Ecological Uses of Vertebrate Indicator Species: A Critique

PETER B. LANDRES*
Department of Biology
University of Puget Sound
Tacoma, WA 98416, U.S.A.

JARED VERNER
U.S.D.A. Forest Service
Pacific Southwest Forest and Range Experiment Station
2081 East Sierra Avenue
Fresno, CA 93710, U.S.A.

JACK WARD THOMAS
U.S.D.A. Forest Service
Range and Wildlife Habitat Laboratory
Route 2, Box 2315
LaGrande, OR 97850, U.S.A.

Abstract: Plant and animal species have been used for decades as indicators of air and water quality and agricultural and range conditions. Increasingly, vertebrates are used to assess population trends and habitat quality for other species. In this paper we review the conceptual bases, assumptions, and published guidelines for selection and use of vertebrates as ecological indicators. We conclude that an absence of precise definitions and procedures, confounded criteria used to select species, and discordance with ecological literature severely weaken the effectiveness and credibility of using vertebrates as ecological indicators. In many cases the use of ecological indicator species is inappropriate, but when necessary, the following recommendations will make their use more rigorous: (1) clearly state assessment goals, (2) use indicators only when other assessment options are unavailable, (3) choose indicator species by explicitly defined criteria that are in accord with assessment goals, (4) include all species that fulfill stated selection criteria, (5) know the biology of the indicator in detail, and treat the indicator as a formal estimator in conceptual and statistical models, (6) identify and define sources of subjectivity when selecting, monitoring, and interpreting indicator species, (7) submit assessment design, methods of data collection and analysis and interpretations and the recommendations.

Resumen: Especies de plantas y animales han sido usadas por décadas como indicadores de la calidad de aire y agua, y de las condiciones de las tierras dedicadas al pastoreo y a la agricultura. Cada vez más, los vertebrados son usados para evaluar tendencias poblacionales y la calidad del hábitat de otras especies. En este artículo, revisamos las bases conceptuales, las asunciones, y las guías publicadas para selección y el uso de vertebrados como indicadores ecológicos. Concluimos que: en ausencia de definiciones y procedimientos precisos, los confundidos criterios usados para la selección de especies y su discordancia con la literatura ecológica, severamente debilita la eficacia y la credibilidad del uso de vertebrados como indicadores ecológicos. En muchos casos, el uso de especies como indicadores ecológicos es inapropiado, pero cuando sea necesario, las siguientes recomendaciones harán tal uso más riguroso: (1) describir claramente las metas de la evaluación, (2) usar indicadores sólo cuando otras alternativas de evaluación no sean disponibles, (3) escoger especies indicadoras a través de criterios explicitamente definidos de acuerdo a las metas de evaluación, (4) incluir todas las especies que cumplan con los criterios de selección, (5) saber la biología del indicador en detalle, y tratar el indicador como un estimador formal en modelos conceptuales y estadísticos, (6) identificar y definir fuentes de subjetividad cuando se selecciona, monitorea, e interpreta a las especies indicadoras, (7) someter el diseño de la evaluación, los métodos de colección de datos y análisis estadístico, las interpretaciones y las recomendaciones.

* Correspondence and requests for reprints should be addressed to this author.
Paper submitted 10/14/87; revised manuscript accepted 5/5/88.
statistical analysis, interpretations, and recommendations to peer review, and (8) direct research at developing an overall strategy for monitoring wildlife that accounts for natural variability in population attributes and incorporates concepts from landscape ecology.

Introduction

Indicator species have been used for decades as a convenient assay of environmental conditions (Thomas 1972; Zonneveld 1983). The National Research Council (1986, p. 81) recommends using indicator species because "only biological monitoring can tell us what [toxic] materials are doing to organisms." Plants and invertebrates have been successfully used to assess air and water quality (Ott 1978; Phillips 1980; Newman & Schreiber 1984; Shubert 1984; Rosenberg et al. 1986), and as indicators of agricultural and range conditions (Clements 1920; Shantz 1938; Stoddart et al. 1975). Vertebrates were first proposed as indicators for temperature or life zones by Merriam (1898) and Hall & Grinnell (1919). Later, Shelford (1963) used plants and animals (including vertebrates) to classify communities. In recent years a dramatic increase has occurred in using vertebrates to indicate the presence and effects of environmental contaminants (Wren 1986), and population trends and habitat suitability for other species (Verner, Morrison, & Ralph 1986). Despite this increased use, the conceptual bases, assumptions, and published guidelines for using ecological indicators have not been adequately examined. In this paper we (1) review traditional and agency definitions of indicator species, (2) evaluate current ecological uses of vertebrate indicators, (3) examine ecological criteria for selecting indicators, (4) discuss practical considerations for using indicators, and (5) when indicators are necessary, offer recommendations for making their use in natural resource management more rigorous.

