the U.S. version is known as GPS, or global 
positioning system), an inertial measurement unit, and a very accurate clock are necessary to 
collect LIDAR data. Post spacing (i.e., how far apart each light pulse is) and flying height 
determine the spatial resolution of the data collected. LIDAR usually provides better than 1-
meter accuracy. Several returns can be recorded per pulse, which provides information about 
forest structure. The first return is assumed to be from the canopy top, the last return from the 
ground, and any other returns indicate some part of the canopy structure. LIDAR offers a lot of 
detail but at a fairly high cost. Transporting the aircraft and needed instruments to a study area 
can be very expensive. Actual data collection costs are not significant considering the amount of 
detail provided, so a LIDAR system and aircraft that are located near a study site can be more 
cost effective. LIDAR does require specific image-processing methods and knowledge to extract 
information from the data, which can substitute for ground data by applying calibrated 
conversion factors. These conversions should be created through ground data validations, and for 
now LIDAR remains cost prohibitive compared with ground data acquisition and cannot replace 
an actual forest inventory. 
 
Aerial photography historically was used heavily for remote sensing. This type of data is still 
collected for many regions of the world. It provides an excellent source of map validation data 
because of the fine-spatial resolution (typically less than 0.5 meters). Data collection of this type 
can be very expensive, so one should determine if the project justifies the expense. A significant 
number of photographs are usually needed to achieve adequate area coverage, which can create 
data management issues. Until recently, aerial photography was limited to the acquisition of 
frame-based photographic images (similar to those from a hand-held film camera) and three 
bands of information, typically red, green, and blue. To be used in resource management, a 
technician needed to scan the film-based images into the computer and go through a lengthy 
process of geocorrecting them. Newer direct digital collections can take advantage of GNSS 
(global navigation satellite systems) and inertial measurement unit data to help automate the 
geocorrection process. In addition, modern sensors allow for direct to digital collection of several 
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bands concurrently, including hyperspectral imagers, which can collect hundreds of bands 
simultaneously. 
 
Aerial videography is the collection of full-motion video from an airborne vehicle. This method 
is expensive, but it provides high-resolution data, even less than 1 meter. It is common practice 
to use videography in place of ground data to validate coarser map products, particularly in 
systems that use cameras pointed both forward and aft. This set-up allows for the data to be 
viewed in stereo. An advantage of this type of system over aerial photography is that recording 
the data continuously makes it possible to match the location where ground data have been 
collected more accurately. In addition, videography is also useful for forest cover mapping. 
 
C.8 Remote Sensing and the Vegetation-Mapping Processes 
C.8.1 Image Segmentation 
Image segmentation is the mathematical process of the polygonal delineation of floristic, 
textural, physiognomic, and structurally homogenous patches of landscape elements using 
statistical clustering techniques. Subtle spectral, spatial, and textural differences and those not 
visually apparent are typically captured during the segmentation process. These segments are the 
fundamental modeling units that are later labeled during the data mining, classification and 
regression tree process (figure C-4). For most vegetation-mapping applications, the landscape 
should be over-segmented to capture variations that are not obvious. Over-segmented is when 
segments are created at a resolution and scale finer than the intended map feature size, resulting 
in “more” segments, and therefore termed over-segmented. 
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Figure C-4.—Example of image segments that delineate structural, textural, physiognomic, and 
floristic patterns on the landscape. 
 

 
 
C.8.2 Image Classification and Data Mining 
Simply put, data mining is a statistical process of sorting and analyzing data, examining 
relationships, and selecting relevant information. It is the process of using the modeling units, 
reference data, and geospatial layers to predict the occurrence of classes on the landscape. 
Although models can be manually built, the semiautomated CART (classification and regression 
tree) analysis expedites the process. 
 
Data mining algorithms are capable of handling large data sets and forming relationships 
between variables. Data mining programs are ideal for creating classifications involving remote 
sensing and GIS data because these types of data sets tend to be large. This approach can reduce 
error and improve accuracy. 
 
Data mining programs are abundant and include Cubist, See5, Orange, Random Forest, rpart, 
support vector machines, and many others. 
 
Digital 3-D Imagery for Generating Reference Data 
 
Stereo photographic imagery has long been valued as a cost-effective planning tool because it 
provides a 3-D view of the terrain, increases image interpretability, and facilitates vertical 
landscape measurements, such as the quantification of slope, elevation, and vegetation height. 
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Although resource specialists have used stereoscopes and photographic aerial analog prints for 
decades to characterize terrain, digital imagery has recently opened up innovative, more efficient 
possibilities. New Forest Service software tools like Stereo Analyst provide access to digital 
versions of stereo imagery. The Stereo Analyst interface not only enables the resource specialist 
to visualize the terrain in 3-D but also to efficiently plan, measure, record, and characterize 
terrain in a way that, until recently, had been unavailable. Planning and measurements are 
directly portable to a GIS, in which new data can be analyzed, reviewed, and easily shared. No 
longer does the resource specialist have to search through cabinets and set up photographs under 
a stereoscope. 
 
In most situations business needs drive technology development. In the case of the digital 3-D 
image environment, the business needs are adapting existing technology, contracting 
specifications are changing, and delivered products provide a whole suite of new information. 
Solid fieldwork and onsite visits are still needed. The digital 3-D environment will supplement 
fieldwork and reference data collection through other means by effective planning and analysis, 
in the preassessment and postassessment environment. The resource specialist can see the 
landscape in full color, high-resolution, 3-D at his or her desktop by using special lightweight 
glasses and a transmitter. This technology is a vast improvement over outdated stereoscopes and 
the red-blue anaglyph glasses. The new digital 3-D environment provides measurement 
capability similar to LIDAR but with greater interpretability for the vast majority of resource 
specialists and at a significantly reduced cost. This 3-D technology does not have the eye strain 
and fatigue associated with older 3-D stereo technology and the 3-D glasses can be worn over 
eyeglasses. Digital stereo 3-D is growing as a useful tool not only for collecting reference data, 
but also for validating reference data and existing vegetation map products.  
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Table C-1.—Sensors used for remote sensing. 
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Appendix D. Image Interpretation 
By Don Evans and C. Kenneth Brewer 
 
D.1 Introduction 
Image interpretation is the use of certain image attributes, together with knowledge of the objects 
and conditions imaged, to identify features and judge their significance. Our brain-eye system is 
unsurpassed at interpreting high-resolution imagery, if we first possess the ground-based 
knowledge about the resources to measure or map. With a small investment in your time, you 
can become a skilled image interpreter, but you should first have that ground-based resource 
knowledge. 
 
A skilled image interpreter will discriminate features of interest and their attributes from other 
features in the imagery. For example, an image interpreter would use his or her experience to 
discern between species and size classes of trees of interest. To be successful, he or she would 
need to relate their ground knowledge to the imagery (figure D-1). The interpreter should spend 
significant time on the ground with the imagery in hand. 
 
Figure D-1.—Image interpreter taking imagery into the field. 
 

 
 
Although this document provides useful tips and techniques for interpreting imagery, the only 
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way to become a skilled image interpreter is to take your imagery into the field and learn to 
bridge the gap between what you know and see on the ground to what you can see on the images. 
A suggested workflow for building image-interpretation skills—and interpreting imagery—is 
provided at the end of this appendix. 
 
