Fire Effects Information System (FEIS)
FEIS Home Page

SPECIES:  Equisetum sylvaticum


SPECIES: Equisetum sylvaticum
AUTHORSHIP AND CITATION : Matthews, Robin F. 1993. Equisetum sylvaticum. In: Fire Effects Information System, [Online]. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (Producer). Available: [].
ABBREVIATION : EQUSYL SYNONYMS : NO-ENTRY SCS PLANT CODE : EQSY COMMON NAMES : wood horsetail woodland horsetail sylvan horsetail TAXONOMY : The currently accepted scientific name of wood horsetail is Equisetum sylvaticum L. [5,14,22,33]. The following varieties and form are recognized [7,14,33,36]: Equisetum sylvaticum var. sylvaticum -- with scabrous branches E. sylvaticum var. pauciramosum Milde. -- smooth branches, slightly branched E. sylvaticum f. multiramosum Fern. -- smooth branches, copiously branched Wood horsetail is a highly variable species; many varieties and forms have been described that have little taxonomic significance [5]. Wood horsetail apparently hybridizes with meadow horsetail (E. pratense) [10]. LIFE FORM : Fern or Fern Ally FEDERAL LEGAL STATUS : See OTHER STATUS OTHER STATUS : Wood horsetail is included on Virginia's rare and endangered vascular plants list [31]. It is listed as threatened in Ohio by the Natural Heritage Program [47].