Definitions

"Indicate" and "index" are derived from the Latin *indicare*, meaning "to point out" or "to show" (Webster 1979). Inhaber (1976, p. 105) states that biological indices "give us information about the state of environmental quality not obtainable in other ways." In contrast, a measure directly quantifies the factor of interest. Thus, an indicator species is an organism whose characteristics (e.g., presence or absence, population density, dispersion, reproductive success) are used as an index of attributes too difficult, inconvenient, or expensive to measure for other species or environmental conditions of interest (Fig. 1). In effect, the indicator is a surrogate measure. By definition, indicators may bear no direct or simple cause and effect relationship to the factor or factors of interest.

Agency Definitions

Much of the current use of indicators was initiated by the U.S.D.I. Fish and Wildlife Service (USFWS), and by the U.S.D.A. Forest Service (USFS). The USFWS developed guidelines known as Habitat Evaluation Procedures (HEP) "to document the quality and quantity of available habitat for selected species of wildlife" (USDI 1980b, p. 1-1). These species are referred to as "evaluation species." These widely used procedures were initially derived to assess impacts of water developments on wildlife habitat (Daniel & Lamaire 1974). HEP was subsequently refined and tested (USDI 1976; Flood et al. 1977; Ellis et al. 1979; Baskett et al. 1980). The capacity of a habitat to support the evaluation species is approximated by a Habitat Suitability Index (HSI) derived from

Figure 1. Conceptual model illustrating use of indicator species to infer population trends and habitat suitability for other species of interest. Solid lines show simple cause and effect or direct influence of environmental factors on the indicator species and the species of interest. The dashed line shows inference or extrapolation of population attributes or environmental conditions from the indicator species to the species of interest.
a conceptual or mathematical model (USDI 1980c). Socioeconomic and ecological criteria are used to select evaluation species. Species selected by the first criterion include those that are of high public interest or have high economic value. Species selected by the ecological criterion include those with sensitivity to specific environmental factors, keystone species (i.e., species that exert a major influence on the community), or single species representative of a guild (USDI 1980b).

In the USFS, each National Forest must identify "Management Indicator Species" (MIS), as specified in regulations pursuant to the National Forest Management Act of 1976 (Code of Federal Regulations 1985). MIS include (1) recovery species—those identified by state or federal governments as threatened, endangered, or rare, (2) featured species—those of social or economic value, (3) sensitive species—those identified by Regional Foresters as having habitat requirements particularly sensitive to management activities, and (4) ecological indicators—those used to monitor the state of environmental factors, population trends of other species, or habitat conditions. Specific goals, objectives, and standards for MIS appear in each National Forest Plan. In addition, the USFS established the Wildlife Habitat Relationships (WHR) Program, which uses MIS to identify ways to improve wildlife habitat and to predict the consequences to wildlife of a change in habitat (Salwasser et al 1980; Nelson & Salwasser 1982).

Ecological Uses of Vertebrate Indicators

Vertebrate indicators may be divided into three broad classes based on the parameters of the environment that are of interest: presence and effects of environmental contaminants, population trends of other species, and habitat quality for other species or entire communities and ecosystems. Indicators of environmental contaminants have been thoroughly studied (e.g., Phillips 1980; Martin & Coughtrey 1982; Cairns 1986), and we only briefly discuss their use here, focusing our analysis on the latter two uses of indicators.

Indicators of environmental contaminants have a relatively long history and generally require little inference about effects of the contaminant on the indicator, or what is being assessed by the indicator (National Academy of Science 1979). For example, absence of certain lichens indicates SO₂ air pollution (Hawkesworth 1976), and the community attributes of benthic macroinvertebrates indicate stream pollution (Hawkes 1979). With vertebrates, distress of canaries indicated bad air quality for miners, and pollutant levels in muscle tissue and population declines of birds were the first indicators of environmental contamination from a variety of chemical pollutants (Morrison 1986). It is primarily with such traditional uses that cause and effect relationships have been established between environmental conditions and response of the indicator (Westman 1985; Morrison 1986). However, the analyses of Roberts & Johnson (1978) and Wren (1986) show that metal pollution levels in vertebrates may result from mobility and transfer potential of the pollutant within the ecosystem, rather than being directly related to pollutant concentration in the environment. These results demonstrate the need for caution and detailed information when using indicators of environmental contaminants.