D.2 Image Characteristics—Fundamentals of Image Interpretation 
An image interpreter will use elements that are inherent in imagery to recognize and identify 
objects of interest. These image characteristics are composed of seven elements that we use to 
derive information about objects in the image. These image characteristics are size, shape, tone 
and color, texture, shadow, association, and pattern.3 Although it is beneficial to understand 
these image characteristics, most image interpreters will use them subconsciously in practice. A 
description of each image attribute with examples is provided on the following pages. 
 
The relative importance of each of the seven image characteristics is not constant. The 
importance of any characteristic can depend significantly on the scale of the imagery and the 
properties of the feature of interest. For example, the shape of a tree crown can be a very 
important indicator of tree species on high-resolution imagery. On coarser resolution imagery, 
individual crowns may not be easily distinguishable and texture may become a much more 
important image characteristic. 
 
D.2.1 Size 
Size is usually evaluated by looking at objects that the interpreter may be familiar with and 
comparing their relative size with less familiar objects. For example, an interpreter might look at 
the discrete vegetation features in the red rectangle in figure D-2 and interpret those features to 
be trees. By comparing the relative size of the vehicle and the paved road, in the yellow 
rectangle, with the vegetation features, however, it becomes obvious that the trees are actually 
shrubs (in this case, sagebrush). If the scale of the imagery is known, objects can be measured 
directly—rather than relying solely on relative size. 
  

3 Some experts also identify other image attributes like place/location and height. Although these are legitimate image characteristics, they are 
not considered in this document. 
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Figure D-2.—Size is usually evaluated by looking at objects that the interpreter may be familiar 
with and comparing their relative size with less familiar objects. 
 

 
 
D.2.2 Shape 
Every imaged feature has a shape. Shape is not necessarily diagnostic for interpretation, however 
(i.e., the same type of feature may have different shapes, and different features may have the 
same shape). Man-made features, such as the vehicle and road (figure D-2), tend to be more 
rectilinear than natural features. Natural features, such as trees and shrubs, have more subtle 
shapes (figure D-3). Referring to the image at right, the shape of the tree crowns is indicative of 
the type (deciduous/conifer) or even species of tree. 
 
Figure D-3.—Every object has a shape, but the shape may not be diagnostic. If individual tree 
crowns are visible in the imagery, their shape or texture can be important clues to type or 
species. 
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D.2.3 Tone and Color 
Tone (in the panchromatic image) allows for easy distinctions among roads, forests, harvest 
areas, water, and other things. Color (figure D-4) allows for easy distinction among coniferous 
trees, deciduous trees (in yellow fall colors), senesced grasses, and road surface types. 
 
Figure D-4.—Different features have different reflectance properties—light-toned areas reflect 
more electromagnetic energy (sunlight) than dark features—and thus appear differently on the 
imagery, enabling the interpreter to tell things apart on the imagery. 
 

 
 
D.2.4 Texture 
Image texture refers to the apparent roughness and smoothness of an image region created by the 
frequency of tonal change on the image. Texture can offer the interpreter clues about the density, 
age, and type of vegetation present (figure D-5). Note that texture interpretation becomes 
increasingly important when the image resolution becomes coarser.  
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Figure D-5.—Coarse- (red polygons), medium- (yellow polygon), and fine- (green polygons) 
textured areas. Coarse-textured areas represent larger and older trees with canopy gaps. Fine- 
textured areas usually connote young, even-age vegetation. 
 

 
 
D.2.5 Shadow 
Imagery is usually acquired within a few hours of solar noon to minimize shadows. Shadows 
obscure features and are a detriment to interpreting features within shadow. On the other hand, 
shadows cast by objects in the image can give the interpreter information about the shape and 
size of those features. It can also provide an indication of the relative height of features. For 
shadows to be most effective, the entire shadow should be visible in the image (figure D-6). In 
some cases image acquisition might be timed to ensure shadows are present to enhance 
interpretability of features that may be difficult to see otherwise (e.g., a fence line in open 
rangelands). 
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Figure D-6.—Shadow is an especially important clue in interpreting objects. Note: Shadows of 
buildings, trees, and other objects reveal characteristics that are not obvious from the overhead 
view alone. Edges, such as forest boundaries, often have characteristic shadows. 
 

 
 
D.2.6 Association 
By observing objects in the image and observing the objects that are around objects, the 
interpreter can make inferences about what the objects really are. In figure D-7, the presence of a 
dam suggests that this water body is a reservoir. Without that association, the water body cannot 
be further classified as a reservoir.  
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Figure D-7.—Association refers to the typical co-occurrence of certain features. Note: 
Vegetation species are often associated with one another or with topographic characteristics 
(slope, elevation, aspect, etc.). Complex features, such as campgrounds or forest management 
activities, frequently have associated components that individually may lead to one conclusion 
but, considered together, lead to a more informed interpretation. 
 

 
 
D.2.7 Pattern 
In remote sensing, pattern is a recognizable repetition of particular shapes. In figure D-8, the 
checkerboard pattern of rectangular shapes suggests that this once forested area has been 
harvested along regular boundaries. 
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Figure D-8.—Pattern refers to the arrangement of individual objects into distinctive, recurring 
forms that permit recognition. Note: Different patterns may become more or less apparent at 
different viewing magnifications. 
 

 
 
D.2.8 Change Over Time 
In addition to using these seven image characteristics, when two sequential sets of imagery are 
available, we can also add these additional image characteristics: (1) discernible differences in 
any of the previously mentioned characteristics found in the images that were acquired at 
different times; (2) presence or absence of features in successive imagery; and (3) change of 
location, position, or extent of features. 
 
D.2.9 Convergence of Evidence 
Convergence of evidence is the mental (but usually subconscious) summation of all the 
interpretable image characteristics that are present in the imagery to derive a confident 
interpretation of an imaged feature. In other words, it is the bringing together of several types of 
information so that a conclusion may be drawn in light of all available data. It is essentially what 
an interpreter infers from all the image characteristics, together with field site data and value 
judgments derived from previous training and experience. Interpretation is then made on the 
basis of what the interpreter thinks are the overridingly important criteria. It is this summation of 
all the interpretable image characteristics that makes this a logic exercise that is inherently 
inductive (subjective) and not easily replicated in a deductive logic (objective) algorithm in an 
image-processing program. This difficulty has made automation of the image-interpretation 
process elusive for pattern recognition software. 
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If the interpreter considers all the image attributes that are present for a given feature, and all the 
attributes of that feature lead to the same interpretation, the interpreter will have confidence in 
the interpretation (the evidence converges on the same conclusion). Misinterpretation increases 
when the interpreter does not consider all available image attributes or when the interpretation(s) 
from the individual image attributes conflict. (An example of a potential misinterpretation is 
described in the size characteristic section, D.2.1.) 
 
D.2.10 Interpretation Is an Art 
It is important to remember the difference between interpretation and identification. 
Identification assumes objective accuracy and completeness of description within the confines of 
a problem; it is a definitive answer. Interpretation involves judgment, experience, familiarity 
with a problem, and a host of other factors. It is subjective, but it is based on a set of skills that 
can be developed in time. Most of us use the seven image characteristics subconsciously. To 
improve our image-interpretation skills, however, we should consciously examine the image 
characteristics associated with the themes we are interested in interpreting, and ensure that the 
discernible characteristics are leading to the same interpretation. Again, this approach requires 
taking the imagery into the field. 
 