Indicators of Population Trends

CURRENT USE

The USFWS and USFS use indicators to assess population trends of other species. HEP guidelines state that "The degree to which predicted impacts for these [evaluation] species can be extrapolated to a larger segment of the wildlife community depends on careful species selection," and that these impacts "are extended with some degree of confidence to other guild members" (USDI 1980b, pp. 3-2, 3-3). The Code of Federal Regulations (1985) mandates the USFS to use "population changes [of management indicator species to] . . . indicate the effects of management activities on other species." Vertebrate indicators are also considered necessary to reduce the time and effort required to develop management strategies or determine minimum area requirements for viable populations (Wilcox 1984; Soulé 1986; Baker & Schonewald-Cox 1986).

EVALUATION

The implicit assumptions in this use of indicators are that they provide a reliable assessment of habitat quality, and that if the habitat is maintained for the indicator, conditions will be suitable for other species (see Fig. 1). Such covariation (or correlation) of species' population trends would most likely occur among members of the same guild. For example, Severinghaus (1981, p. 187) proposed that "Once the impact on any one species in a guild is determined, the impact on every other species in the guild is known." Such extrapolation among guild members is referred to as the "guild-indicator" approach (Verner 1984; Block, Brennan, & Guttierez 1986).

These assumptions fail on conceptual and empirical grounds. Although species in a guild exploit the same class of environmental resources (Root 1967; Jaksic 1981), they are not necessarily alike in other ways they use and respond to the habitat (Landres 1983; Verner 1984). Each species has breeding characteristics, foraging behaviors and diet, and habitat requirements that set it apart from others (e.g., Block, Brennan, & Guttierez 1986). This makes extrapolation from one species to
another difficult or impossible. Furthermore, studies of interspecific competition among guild members suggest that the presence of one species may exclude another that is too similar in resource exploitation (Schoener 1983; Martin 1986). Finally, the criteria used to define guilds do not include mechanisms of population regulation. Population density in some species may be limited by habitat, and in others by predation, disease, extreme weather conditions, or unknown factors on migration routes or wintering grounds. Given such complications, it is unlikely that population trends among guild members would change in parallel fashion.

Despite these conceptual problems, it was recently suggested that finer subdivision of guilds might "reduce variability within the guild and allow direct inferences about habitat quality for non-studied species" (Roberts & O'Neil 1985, p. 360), and that "guilds can be used to select evaluation species to extrapolate information to nonstudied species" (Roberts 1987, p. 473). These suggestions ignore concerns raised by Landres (1983) and Verter (1984) about (1) the reduced generality of the analysis and subsequent decrease in applicability for habitat assessment, (2) unique responses of species to environmental conditions or disturbance, (3) the keystone functions of some species, (4) varying strengths of trophic interactions affecting species' resource-use patterns, and (5) inferences derived from different geographical areas or seasons.

Empirical evidence supports our assertion that population responses cannot be extrapolated from one guild member to another. For example, density estimates of 19 bird species in five guilds were compared in managed and undisturbed mixed-conifer old-growth forests in northeastern Oregon (Mannan et al. 1984). In four of the guilds, population responses of the component species did not exhibit parallel trends and even the direction of the differences was inconsistent. In only one guild (of two species) was there parallel change in abundance. Similar conclusions were reached in a study of yearly change in abundance of birds in ponderosa pine forests in Arizona (Szaro 1986).

Because neither conceptual nor empirical considerations support use of indicators as surrogates for population trends of other species, this approach to wildlife assessment should be avoided. If such use is necessary, it must be justified by research on populations of the species involved, over an extensive area and time.

Indicators of Habitat Quality

CURRENT USE

Various methods (USDI 1980a,b,c; Nelson & Salwasser 1982; Capp, Sandfoot, & Lipscomb 1984; Hoover & Willis 1984) are used to assess wildlife habitat quality based on assumptions that the population density of an indicator is an index of habitat quality for that species, that one or more species may indicate habitat suitability for other species, and that species-habitat relationships can be adequately modeled. For example, Powell & Powell (1986) concluded that reduced clutch size and fledging success in great white herons (Ardea herodias) demonstrated "poor habitat quality" of a shallow estuary in Florida. Mealy & Horn (1981) suggested that management of 414 species of forest vertebrates could be achieved by managing for elk and three species of accipitrine hawks. In these cases, indicator species are used as an early warning of environmental change. Management agencies also use indicators to predict the influence of future impacts on habitat quality for other species through the use of HSI and similar models (USDI 1980b; Nelson & Salwasser 1982).