D.3 Image-Interpretation Tools 
The most efficient image-interpretation tool currently is the human eye-brain system of a skilled 
image interpreter. Manual interpretation, however, is subjective and can lack rigor. Although still 
based on image interpretation, image keys and software products, such as Image Sampler and 
Digital Cover Interpreter, are examples of tools that help provide consistent and objective results. 
 
D.3.1 Image Keys 
Image keys can take many forms. They essentially are a set of guidelines designed to aid the 
interpreter in correctly applying the classification scheme during the interpretation. Image keys 
also help to ensure that consistency is maintained throughout the interpretation process. Keys 
may also be valuable teaching aids for people who lack field experience, yet who should be 
trained quickly to identify features on a given type, scale, and quality of imagery. 
 
One of the simplest and most effective image keys consists of saving a copy of previously 
interpreted imagery (carefully ground-checked for accuracy) as a “training set” or “reference set” 
to which unknown areas of the imagery may be compared. Although this type of image key is 
simple and effective, it may have limited utility with different types of imagery, different 
magnification of inspection, or with very complex keys. 
 
It also can be very helpful to include written descriptions of the features of interest that can 
inform the interpreter of what to look for in the imagery. Tips such as “…this class is sometimes 
confused with class X, however, they can usually be differentiated by…” are often useful. 
Additional habitat information can also help the interpreter. For example, “species X typically 
occurs between 4,700 and 6,200 feet (1,430 and 1,890 meters) in elevation—slightly higher on 
south facing slopes and lower on north facing. This species is often co-dominant with species 
Y.” 
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It is valuable to make keys because they can be used as a learning exercise. They are great 
training aids for specific projects when several interpreters should be trained to consistently 
identify a specific and restricted set of tree/stand conditions. One of the best ways of learning to 
differentiate the details of tree species at any scale is to make a key to the species imaged. 
Making such a key requires several field identified examples of each species. Using such a key 
for training purposes requires reference to the same set of field identified examples. It is 
advisable to collect a personal “portfolio” of examples from a range of conditions. Fieldwork is 
crucial for developing image-interpretation skills and for training others. 
 
D.3.2 Image Sampler and Digital Cover Interpreter 
The following examples of digital tools (ArcMap Add-Ins) can help provide consistency and 
objectivity to your ocular interpretations. 
 
Image Sampler creates sample points within a user-specified polygon and provides a toolbar 
interface for attributing those sample points (figure D-9). These sample points can then be used 
to generate statistical estimates of the cover types within the polygon(s). 
 
Figure D-9.—Image Sampler Tool. Dot grid can be systematic (as shown) or random. Note: The 
number of dots within the polygon is user defined. After each dot is attributed, proportions can 
easily be calculated for the polygon. 
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Cover Interpreter was designed to help users adhere to established mapping standards and 
produce existing vegetation geographic information systems (GIS) layers. It enables the user to 
assign cover attributes (canopy cover and size class) to polygons by comparing the underlying 
image with a series of transparent digital image chips that can be moved over the image (figure 
D-10). 
 
These digital tools, although consistent and objective, are slower than ocular interpretations. 
Perhaps the best way to use them in a large project is more at the start of a project to grow 
confidence and interpretation skill and sparingly thereafter for occasional recalibration of our 
eye-brain system. 
 
Figure D-10.—Cover Interpreter Tool quickly assesses percentage of canopy cover. 
 

 
 
D.4 Suggested Image Interpretation Workflow 
As you prepare to engage in image interpretation, use of this workflow will help build skills and 
maintain consistency throughout the interpretation process. The workflow assumes that you have 
adequate ground-based knowledge about the resource you wish to interpret from the imagery and 
that your objective is a continuous (wall-to-wall) polygon-based classification. 
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Use the following suggested steps for interpretation of vertical, high-resolution4 orthocorrected 
digital imagery. 
 

1. Define and be very familiar with the classification scheme (see section D.5). 
2. Prepare the imagery. 

a. Imagery should be accurately orthocorrected and displayed in your corporate 
GIS/image-processing software. 

3. Segment the image into appropriate mapping polygons by using heads-up digitizing, 
existing polygon data or image segmentation software. Determine a minimum mapping 
unit (MMU) and ensure that few, if any, polygons are smaller than the MMU—unless the 
segmentation has been deliberately designed to oversegment the landscape. If the 
landscape has been oversegmented, many segments will need to be merged later. 

4. Take the imagery with overlaying segment boundaries into the field (hardcopy prints or 
on a digital mobile device). The purpose of this visit is to start the familiarization process 
and to test the classification scheme and image capabilities. 

a. Select several polygons with different characteristics to visit. 
i. If you are already familiar with the area, select the polygons based on 

known differences in your classification scheme (e.g., big trees, small 
trees, or evergreen, deciduous). Try to visit polygons that represent all the 
classes in your classification scheme (the complexity of your classification 
scheme will drive the number of polygons you should visit). 

ii. If you are unfamiliar with the area, visit the polygons with differences in 
the image characteristics that you suspect portray differences in the 
feature(s) of interest. You should eventually visit polygons that represent 
all the classes in your classification scheme. 

b. For each visited polygon— 
i. Try to classify the polygon based solely on ground observations. 

ii. Carefully inspect the same polygons in the imagery while you are within 
each polygon. Try to build the bridge from what you have seen on the 
ground to what you can see on the image. Consider making notes on your 
field form; otherwise, write notes on the field maps for that polygon. 

c. After visiting the selected polygons on the ground, classify the same polygons 
based solely on your interpretation of the imagery. 

d. Check your image-interpreted classifications against your ground-based 
classifications. 

i. If results indicate you can successfully interpret the imagery, proceed to 
the next step in this process.  

ii. If results indicate you cannot successfully interpret the imagery, however, 
determine if the problem is a classification-imagery mismatch (i.e., no 
discernible image characteristics permit interpretation of the feature[s] of 
interest). If you have a hierarchical classification, can you collapse it a 
level to be less detailed and still have an acceptable product? Would more 
image-interpretation practice sufficiently solve the problem?  

4 High-spatial resolution imagery in this case indicates a 1-meter ground sample distance (pixel size) or finer. 
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e. Interpret and classify polygons on the imagery that you have not visited on the 
ground—try to include all the classes in your classification scheme. 

f. Visit those remaining polygons on the ground and check your image-interpreted 
classification. 

i. If results indicate you can successfully interpret the imagery, proceed to 
the next step in this process.  

ii. If results indicate you cannot successfully interpret the imagery, however, 
determine if the problem is a classification-imagery mismatch (i.e., no 
discernible image characteristics permit interpretation of the feature[s] of 
interest). If you have a hierarchical classification, can you collapse it a 
level to be less detailed and still have an acceptable product? Would more 
image-interpretation practice sufficiently solve the problem? Make sure 
the issue is addressed before proceeding further with this project.  

5. With success to this point, you should develop image keys, field forms, and image 
training sets. 

6. Classify polygons on the digital imagery. 
a. Attribute easy features first (e.g., water versus forest) and go from the known to 

the unknown. 
b. After initial broad classification, further subdivide by using more subtle features. 

i. For timber mapping: first, type density (canopy cover); next, species 
(dominance class); and then, size class. 

ii. Use both high- and low-zoom magnification. Different magnifications can 
accentuate different image attributes. 

c. You undoubtedly will encounter polygons that need to be split or joined—make 
sure you are familiar with these digitization techniques. If you are splitting a 
polygon, make sure that all parts exceed the MMU size. 