EVALUATION

Several problems arise when using indicators to assess habitat quality. First, density is a tenuous index of habitat quality if winter habitat, dominance status, reproductive success, predator populations, and seasonal fluctuations in resources and abiotic conditions are not considered (Van Horne 1983; Maurer 1986). Also, difficulties in estimating density may yield spurious results and conclusions, particularly over the short run (see "Practical Considerations When Using Indicators," below).

Second, numerous problems are associated with indices that combine several variables into a single index (Jarvinen 1985; Gotmark, Ahlund, & Eriksson 1986), as when using indicator species to assess habitat quality. For example, the contribution of each component of the index is obscured, and as demonstrated with diversity indices (Faaborg 1980; Samson & Knopf 1982; Christensen & Peet 1984), different combinations of component scores can give identical index values. Similarly, Westman (1985) and Schroeder (1987) identified several conceptual and mathematical problems in HSI models. Even so, such models are considered the most expedient methods for evaluating impacts of habitat change on wildlife populations (Salwasser 1986; Verner 1986). Despite problems, these indices continue to be used by resource management agencies, at least over the short term, because of legal mandates (Kirby 1984).

Third, without adequate research, it is difficult or impossible to judge the efficacy of an indicator as an index of habitat quality for other species. Habitat "quality" probably includes species composition and structure of the vegetation, wildlife taxa and their reproductive rates, interactions among the biota, as well as abiotic and stochastic factors. Given the extreme complexity of natural systems, the probability is small (even with adequate research) that a single species could serve as an index of the structure and functioning of a community.
or ecosystem (Ward 1978; Cairns 1986b). Schroeder (1987) suggested that a lack of quantitative studies clearly linking indicators with specific community attributes precludes using them at the habitat or community level. Olendorff, Motroni, & Call (1980) reached a similar conclusion regarding raptorial birds. In addition, managing an area for an indicator may preserve only those environmental conditions needed by that species, ignoring ecological processes and resources needed by other species (Kushlan 1979). We agree with Baker & Schonewald-Cox (1986, p. 74) that "Incorrectly assuming that other species are receiving protection as a result of the protection of [an indicator] can result in the inadvertent loss of those other species." We conclude that using one or more vertebrates to indicate habitat quality for other species should not be undertaken until research confirms the validity of this approach.

Fourth, a distinction exists between using indicators to assess past or current environmental conditions and predicting future conditions from HSI or similar models. The influences of factors outside the species-habitat relationship (e.g., weather, disease, anthropogenic disturbance), plus the problems discussed above, decrease the accuracy of predictions. Also, circularity arises when using indicators to predict habitat conditions, because the initial choice of the indicator depended on those habitat conditions (Emlen 1973). For these reasons, model validation (Marcot, Raphael, & Berry 1983) and examination of extrinsic factors must be incorporated into the process of using indicators for predicting habitat quality, if this approach is used.

Ecological Criteria for Selecting Indicators

Ecological criteria are important whenever a proposed action might affect the population structure, geographic distribution, or genetic constitution of a species, or might alter the structure or functioning of a community or ecosystem process. Two different approaches may be used to address ecological criteria. A species-based approach would be used when a particular species or group of species is of concern. In this approach, data on such attributes as population density, dispersion, reproductive output, and food and habitat requirements are needed. Community-based approaches are used when the quality or integrity of a habitat or community is of concern, with data collected on attributes of community structure, and on processes such as nutrient cycling, primary and secondary production, and the factors regulating these processes. Because the types of data needed under each approach are different and, generally, cannot be substituted for one another, it is essential to determine whether either approach alone, or both, meet assessment goals. The criteria currently used to select indicators for ecological assessments are examined below.

Sensitivity

Effective indicators are sensitive to the environmental contaminants or habitat attributes of concern. Two assumptions are implicit in this criterion. First, sensitivity should be related to habitat attributes by cause and effect, not merely correlation. Otherwise, the influence of habitat change on population attributes of the indicator (e.g., density or dispersion) may not be separable from influences of other regulating factors (e.g., extreme weather, predation, disease, or interspecific competition). For example, in the first draft of one National Forest's management plan, the raccoon (*Procyon lotor*) was proposed as an indicator of riparian habitat. However, because the raccoon thrives on human discards and is flexible in habitat use, it is a poor choice as an indicator of the quality of this habitat and for species dependent on pristine riparian conditions. Second, management agencies are necessarily restricted to selecting indicators that are sensitive to habitat attributes that the agency can control (Sidle & Suring 1986).

In contrast, an increase in abundance of insensitive or tolerant species may provide information on habitat conditions (Westman 1985). Although this approach is successfully used (e.g., Karr 1981), caution is necessary because the density of such species may increase for reasons unrelated to the environmental conditions being managed. For example, European starlings (*Sturnus vulgaris*) increased in density and broadened their distribution because of their aggressiveness in displacing other cavity-nesting birds, not because of a change in environmental conditions (Troetschler 1976). Therefore, the abundance of such species should not be used as the only indicator of a change in habitat attributes.