7. Check your work and frequently recalibrate your interpretations. It is common to have 
“classification drift,” which means that, as the project progresses, the way you interpret 
features changes. Classification drift occurs during the course of an individual day 
(usually occurs in a bad way because of fatigue) and also over the course of weeks and 
months as you become more skilled. 

a. Frequently refer to your image keys and training sets. 
b. Occasionally use a tool such as Image Sampler after you have classified a 

polygon by eye to test your determinations. It is preferable for efficiency to have 
the confidence and skill to manually perform (by eye) the classifications rather 
than using Image Sampler. Image Sampler is more consistent and unbiased than a 
human interpreter but it is slower. Its best use in this workflow is as a 
recalibration tool for your manual interpretations. 

 
D.5 Classification Scheme 
Classification schemes categorize and label the variation in land cover that you want to capture. 
A classification scheme is analogous to the legend of the final map you wish to produce. A 
workable classification scheme is the first step in a successful image-interpretation project and 
should not be taken lightly. 
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High-resolution imagery has a tremendous amount of information—often too much information 
to process efficiently. You need to extract and summarize the information to make it 
manageable. Thus, image-interpretation projects focus on a particular type of information—
themes—to extract from the imagery. For example, a given project may focus on gathering 
information about varying levels of vegetation information despite the imagery having a nearly 
unlimited number of other potential themes—other examples of themes might include forest 
health, transportation features, water features, cultural surveys, and many more. 
 
Use the following five rules and three suggestions to keep in mind a workable classification 
scheme. First, the rules— 
 

1. The classification scheme must meet the information needs of the intended user. 
2. The classification scheme must be based on what can be interpreted from the imagery. 

This requirement may conflict with the previous requirement in some cases. 
3. Continuous classification schemes must be exhaustive. 
4. The classification scheme must be mutually exclusive. 
5. The classification scheme must be composed of labels and rules for labeling. 

 
In addition to these rules, the classification scheme should— 
 

1. Follow a hierarchical (nested) classification scheme. This type of scheme provides for 
more flexibility and better support to multiple and diverse users. 

2. Use measurable land cover (not the specific land use) characteristics. 
3. Avoid subjective interpretive classes such as “old growth” or “suitable habitat.” These 

items in the classification scheme should be derived by definitions based on measurable 
feature characteristics. 

 
The complexity of a classification scheme ultimately will affect the project accuracy and cost. 
The more complex the scheme, the more expensive and the less accurate the final product will 
be. A good and workable classification scheme is not a guarantee of success, but a poor and 
unworkable scheme is a guarantee of failure. Give it the time and attention it deserves for your 
project. 
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Appendix E. Regional Resources for Mid-Level Existing Vegetation Mapping 
Projects 
The Forest Service Intranet (fsweb) pages listed here include regional tools for vegetation 
mapping, project examples, and protocols. 
 
Region 1. Renewable Resources, Forest Inventory and Analysis 
http://fsweb.r1.fs.fed.us/forest/inv/index.htm 
 
Region 2. Geospatial Services 
http://fsweb.r2.fs.fed.us/eng/staff/geo/ 
 
Region 3. Remote Sensing 
http://fsweb.r3.fs.fed.us/eng/MID-SCALE_VEG/index.html 
 
Region 5. Resource Management, Vegetation Classification and Mapping 
http://www.fs.usda.gov/detail/r5/landmanagement/resourcemanagement/?cid=stelprdb5347192 
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Appendix F. Design and Analysis Toolkit for Inventory and Monitoring 
 
By Charles T. Scott 
 
The Design and Analysis Toolkit for Inventory and Monitoring (DATIM) project is a joint effort 
between the Forest Inventory Analysis (FIA) program and the National Forest System (NFS) 
regional FIA coordinators to improve inventory and monitoring designs and data analyses by 
developing nationally consistent tools and by leveraging existing data. The FIA’s National 
Inventory and Monitoring Application Center (NIMAC) and the NFS’s Ecosystem Management 
Coordination, or EMC, Staff sponsor this effort. DATIM’s design is modular so that new 
calculations, additional datasets, and cutting-edge techniques may be easily incorporated. The 
tools described in the following section address the sample design phase, data storage, 
compilation, and data analysis steps outlined by NIMAC (Scott 2012, Scott et al. 2009). This 
application is currently under development but will be available at http://apps.fs.fed.us/datim. A 
subset of the modules is available in draft form for use today. Contact your NFS regional FIA 
coordinator or NIMAC for further information about using this system. 
 
The Design Tool for Inventory and Monitoring (DTIM) helps determine cost-effective, 
statistically valid inventory and monitoring sample designs. DTIM will provide NFS the means 
to determine if existing data can address specific monitoring questions. If estimates of current 
conditions and trends based on available data are inadequate according to statistical power 
analysis, DTIM can help you determine the additional sampling needed to meet their precision 
requirement and cost objectives. 
 
The Compilation Tool can use data coming from both Natural Resource Manager (NRM) 
FSVeg and FIA’s National Information Management System, or NIMS. This tool computes 
attributes that are derived from other attributes, such as biomass and canopy base height, and 
stores them in the FIA DataMart. The graphical user interface, or GUI, allows for selecting data 
for compilation based on population, spatial attributes, temporal attributes, columnar attributes, 
and geographic information systems, or GIS. In the future, the tool will link to other regional and 
corporate datasets, including others in NRM, where colocated inventory data may be found. 
 
The Spatial Intersection Tool (SIT) selects a subset of inventory data to derive estimates for 
spatial layers, such as ownership, cover-type maps, and ecological classification maps. 
Selections can be made by features (polygons), user-defined polygons, features from a table, or 
distance from linear features. SIT returns a list of plots and polygon areas for the analysis phase, 
which then produces estimates for attributes of interest. SIT incorporates the NRM geospatial 
interface (GI) functionality and operates within ArcMap. Because SIT is integrated with the GI, 
you can integrate activities that have occurred in the inventory plots since time of inventory into 
the analysis by using NRM Forest Service Activity Tracking System, or NRM FACTS, 
information. Identify changes in administrative boundaries by using Automated Lands Project, or 
ALPS. 
 
The Analysis Tool for Inventory and Monitoring (ATIM) provides NFS a consistent interface 
with inventory and monitoring data and assists with producing estimates with confidence 
intervals and associated map-based products. ATIM can help you determine if FIA or other 
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existing data are sufficient to answer the monitoring questions or to assess data variability if they 
are deemed inadequate. ATIM can link to the spatial data using SIT; both can be used in the 
compilation and analysis of data and in the production of maps. 
 
Additional information is available on the DATIM Web site at 
http://www.fs.fed.us/emc/rig/DATIM/index.shtml. 
 
Figure F-1.—Relationship of Design and Analysis Toolkit for Inventory and Monitoring tools 
and functions. 
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Appendix G. Methods To Spatially Distribute Sample Locations 
By James Gerleman 
 
The following description focuses on those methods that are appropriate for mid-size areas of 
interest. This description includes use of the Forest Inventory and Analysis (FIA) base grid and 
use of computer programs and geographic information systems (GISs) to locate a given number 
of plots in a spatially balanced manner. The methods described in the following section can be 
used for systematic sample designs and stratified sample designs. When designs are stratified, 
each system described should be applied within every stratum of the sample. 
 
Use Forest Inventory and Analysis Program Grid for Spatially Balanced Plot Locations 
 
The FIA program grid is based on a sampling frame developed by the U.S. Environmental 
Protection Agency’s Environmental Monitoring and Assessment Program and is based on a 
systematic tessellation of hexagons to spatially balance plot locations across the United States. 
The sample frame is summarized as a base hexagon centering over the conterminous United 
States, then from that tessellating across the entire planet (Bechtold and Patterson 2005). Each 
hexagon is then divided into smaller (approximately 94,992 acres) and smaller (approximately 
5,937 acres) hexagons to create sample frames to satisfy intensity requirements of FIA and 
Forest Health Monitoring (Bechtold and Patterson 2005). One FIA plot is randomly located in 
each 6,000-acre hexagon on the base national FIA program grid (figure G-1). Plots measured in a 
given year are in the same “panel,” so remeasuring plots in the Western United States every 10 
years creates 10 panels of data. 
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Figure G-1.—An example of selected FIA plots: Phase 2 hexagons from Waseca County, MN, 
and the selected Phase 2 plots for each cell by panel (Burkman 2005). 
 

 
 
For mid-level or finer scale information needs, it might be necessary to intensify the base FIA 
grid to achieve estimates with the precision specified by the information needs assessment. The 
Forest Service Northern Region (Region 1) Vegetation Analysis Team developed a tool to 
intensify the plots through the use of the Region 1 Intensification Plot Locator, or RIPL, 
software. 
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Use Geographic Information Systems To Generate a Random, Spatially Balanced Set of 
Locations 
 
One disadvantage of the regular tessellation system used by FIA is that partial cells (polygons) 
are created by population boundaries (Lister and Scott 2009). This system creates a situation in 
which the probability for selecting a sample in a partial cell is unequal for all partial cells and 
results in bias estimates of population totals (Gregoire and Scott 2003) if the appropriate 
statistical estimator is not applied. To avoid problems with systematic and semisystematic 
sample networks, several alternative sample selection methods have been proposed (Cotter and 
Nealon 1987, Olea 1984, Olsen et al. 1999, Saalfeld 1998, Stevens 1997). This section describes 
those alternative methods that employ use of GIS to generate the plot locations, based on 
spatially balanced systems. 
 
Grid with random start. Systematic, or grid sample, is one of the simplest methods for sample 
unit distribution and may form the building blocks of more complicated stratified designs. It is 
also apparent from the spatial distribution of plots that it fairly represents the study area, a 
quality that is not apparent to the casual observer with a random sampling design. Designing a 
grid sample is relatively easy and can be accomplished with GIS. The key decision in designing 
a grid is to determine sample intensity, or the distance between sample points, that will make up 
the grid. Grid spacing not only determines the smallest possible sample unit, but also, more 
importantly, determines the total number of sampled points (McDonald et al. 2002). 
 
After grid spacing is determined, the grid can be constructed by randomly determining the origin 
of the grid. For example, two random numbers are chosen between 0 and y, which are labeled as 
m1 and m2 (McDonald et al. 2002). Assume the origin of the geographic coordination system is 
in the lower left corner of the area of interest, the site at the lower left-most point is the point 
(m1, m2) that shifts the grid north and east by a random amount (McDonald et al. 2002). All 
other points on the grid are placed north and east, a predetermined spacing from the origin and 
subsequent points. 
 
Advantages to this type of design are that sample points are placed uniformly across the 
population of interest, and are unbiased in their placement. A disadvantage of this type of sample 
is that small areas of interest may be missed during the sample, unless the sample size is large. 
For example, riparian areas tend to occupy small areas; they may be missed with this type of 
sample. In addition, systematic designs do not take into account different costs for travelling 
from one site to another because all the distances are equal. A separate sampling frame should be 
considered for discrete resources, like riparian areas and wetlands, to supplement a systematic 
sample. 
 
Space-filling curves. A number of space-filling curves techniques can be used, but only two are 
described in this appendix. The first method for selecting plot locations is the use of the space-
filling curves technique, as described by Lister and Scott (2009), to generate a spatially balanced 
sample. This approach uses GIS to divide the population area into pixels, aggregate the pixels 
into equal area groups (clumps) based on their location along a fractal curve, then randomly 
sample a point (or pixel) within each clump (figure G-2; Lister and Scott 2009). 
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Figure G-2.—Example of a spatially balanced sample using pixel groups from Lister and Scott 
(2009). Note: Each element in the sample frame is grouped into a class based on its spatial 
address assigned by the fractal curve (figure G-3). 
 

 
 
The second technique using space-filling curves are curves or a shape that completely occupies 
an area of interest (Bartholdi and Platzman 1988). A specific type of space-filling curve is the 
Peano curve fractal, which is a type of repeating self-similar shape that is repeated recursively 
and fills a planar surface (figure G-3). In effect, each point on the Peano curve creates a one-
dimensional (1-D) spatial reference for each point in two dimensions (2-D), thus representing 
locations in 2-D space as locations along a line (Lister and Scott 2009). This portioning of space 
creates a de facto tessellation that can divide the sampling frame into an infinite number of 
regions of equal size. 
 
Figure G-3.—An example of one type of Peano Curve. Note: Four levels of recursion are shown, 
demonstrating its self-similar, space-filling properties. The intensity of recursion affects the 
density of the curve within the sample frame. Figures generated by Java applet constructed by 
V.B. Balayoghan, retrieved December 1, 2006, from http://www.cs.utexas.edu (Lister and Scott 
2009). 
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The use of space-filling curves presents a way to translate the location of each element in a 2-D 
sample frame to a 1-D address, group these addresses into contiguous or semicontiguous groups 
of potential sample locations, and randomly select samples from within these groups (Lister and 
Scott 2009). This approach offers the benefits that most other approaches offer, and has the 
added advantage of transparency and intuitive clarity (Lister and Scott 2009). In addition, it can 
be easily implemented with the native functionality of a commonly used GIS. 
 
Generalized Random Tessellation Stratified (GRTS) design. One approach described by 
Stevens and Olsen (1999, 2004) is to recursively divide the area of interest into quadrants, make 
an ordered spatial address to each quadrant, and reorganize the spatial address such that samples 
can be randomly selected in a spatially uniform way (Lister and Scott 2009). This procedure has 
several desirable properties, including applicability of standard design-based estimation 
procedures, spatial balance, ability to assign differential selection probabilities to elements in 
different areas, and ability to create subsets of plots that have the same properties as the full set 
of plots (Lister and Scott 2009). 
 
A good summary of GRTS is found in an online article on the Web site 
http://www.landscapetoolbox.org (The Nature Conservancy and Jornada Experimental Range 
2012). The article describes the following procedure for locating samples within an area: 
 

1. Assign the sample units an order according to a recursive, hierarchal, randomization 
process (figure G-3). In the example in figure G-4, the main quadrats and subquadrats 
have the same number ordering, but, in practice, random numbering is assigned for each 
quadrat or subquadrat. This process preserves the spatial relationships of the sample 
units. 

2. Arrange the sample units in order. 
3. Divide the line of sample units into a number of equal length segments, depending on the 

desired number of total samples. 
4. Select one sample unit from each segment for sampling. The GRTS method produces 

samples that are spatially balanced. 
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Figure G-4.—An example of Generalized Random Tessellation Stratified process applied to an 
area to be sampled (Stevens and Olsen 2004). 
 