Variability of Response

An effective indicator must exhibit low levels of variability in response to the environmental factors of interest. Alternatively, the contribution from each significant source of variation must be identified. Variability may result from differences within individuals, over time, with the influence of such factors as hunger, reproductive or dominance status, or differences in age and acclimatization to environmental conditions (Morse 1974; MacMahon et al. 1981). Among individuals, differences may result from genetic and nongenetic (e.g., experience or learning) differences and inter-deme genetic differences (Grant & Grant 1983).

Specialist Versus Generalist

Species vary in the range of resources or habitats used, each species falling somewhere along a specialist-generalist continuum. Odum (1971) first identified this criterion for selecting indicators, suggesting that specialists are better indicators because they are more sen-
sitive to habitat changes. Use of specialists is also advocated on the assumption that meeting their needs will provide for generalists as well (USD 1980b; Graul & Miller 1984).

Although managing for specialists may provide conditions in which some other species find suitable habitat, it may not provide for all. For example, some species need a combination of habitat types in certain proportions and spatial arrays (Forman & Godron 1981; Pickett & White 1985). In addition, specialists may be less abundant than generalists, leading to problematic sampling and higher costs. Therefore, we suggest that if indicators are used, they exhibit a demonstrated relationship to habitat attributes of interest, and not be selected solely on the basis of whether they are specialists or generalists.

Size

Odum (1971) and Ward (1978) suggested that species of large size are better indicators than smaller species, because larger species exhibit slower turnover rates and are therefore more stable. Odum (1971, p. 139) states that "Large species usually make better indicators than small species because...a larger and more stable biomass or standing crop can be supported with a given energy flow. The turnover rate of small organisms may be so great (here today, gone tomorrow) that the particular species present at any one moment may not be very instructive as an ecological indicator." Similarly, Ward (1978, pp. 28–29) states that "small species with rapid turnover rates usually are not suitable as indicator species, since they are not often stable in their presence in an environment. Larger organisms are usually more stable when they are present in an environment; their generation time is longer, and their turnover rate is smaller." Turnover rate can be interpreted as population turnover (i.e., generation time) or species turnover (i.e., change in species composition at a given location). We examine both types of turnover because proponents of this criterion give little explanation of its usage.

Population Turnover

We assume the reasoning behind the use of population turnover is that individuals of smaller species are exposed to contaminants or altered environmental conditions for shorter periods of time because of their shorter generation times (Begon & Mortimer 1986). This increases variability in the smaller species' responses. Also, smaller species generally exhibit higher reproductive potential and may exhibit rapid evolutionary change (Peters 1983). Over several generations this could reduce the sensitivity of the species and, therefore, its usefulness as an indicator. Size is thus inversely related to long-term variability in the response of the species, so larger species would be preferred as indicators.

We question this assertion and suggest caution in applying this criterion. First, the scale of disturbance relative to the indicator and species of interest needs to be determined. For example, smaller species may exploit microhabitats unaffected by altered macroenvironmental conditions, reducing the variability of their response. Or, larger species may range over several habitats, making them poor indicators of smaller-scale disturbance. Second, because small species reach maximum population biomass per unit area faster than large species, "The examination of community response at a fixed period after perturbation is inappropriate because small organisms may have overcome any effect of perturbation long before larger species approach equilibrium" (Peters 1983, p. 139). Thus, to track short- and long-term responses to environmental perturbation, it may be important to monitor both small and large species.

Species Turnover

The other interpretation of turnover rate implies that small species exhibit greater variability in space and time (i.e., here today, gone tomorrow) than larger species. Fugitive or pioneer species provide the only support we could find for the assertion that small species exhibit high turnover rates. These species are generally smaller, exploit newly disturbed areas (e.g., early successional stages), reproduce quickly, and then disperse. However, many species of similar size do not exhibit this fugitive life-history strategy and remain in an area (e.g., a late successional stage) for long periods of time.

Thus, large species are not necessarily preferable to smaller species under either interpretation of turnover rate; size per se is a poor selection criterion. Indeed, both small and large species may be necessary for environmental assessments to document population effects over both short and long time scales.

Residency Status

We agree with Szaro & Balda (1982) and Bock & Webb (1984) that indicators of on-site environmental conditions should be permanent residents. Migrants are subject to a variety of sources of mortality on their wintering grounds and during migration. A measured decline in their abundance may be unrelated to habitat conditions on the breeding grounds. However, assessment objectives may specifically include monitoring of migrants that breed on managed lands, or of environmental conditions in areas used by migrants during the winter.