 
 
Several computer-based programs will generate GRTS-like sample selections (Kincaid 2012, 
Theobald et al. 2007, West Inc. 2006). Some of the disadvantages of this system are that current 
GRTS implementations will select sample points that are located in areas that are not feasible for 
a crew to access, such as hazardous areas or denied access areas, in a spatially disjointed manner 
because of the randomization process used (Stevens and Olsen 1999, 2004; Theobald et al. 
2007). Randomly selecting replacement plots near the original may alter selection probabilities, 
possibly affecting decisions to use classical statistical estimators (Lister and Scott 2009). 
 
Use Hawth’s Analysis Tools for ArcGIS and Geospatial Modeling Environment in R 
 
Other tools that could be used for selecting plot locations are Hawth’s Analysis Tools, an 
extension for ESRI’s ArcGIS software designed to perform spatial analysis that cannot 
conveniently be accomplished by the base ArcGIS program (Hawthorne 2012a). This extension 
performs many spatial analyzing tasks, including pertinent sampling tools, that may be of use. 
 

• Generates random points. Enables the user to generate a total number of random points or 
a constant number per polygon. Also, enables the user to prohibit random points from 
being placed in certain areas, such as “No Data” cells. 
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• Generates sample shapes. Enables the user to generate polygon sample points around 
each point based on a polygon shape. 

• Generates conditional point sample. Enables the user to generate random points based on 
a unique feature. 

• Generates three-dimensional (3-D) sample. Enables the user to generate a random sample 
of 3-D locations in a volume of space specified by the user. 

 
This tool contains many other uses for sampling and other uses for spatial analysis. Hawth’s 
Tools are free for use and are found on the Web site <http://www.spatialecology.com>. 
According to this Web site, as of June 2012, Hawth’s Tools are being formally replaced with the 
Geospatial Modeling Environment (GME), which is an improved version of its predecessor, 
designed for complex spatial analysis and modeling. GME is a standalone program that runs with 
the open-source software, R, and works with ArcGIS. This platform has better analysis and 
modeling tools; has features such as batch processing, new graphing functionality, and support of 
geodatabases; and can be accessed programmatically (Hawthorne 2012b). Strengths of the R 
software include that it is free to use, it has a large user community, and many packages are well 
documented for users’ reference (Hawthorne 2012b).  
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Appendix H. Recommended Field Gear 
The following list of field gear identifies many items that are necessary to conduct an existing 
vegetation field inventory. This list may not include all the equipment necessary to collect all 
attributes as per the field manual. A final check between the protocols and the list of field gear 
should be done. 
 
General Field-Going Equipment Needs 

• Vehicles. 
• Backpack—with a comfortable fit; sturdy enough to carry 35 to 50 pounds (lbs) of field 

gear. 
• Overnight backpack (to use for remote plots that require camping), with a comfortable fit; 

sturdy enough to carry 60 to 80 lbs of field gear, including a sleeping bag, cook stove, 
utensils, water purification system, warm clothing, and food. 

• Hiking boots—with a comfortable fit; it is highly recommended that the top of the boots 
extend above the ankle (to provide adequate protection to the feet and ankle). 

• Rain gear. 
• Hard hat. 
• Timber cruising vest. 
• Water bottles. 

 
Vegetation Measurements Equipment 

• Logger’s tape—50 or 100 feet (ft). 
• Diameter tape—generally in inches and tenths of inches. 
• Carpenter’s tape—25 ft, with 0.1 ft and inch marks. 
• Increment borers—length of borer needed depends on size of trees that will be cored (for 

measuring tree age/radial growth). 
• Relascope, angle gauge (for selecting trees when doing variable radius plot sampling). 
• Cloth tape—100 ft and/or 200 ft (for traversing from the reference point (RP) to the plot 

center (PC) and sample transects). 
• Hatchet with flat back and/or small hammer (for nailing RP/witness tree tags, hammering 

sample tree nails at diameter at breast height (d.b.h.)/diameter at root collar (d.r.c.), and 
sounding for defect). 

• Lumber crayons (for d.r.c. stem measurements). 
• Paint pen (for marking d.b.h. on all aspen trees and marking trees less than 3.0-inches 

d.b.h./d.r.c.). 
• Clipboard (for paper field forms). 
• Mechanical pencils and/or pens.  
• Compass. 
• Clinometer—preferably with a slope correction factor, or SCF, for measuring tree heights 

and adjusting for slope distance. 
• Ruler—with 1/10-inch (in) and 1/20-in scale (for measuring radial growth and duff/litter). 
• Flagging—one type with a solid color and another type with a pattern; for example, one 

with orange flagging and one with blue/white striped flagging. Check protocols to see if 
specific colors are specified. 
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• Calculator—with the following function keys: MRC, M-, M+, and square root (highly 
recommended for calculating d.r.c. on woodland species). 

• “Write in the rain” notepad. 
• Digital camera (if required for photographing plot). 
• Black felt-tip marker for photo placard. 
• Plant identification books (to aid in vegetation composition sample—tree, forb, shrub, 

and graminoid identification). 
• Laser range and height measurer; for example, Laser 200 and OPTi-LOGIC 400LH units. 
• Global positioning system (GPS) unit capable of field averaging and navigation, 

including a distance or route function, with a stated accuracy of ± 10 meters (m) (49.2 ft) 
in the horizontal dimension and digital compass accuracy of ± 5 degrees; for example, 
Garmin GPSMAP 62st w/ WAAS capability. 

• Portable data recorders (PDRs) that have the following features: 
o Is weatherproof. 
o Can be charged from AC or DC (vehicle cigarette lighter socket) or can run on 

alkaline batteries so it will still work in remote environments. 
o Has rugged field case. 
o Can run the software program for acquiring data; for example, Exams software. 
o Consider PDRs that link to or have built-in GPS. 

 
Communication Devices 
Note: In many Forest Service locations, cell phones do not provide a reliable means of 
communication. 

• Forest Service radios with frequencies set. 
• Satellite phone. 
• GPS tracker. 

 
Safety Items 

• First aid kit. 
• Bear pepper spray.  

 
Plot and Tree Monumentation Equipment 

• RP tags–to mark reference point. 
• Witness tree tags–aluminum tags for X witness trees. 
• PC stakes–to mark plot location centers. 
• Aluminum nails–to mark d.b.h./d.r.c.—do not use steel nails. 
• Popsicle sticks—to mark ends of transect lines. 
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Appendix I. Data Validation and Reconciliation 
By Jim Alegria 
 
The question of what constitutes a value that should be changed remains. Two rules of thumb 
can be used: (1) values that are fundamentally impossible, such as trees coming back to life, and 
(2) variables that are so implausible to be beyond belief. The differences between measurements 
of an attribute can be described as a random process with three components: (1) random error, 
(2) systematic error, and (3) gross error. 
 
Random error is the distribution of measurements around their true value that occurs if many 
people take the same measurement. The mean of measurement error is often considered to be 0. 
Not all measurements will be the identical because of individual techniques or environmental 
factors that will add variation. Although significant effort is made to reduce this type of error 
through better training and equipment, it is inherent to all types of measurements. 
 
Measurements made on the same attribute at two different points in time have errors for each 
occasion, plus a real change in the attribute value. Examples are height measurements of the 
same tree or forest type classified at each measurement occasion. Note that the measurement 
error associated with the change estimate is additive. This additive error means that if the 
attribute has a relatively large measurement error in relation to the change in attribute value 
between the two occasions, it will be very difficult if not impossible to separate the measurement 
error from real change. 
 
The second type of error is called systematic error. Rather than varying around the true value, 
systematic errors result when the measured value tends to one side of the true value. They are 
often the result of miscalibrated instruments, procedural errors, or observer bias. Because these 
errors result in biased estimates, considerable effort should be made to routinely calibrate 
instruments, to perform both hot and cold checks, and to conduct “refresher” trainings. 
 
The third type of error is called gross error. Such an error may be the result of instrument failure 
or observer carelessness, thus they may be large in size and have a substantial influence on 
estimates made with the data. It is this type of error that the validation process attempts to 
identify and replace with a value that possesses the following properties: 
 

• Does not bias the estimate of the population mean. To be unbiased means that if the 
substituted value were to be replaced many times with similar substituted values, the 
mean of all the datasets would equal the true population mean. 

• Preserves the underlying variability of the data. The variance is a measure of the 
variability of an estimate. If a substituted value does not replicate the variability of 
similar data, then the estimated variance will be biased. A common example is when 
missing heights are replaced with a constant for a given diameter. Using constants for 
heights will underestimate the true variability of tree height in the population. To prevent 
this underestimation from happening, the substituted value should emulate the inherent 
variation that is found in the population with similar characteristics.  
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Now that we have discussed types of errors, how do you identify gross errors and how do 
you substitute a value with one that is unbiased and preserves the variability of the 
underlying population? 

 
I.1 Identifying Gross Errors 
By far, the best method for identifying gross errors is to incorporate error-checking routines (i.e., 
screening for allowable values) into field data recorder software so that unusual data could be 
verified in the field. In the office, you do not have the advantage of double-checking whether the 
value entered is real or a data entry error. 
 
In the office, methods for detecting gross errors vary from visually inspecting graphs of data 
points to standardizing the residual error produced from a model in which standardized residuals 
greater than a predetermined percentage of deviates are treated as gross errors; for example, less 
than 5 percent. The model does not have to be complex but should fit the data reasonably well. 
Often the model is based on ordinary least squares, typically called “linear regression.” 
Statistical textbooks that contain a section on regression analysis will have a discussion on 
residuals, and many textbooks will discuss standardized residuals. All statistical software 
packages (e.g., SAS or SPSS) have options for outputting standardized residuals. 
 
Reconciliation is a comparison between two measurements of the same attribute at two points in 
time; however, identifying the gross error is only the first step. Next, a determination must be 
made regarding whether the first or the second measurement is likely in error. Other values 
collected on the same plot often can provide evidence regarding which sampling event is suspect. 
For example, if you have a plot with several subplots and all the measurements for physiographic 
position are on the lower one-third of the slope but the second measurement of the suspect 
subplot is on the ridgetop, it is a good bet that the second measurement is in error. Another 
example is that the diameter growth of a tree is abnormally large. To determine which occasion 
should be changed, examine the other trees on the subplot to identify the error. 
 
When it is not clear which sampling event to change, one option is to randomly pick a sampling 
event. Another option is to think about the quality of the data collection algorithms or the data 
collection training at those two points in time. It is often believed that the quality of the data 
improves over time because of better data editing routines or training. If you believe that this 
assumption is true, then the older data are changed in the belief that the more recent data are 
probably “more correct.” 
 
For categorical data, the process for identifying which sample event should be changed can be 
used to reduce the number of values that make sense. If the list cannot be reduced to a single 
logical choice, then simply randomly choose one from the reduced set of possibilities. 
 
I.2 Generating Substitute Values 
Two common methods of generating a substitute value for continuous variables are discussed in 
the following paragraphs. 
 

• Modeling. Develop a simple model that predicts the variable based on other related 
attributes using data that have had the outliers removed by one of the methods described 
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in the previous section. For example, tree heights are often modeled as a function of 
species and diameter. If it is the difference between the two measurements that is in 
question, then the diameters at each occasion can be used to check the heights or to 
determine the probable change in height. After a model is developed, enter the 
independent values for the data element in question to predict the difference. Remember 
that the equation will predict exactly the same value whenever the same independent 
values are entered into the equation. This prediction approach violates the desired 
property #2 above in that it will reduce underlying variability of the data of the original 
population. To remedy the problem, a random number should be generated from a 
distribution with the same shape (parameters) of the residual errors. It is most common to 
assume that the residual errors are distributed like a normal distribution, but other 
residual error distribution can be modeled. It is most common to generate a random 
number with a mean of 0 and a variance that is estimated by the model. Add the random 
residual number to the predicted value of the sample event that is believed to be most 
reliable. Remember because the mean is 0, the random number could be positive or 
negative, so adding it to the predicted value will result in a substitute value either larger 
or smaller than the predicted value. 

• Imputation. Imputation is a method of substituting values from similar data for missing 
or erroneous data. Many people think that this approach is simpler than the modeling 
method. Identify clean data that are similar to the data element. You can identify similar 
trees by identifying trees of the same species, within a diameter range that includes the 
diameter of the tree in question, and maybe some measure of site quality. The collection 
of data that fits the definition is often called a “bin” or more formally a “cohort.” From 
the bin, randomly select a tree. Substitute the chosen observation for the suspect one. 
This method relies on the assumption that the original data are a random sample from the 
population so a random draw from a pool of cohorts will nearly preserve the variation 
from population. The term nearly means that this method is slightly biased, but the 
“proper” method, called multiple imputations, is cumbersome to employ for all but the 
most demanding surveys. 

 
The original data should be archived in a database that identifies the specific data cell changed 
and is backed up to a corporate drive. Keep a complete record of changes, methods used, and 
dates on which the changes were made in case questions arise about the data editing method 
applied or if a better method for generating substitute values is developed at a later time period. 
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Appendix J. Imputation of Inventories 
By C. Kenneth Brewer 
 
Imputation is the process of estimating missing data (Schreuder et al. 1993). Although a detailed 
discussion of the types of missing data and the various approaches to imputation is beyond the 
scope of the Existing Vegetation Classification, Mapping, and Inventory Technical Guide, 
Version 2.0, Schreuder et al. (1993) presented a good summary of the missing data analysis. A 
brief discussion of imputation to provide substitute values for data validation and reconciliation 
is included in appendix I. Within appendix J, however, the production of nearest neighbor (NN) 
imputation-based data surfaces (i.e., geospatial modeling of design-based inventory data; 
hereafter, NN data surfaces) is presented because of its increasing use within natural resource 
science and management (see review by Eskelson et al. 2009). Production of NN data surfaces is 
intended to supplement, not replace, the mapping approaches presented in section 3 of the 
Existing Vegetation Classification, Mapping, and Inventory Technical Guide, Version 2.0. 
 
The technical guide describes and discusses vegetation inventory as the process of applying an 
objective set of sampling methods to quantify the amount, composition, and condition of 
vegetation within specified limits of statistical precision. The traditional inventory approaches 
described thus far provide a wide variety of desirable characteristics and address the intended 
uses of inventory data. They do not, however, provide the characteristics of these data explicitly 
connected to vegetation pattern delineations or raster data surfaces (see section 3.3.2 of the 
technical guide for a discussion of spatial modeling surfaces). For planning purposes, it would be 
convenient to operate as if detailed inventory information were available for all modeling units in 
the planning area. Therefore, a methodology is needed to populate vegetation delineations or 
raster data surfaces with detailed, designed-based inventory data (i.e., plot-level tree list data). 
 