Area Requirement

If a single species is used as an indicator of habitat quality or of a community, it is commonly assumed that the
species should require a large area for its territory or
home range. Ideally, the indicator would have greater
area requirements than any other species in the com-
munity, because the larger the area required the more
likely it is to include the spectrum of resources needed
by other organisms dependent on that particular habitat.
Typically, such species would be high trophic-level
mammalian or avian carnivores, called “umbrella
species” (Wilcox 1984). However, such a species may
more easily adjust to changes in environmental condi-
tions by shifting its use of resources within its home
range, integrating adverse and beneficial effects, and
thus be a poor indicator. (Also see “Indicators of Habitat
Quality” above for other problems when using indicator
species to assess habitat quality.) Area per se is a tenuous
criterion unless research confirms that a species with a
large home range can serve as an indicator of habitat
quality or of an entire community in that particular lo-
cation (Ward 1978; Graul & Miller 1984; Murphy &
Wilcox 1986).

Practical Considerations When Using Indicators

Several problems may arise in the practical process of
applying indicator species to management needs. First,
selection criteria are often confounded. That is, species
chosen to fill the needs of one criterion are then used to
satisfy another. For example, HEP guidelines state that
"Species of high public interest should be included . . .
because in many cases such species do serve as ecolog-
ical indicators" (USDI 1980b, p. 3-5), and in some Na-
tional Forests, elk (Cervus elaphus), a species with high
socioeconomic value, was proposed as an indicator of
habitat suitability for other species (Mealy & Horn
1981). Socioeconomic and political criteria, based on
cultural mores and legal mandates, are not appropri-
ate for selecting ecological indicators. Game species, such
as elk, are especially problematic as ecological indica-
tors because their population density and distribution
are affected by hunters and direct control actions to
meet socioeconomic and political objectives, and
"probably indicate little beyond their own numbers"
(Thomas 1982, p. 41).

In addition, HEP assessment suggests that “selection
[of indicators] can be arbitrary or according to some
ranking scheme” (USDI 1980b, p. 3-10). “Arbitrary”
criteria may introduce bias. For example, HEP guidelines
suggest that “availability of habitat data” be used as part
of the ranking scheme (USDI 1980b, p. 3-10). Using
quantity of information as a selection criterion reduces
time and cost, but may negate the relevance of the
indicator for habitat assessment. For example, little habitat
information may exist for a sensitive indicator, but
much information may be available for an insensitive
one. The less sensitive species might be chosen as the
indicator for this reason, although the more sensitive
one may be a better indicator of change in habitat con-
ditions.

The choice of criteria used to select evaluation spe-
cies and MIS is critical for meeting stated project goals.
Confounded criteria reduce the effectiveness and cred-
ibility of using indicators for ecological purposes. We
recognize that species chosen for socioeconomic or po-
itical reasons do have legitimate roles in the manage-
ment plans of agencies (Holbrook 1974; Hoover 1984;
Sidle & Suring 1986), but such species need to be dis-
tinguished from species used for ecological reasons. In-
dicators should not be used in multiple roles without
research verifying the appropriateness of the species for
each criterion.

Second, the number of indicator species used in hab-
itat assessment or monitoring plans is important from
scientific and budgetary perspectives. In HEP the use of
guilds is proposed as an aid in identifying whether the
number of indicators “is too large” (USDI 1980b). HEP
guidelines recommend that the “combined number of
guilds [be] approximately four to five times the desired
number of evaluation species” (USDI 1980b, p. 3-10).
Although using guilds may aid in identifying indicators,
this suggestion is problematic for several reasons. No
methods are given to determine if the number of indi-
cators is “too large,” meaning that time and funding
constraints, not the accuracy and validity of the ecolog-
al assessment, will determine the number of guilds
studied. Altering guild designations to fit a “desired'
number of indicators suggests a priori selection of spe-
cies that is not based on an objective analysis of the data.
Even if there are “too many” indicators, no guidelines
are given to eliminate guilds, allowing arbitrary deci-
sions. Thus, no clear guidelines exist for choosing the
number of indicators, although in a study on the number
of indicators used in HEP, Fry et al. (1986) recom-
ended that the maximum possible number of species be
used to increase precision of the assessment.