Imputation is an alternative to historically common stand-based statistical approaches (e.g., 
regression estimates or stratum averages) to populating unsampled units with data. Imputation 
involves estimating values for variables of interest (Y variables) by supplying measurements 
from one or more sampled units to unsampled units with similar characteristics in auxiliary (X) 
variable space (Ek et al. 1997, Eskelson et al. 2009, Hassani et al. 2004, LeMay and Temesgen 
2005, McRoberts 2001, Moeur et al. 1995, Ohmann and Gregory 2002, Ohmann et al. 2012, 
Temesgen et al. 2002, Van Deusen 1997). 
 
Imputation of inventory data from sampled areas to similar unsampled areas produces datasets 
that function like “wall to wall” data for planning purposes. There are many methods and 
variations of imputation, both univariate and multivariate. Eskelson et al. (2009) provide a good 
summary of common imputation approaches and summarize variable-space NN methods 
compared with other estimation methods. 
 
NN data surfaces developed for forest polygon data (reviewed in LeMay and Temesgen 2005) 
involve choosing a substitute for stands without detailed information (target stands) from a pool 
of stands that have detailed tree and stand data (reference stands), based on stand-level (or plot-
level) characteristics (X variables) that are available for every polygon. These NN methods 
include; Most Similar Neighbor (MSN; e.g., Moeur and Stage 1995, Moeur 2000), k nearest 
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neighbor (kNN; e.g., Maltamo and Kangas 1998), and tabular imputation methods (Ek et al. 
1997, Hassani et al. 2004). 
 
In a similar way, NN data surfaces developed from raster data involve choosing a substitute for a 
raster cell (or regions of cells) without detailed information (target cells) from a pool of raster 
cells (or regions of cells) that have detailed tree data (reference cells), based on plot-level 
characteristics (X variables) that are available for every raster cell. Forest Inventory and Analysis 
(FIA) data are commonly used reference data and Gradient Nearest Neighbor (GNN; Ohmann 
and Gregory 2002) is a commonly used NN method (Grossmann et al. 2009, Wilson et al. 2012). 
 
With an understanding of both the strengths and weaknesses of NN approaches, the spatial and 
temporal dimensions of land management planning benefit from their application. This 
application is particularly beneficial when various management alternatives or disturbance 
scenarios are considered. It is important, however, to carefully assess the model outputs to ensure 
reasonable correspondence between model-based estimates (from the imputation process) and 
designed-based estimates (from the inventory) for the variables of interest (e.g., Riemann et al. 
2010). 
 
Three primary imputation modeling approaches have been developed that could potentially 
address this important need. These approaches are based on variations of kNN methods 
developed for the imputation of strategic forest inventory data and increasingly used worldwide 
(Haara et al. 1997, Maltamo and Kangas 1998, McRoberts 2009, McRoberts et al. 2002, Tomppo 
1991). Although based on the kNN methods, these new approaches were developed for 
generating data surfaces primarily for mapping and simulation modeling rather than traditional 
estimation of missing inventory data. These methods also differ from kNN and from each other 
with respect to how neighbor plots are identified, ranked, and selected by using the X variables. 
 
The first of these approaches, MSN, was developed by Moeur and Stage (1995) and further 
developed by Crookston et al. (2002). The second, GNN, developed by Ohmann and Gregory 
(2002) follows the same general analytical logic. GNN, however, uses a different distance 
metric, constrained ordination. The third uses the Random Forest algorithm (Breiman 2001) 
adapted for imputation (Random Forest NN) by Crookston and Finley (2008). The adaptation of 
Random Forest was part of a broader imputation software development package named yaImpute 
(Crookston and Finley 2008). Within this software package users have options for using different 
values of k and various strategies for finding neighbors (e.g., MSN, GNN, and Random Forest 
NN). 
 
The MSN, GNN, and Random Forest NN approaches are most often implemented by assigning a 
single nearest neighbor to function like “wall-to-wall” data for planning purposes. Assigning a 
single NN maintains the original covariance structure in the data and ensures that the imputed 
values can (and do) actually exist. Thus, the resulting NN data surface can be used in simulation 
models and projected into the future. 
 
These various imputation approaches are promising techniques, with potential for generating 
spatially explicit, border-to-border information on forest composition and structure across the 
United States. Spatially explicit data of this type has the potential to address a wide variety of 
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business needs for the agency and others in the natural resource community. The Nationwide 
Forest Imputation Study (NaFIS) was conducted with the intent of serving as a pilot project to 
further assess that potential (Grossmann et al. 2009). The objective of NaFIS was to highlight the 
data needs for such a project, highlight the choices to be made throughout the process, and 
identify potential pitfalls to be avoided by a national implementation. 
 
NaFIS examined the process of NN imputation adapting the operational approach used by 
Ohmann et al. (Ohmann and Gregory 2002, Ohmann et al. 2012). This adaptation included 
integrating FIA’s annual inventory plots with spatially explicit climate, topography, and Landsat 
image data. NaFIS evaluated issues of scale in summarizing reference plot data, compared four 
distance metric choices (i.e., Euclidean, MSN, GNN, and Random Forest NN model types), and 
tested the number of neighbors integrated to make each model prediction by using five different 
values of k. 
 
In addition to the NaFIS work described in the previous section, Wilson et al. (2012) developed 
an NN imputation approach to mapping tree species over large areas by using FIA plots and 
moderate resolution raster data. The method efficiently integrates vegetation phenology derived 
from Moderate-Resolution Imaging Spectroradiometer, or MODIS, imagery and raster data 
describing relevant environmental parameters with extensive field plot data of tree species basal 
area to create maps of tree species abundance and distribution at a 250-meter pixel size. The 
approach uses the techniques of kNN and canonical correspondence analysis (adapted from the 
GNN approach described in the previous section). The approach also uses a stratification derived 
from the 2001 National Land Cover Database, or NLCD, tree canopy cover layer. 
 
The suite of assessment procedures (Riemann et al. 2010) applied to each of the modeled 
datasets indicate high accuracies, at the scales of assessments used, for total live-tree basal area 
per hectare and for many of the most common tree species. This approach allows for the 
mapping of individual tree species distributions, while preserving much of the species covariance 
found on the forest inventory plots, at a level of spatial detail approaching that required for many 
national and regional applications supporting resource plans and decisions. This work has 
recently been extended to provide the analytical basis for an NN imputation approach for 
spatially extant estimates of forest carbon (C) density for the conterminous United States 
(Wilson et al. in review). Results suggest that a forest inventory plot imputation approach can 
provide pixel-based maps of C density across a range of pools (e.g., live tree to forest floor) and 
spatial scales (e.g., subcounty to biome). 
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Appendix K. Example of a Job Hazard Analysis From the Forest Inventory 
and Analysis Program 
 

Table K-1.—Example of a job hazard analysis from the Forest Inventory and Analysis Program.  
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 Table K-1 (continued).—Example of a job hazard analysis from the Forest Inventory and 
Analysis Program.  
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Table K-1 (continued).—Example of a job hazard analysis from the Forest Inventory and 
Analysis Program.  
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Table K-1 (continued).—Example of a job hazard analysis from the Forest Inventory and 
Analysis Program.  
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Table K-1 (continued).—Example of a job hazard analysis from the Forest Inventory and 
Analysis Program.  
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Table K-1 (continued).—Example of a job hazard analysis from the Forest Inventory and 
Analysis Program.  
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