Third, several statistical problems are associated with
sampling populations, especially deriving density esti-
mates that are the basis for many wildlife-habitat models
(Eberhardt 1976; Thomas, McKenzie, & Eberhardt
1981; Van Horne 1983; Verner 1985; Best & Stauffer
1986). In a species with a low population density, sam-
pling problems are particularly severe and may preclude
accurate assessment, despite the species being consid-
ered a good indicator for other reasons. Long term re-
search on each species is also needed to assess natural
variation in population attributes unrelated to environ-
mental change, which may confound interpretation of a
species’ response to habitat change.

Associated with these statistical problems is the fact
that costs of monitoring population trends to show sig-
nificant changes can be prohibitively high. Presumably,
cost effectiveness is one of the major reasons behind
agencies use of indicators because “of a very practical problem: too many needs, too few funds” (Jarvinen 1985, p. 102). However, Verner (1986) showed that to detect a 10% change between years (with 95% confidence) in population numbers of the pileated woodpecker (Dryocopus pileatus) sampled at random locations, total costs would exceed one million dollars per year. Although costs can be reduced by using indicators that are abundant, conspicuous, and easily recognized (Szaro & Balda 1982; Sidle & Suring 1986), Verner's analysis dispels the cost effectiveness notion of indicator species.

Fourth, several problems arise when an indicator from one area is assumed to be appropriate for use in another area. Although geographically separated habitats may appear similar, subtle differences in vegetation structure or life form of dominant or subdominant plant species (James & Wamer 1982), floral composition (Rotenberry 1985), habitat and resource patchiness (Forman & Godron 1981), or natural disturbance regimes (Pickett & Thompson 1978) may influence an indicator's density or role in the community. Investigators typically assume that quantified habitat variables are related to parameters to which the animal responds. In studies examining the application of HSI and other habitat-relationship models of birds and mammals in a wide variety of habitats, large deviations from model assumptions were documented (Bart, Petit, & Linscombe 1984; Dedon, Laymon, & Barrett 1986; Laymon & Barrett 1986; Maurer 1986; Raphael & Marcot 1986; Staufler & Best 1986). Such discrepancies suggest that unquantified or indiscernible differences in habitat attributes had marked effects on species' responses.

Within an indicator's range, demes from different geographic areas may possess genetic differences resulting in ecotypic or subspecific differentiation. Such differences could cause a species to respond differently in similar habitats, making a model developed in one area unreliable in another.

Zoogeographic distributions of species may result in similar habitats exhibiting different faunal composition or species richness. A different species milieu may have a large impact on both positive (e.g., mutualism) and negative (e.g., predation or competition) interactions among species. These interactions are significant when quantifying and interpreting species' responses to the environment and their roles in a community.

Thus, differences in habitat attributes, genotype, and species milieu may produce variation in phenotype, physiology, or behavior within species. Mayr (1970, p. 147) comments that such variation is "largely ignored by ecologists, most of whom discuss the ecological requirements of a species in a strictly typological manner" and that this variation is "of considerable practical importance, for instance, in wildlife management." Because each population of a species is embedded in a particular environmental context, the response of an indicator in one area should not be extrapolated to another without verifying the indicator's response in each area.

Conclusions and Recommendations

Using indicators to directly assess environmental contaminants seems justified. However, we feel that current techniques of directly measuring contaminants may often be more accurate and cost effective than this traditional use. Using indicators to assess population trends and habitat suitability for other species is inappropriate without confirmatory research, and current regulations and mandates requiring this use are scientifically problematic and financially infeasible. We realize, despite our analysis, that ecological indicators will continue to be used because the tradition is firmly established, current regulation mandates their use, and they are considered cost effective, at least in the short term. Until alternative approaches to environmental assessment and wildlife monitoring are developed, we offer the following recommendations to make the use of ecological indicators more rigorous.

1. Clearly state assessment goals, including criteria used to determine when those goals have been achieved.

2. Use indicators only when appropriate and necessary. In our literature review we found no clear guidelines to determine when an indicator is needed. For "species management" (i.e., management of species mandated under socioeconomic and political criteria) the use of indicators is not appropriate, because direct measurement of requisite resources and species' populations is needed to evaluate management actions. Likewise, for "resource management" (i.e., management of specific resources or habitats), direct measurement is usually feasible (e.g., timber resources or specific components of wildlife habitat [Thomas et al. 1986]), cost effective, and averts the need for inference from the response of an indicator. In general, indicators should be used only when direct measurement is impossible. We agree with Beanlands & Duinker (1983, p. 69) that "When all else fails, biologists . . . may resort to the use of indicators as a means of obtaining some measurement of stress on a natural system. This would normally be a fall-back position . . . when the possibilities for studying the valued ecosystem components, either directly or indirectly, are limited."

3. Choose indicator species by criteria that are unambiguously and explicitly defined, and in accord with assessment goals. In the current practice of using indicators, selection criteria are often confounded. To avoid this problem, agencies should state the reasons for choosing the criteria (and their underlying assump-
tions) used in each assessment. Further, the rigorous and unconfounded processes used to choose indicators should be stated. These steps would help ensure that interpretations of results do not exceed the bounds of inference established by the selection process.

4. To meet assessment goals, include all species that fulfill stated selection criteria. Substituting one indicator for another, or one criterion for another (e.g., based on the amount of information or because of funding), abates the credibility and precision of the analysis. Typically, all sets of criteria (socioeconomic, political, ecological) are needed to meet assessment goals. Including indicators from each criterion will involve compromise in the management plan to accommodate the needs of the various indicators, and each additional indicator adds to assessment costs. Such compromise is preferable to plans made under confounded criteria that may ignore the collective needs of an entire set of species (Herrick & Schaeffer 1985).

5. Know the biology of the indicator in detail. This may entail research to determine cause and effect relationships. Because assessments and resulting recommendations depend on species-specific data, all assumptions about food and habitat requirements and life history need to be verified. To facilitate this process, a conceptual and statistical model could be developed for each use of an indicator species. The indicator could then be treated as a statistical estimator (as, for example, in a path regression analysis), determining the accuracy and precision of the indicator's ability to indicate. We emphasize that indicators in one habitat, area, or season may not be adequate for use in other habitats, areas, or seasons.

6. Identify and define sources of subjectivity in selecting, monitoring, and interpreting indicator species. All assessments and technical decisions entail unavoidable value judgments which, if treated formally, could be discussed and the merits of each determined (Susskind & Dunlap 1985).

7. Submit assessment design, methods of data collection, and statistical analyses to external peer review. Interpretations, conclusions, and recommendations of management plans could also be reviewed at specified intervals and at completion of monitoring. Currently, only a small fraction of assessment and monitoring programs are reviewed. For example, of 172 rare-plant monitoring programs conducted by state, federal, and private organizations, only 13 programs (8%) were externally reviewed (Palmer 1987). Although cumbersome, peer review would increase assessment quality and effectiveness (Beanlands & Duinker 1983; Palmer 1987) and, over the long term, may reduce the time and cost of management plans and actions.

8. Direct research toward developing an overall strategy for monitoring wildlife that accounts for natural variability in population attributes and that incorporates concepts from landscape ecology (Risser, Karr, & Forman 1984; Forman & Godron 1986; Noss & Harris 1986; Urban, O'Neil, & Shugart 1987). Accepting status quo indices (e.g., carrying capacity, diversity, or indicator species), with their attendant limitations, may preclude agencies from adequately assessing the ecological integrity of natural systems and recommending effective management actions.

A potential strategy for environmental assessment and monitoring wildlife is a species-habitat approach (Thomas 1979) that includes risk analysis. Risk analysis formalizes the process of making decisions under uncertainty (Salwasser et al. 1983; Salwasser, Mealey, & Johnson 1984; Maguire 1986; Marcot 1986; Verner 1986; Patton 1987) and entails assessing threats to continued existence of habitats (including edges, corridors, and mosaics) and species (i.e., population viability). Despite immediate need for better assessment and monitoring strategies, they are still in embryonic form awaiting further research and development.

Acknowledgments

We thank Jerry Bromenshenk, Andrew Carey, Tom Crist, Richard Holthausen, Dick Hutto, Pat Kennedy, Michael Kelrick, Bruce Marcot, Madeline Mazurski, E. Charles Meslow, Chris Paige, Leonard Ruggiero, Hal Salwasser, Winnie Sidle, Steve Vander Wall, and two anonymous reviewers for valuable discussion and comments on the manuscript. Pam Mangus kindly helped with typing. P. B. L. appreciates facilities provided by Jim MacMahon at Utah State University during initial stages of manuscript preparation. We are especially grateful to Bruce Marcot for insightful discussion and suggestions for the figure, and to Madeline Mazurski for drafting the figure.

Literature Cited

Institute for Resource and Environmental Studies, Dalhousie University, Nova Scotia, Canada.

Critique of Vertebrate Indicator Species

Martin, T. E. 1986. Competition in breeding birds: On the importance of considering processes at the level of the individ-

The following Comment and the three Contributed Papers that follow it comprise a special section of this issue of Conservation Biology on the subject of edge effects and fragmented landscapes. The Contributed Papers are based on talks given at a symposium that was part of the annual Meeting of the Society for Conservation Biology at Bozeman, Montana, in June, 1987. Dr. Larry D. Harris, of the University of Florida, was Chairman of the symposium.