SPECIES: Equisetum sylvaticum
GENERAL DISTRIBUTION : Wood horsetail is a circumboreal species [18,19,21,28].  In North America it is distributed throughout Alaska and Canada south to the Pacific Northwest, the Great Lakes states, New England, and North Carolina [5,14,33,36]. ECOSYSTEMS :    FRES10  White - red - jack pine    FRES11  Spruce - fir    FRES17  Elm - ash - cottonwood    FRES18  Maple - beech - birch    FRES19  Aspen - birch    FRES20  Douglas-fir    FRES22  Western white pine    FRES23  Fir - spruce    FRES24  Hemlock - Sitka spruce    FRES25  Larch    FRES26  Lodgepole pine    FRES28  Western hardwoods    FRES37  Mountain meadows STATES :      AK  CT  DE  ID  IL  IN  IA  KY  ME  MD      MA  MI  MN  MT  NH  NJ  NY  NC  ND  OH      OR  PA  RI  SD  TN  VT  VA  WA  WV  WI      WY  AB  BC  MB  NB  NF  NT  NS  ON  PE      PQ  SK  YT BLM PHYSIOGRAPHIC REGIONS :     1  Northern Pacific Border     2  Cascade Mountains     8  Northern Rocky Mountains     9  Middle Rocky Mountains    15  Black Hills Uplift KUCHLER PLANT ASSOCIATIONS :    K001  Spruce - cedar - hemlock forest    K002  Cedar - hemlock - Douglas-fir forest    K003  Silver fir - Douglas-fir forest    K004  Fir - hemlock forest    K008  Lodgepole pine - subalpine forest    K012  Douglas-fir forest    K013  Cedar - hemlock - pine forest    K014  Grand fir - Douglas-fir forest    K015  Western spruce - fir forest    K025  Alder - ash forest    K093  Great Lakes spruce - fir forest    K094  Conifer bog    K095  Great Lakes pine forest    K096  Northeastern spruce - fir forest    K097  Southeastern spruce - fir forest    K098  Northern floodplain forest    K099  Maple - basswood forest    K101  Elm - ash forest    K102  Beech - maple forest    K103  Mixed mesophytic forest    K106  Northern hardwoods    K107  Northern hardwoods - fir forest    K108  Northern hardwoods - spruce forest SAF COVER TYPES :      1  Jack pine      5  Balsam fir     12  Black spruce     13  Black spruce - tamarack     15  Red pine     16  Aspen     17  Pin cherry     18  Paper birch     20  White pine - northern red oak - red maple     21  Eastern white pine     22  White pine - hemlock     23  Eastern hemlock     24  Hemlock - yellow birch     25  Sugar maple - beech - yellow birch     26  Sugar maple - basswood     27  Sugar maple     28  Black cherry - maple     30  Red spruce - yellow birch     31  Red spruce - sugar maple - beech     32  Red spruce     33  Red spruce - balsam fir     35  Paper birch - red spruce - balsam fir     37  Northern white-cedar     38  Tamarack     39  Black ash - American elm - red maple     60  Beech - sugar maple     63  Cottonwood    107  White spruce    108  Red maple    201  White spruce    202  White spruce - paper birch    203  Balsam poplar    204  Black spruce    205  Mountain hemlock    206  Engelmann spruce - subalpine fir    210  Interior Douglas-fir    212  Western larch    213  Grand fir    215  Western white pine    217  Aspen    218  Lodgepole pine    221  Red alder    222  Black cottonwood - willow    223  Sitka spruce    224  Western hemlock    225  Western hemlock - Sitka spruce    226  Coastal true fir - hemlock    227  Western redcedar - western hemlock    228  Western redcedar    229  Pacific Douglas-fir    230  Douglas-fir - western hemlock    235  Cottonwood - willow    251  White spruce - aspen    252  Paper birch    253  Black spruce - white spruce    254  Black spruce -  paper birch SRM (RANGELAND) COVER TYPES : NO-ENTRY HABITAT TYPES AND PLANT COMMUNITIES : Wood horsetail is most prevalent in lowland wet conifer forests but is also common in mixed upland, dry conifer, and deciduous forest habitats [3].  In addition, it is found in meadows, bogs, swamps, and along streambanks [5,19,34,46]. The following publications classify wood horsetail as a dominant herbaceous layer component: Field guide to forest ecosystems of west-central Alberta [6] Classification, description, and dynamics of plant communities after   fire in the taiga of interior Alaska [15] The Alaska vegetation classification [44] Species commonly associated with wood horsetail in jack pine (Pinus banksiana), white spruce (Picea glauca), or black spruce (P. mariana) habitats include alder (Alnus spp.), willows (Salix spp.), highbush cranberry (Viburnum edule), bunchberry (Cornus canadensis), bog Labrador tea (Ledum groenlandicum), twinflower (Linnaea borealis), blueberry (Vaccinium spp.), red raspberry (Rubus idaeus), gooseberry (Ribes spp.), honeysuckle (Lonicera involucrata), leatherleaf (Chamaedaphne calyculata), prickly rose (Rosa acicularis), wild lily-of-the-valley (Maianthemum canadense), naked miterwort (Mitella nuda), coltsfoot (Petasites spp.), common yarrow (Achillea millefolium), fireweed (Epilobium angustifolium), bluejoint reedgrass (Calamagrostis canadensis), sedges (Carex spp.), fire moss (Ceratodon purpurea), feathermosses (Hylocomium splendens, Pleurozium schreberi), and sphagnum mosses (Sphagnum spp.) [1,4,6,11,29].


SPECIES: Equisetum sylvaticum
IMPORTANCE TO LIVESTOCK AND WILDLIFE : In interior Alaska, horsetails (Equisetum spp.) comprise the largest component of the spring diet of black bears.  Horsetails and blueberries (Vaccinium spp.) are the two most important plant genera to black bears in the region [20]. PALATABILITY : NO-ENTRY NUTRITIONAL VALUE : Dry matter nutrient content values of wood horsetail collected in the Wallace-Aikens Lake area, Manitoba, were:  6.7 percent crude protein, 1.36 percent calcium, and 0.09 percent phosphorus.  Dry matter digestibility was 27.9 percent [35]. COVER VALUE : NO-ENTRY VALUE FOR REHABILITATION OF DISTURBED SITES : NO-ENTRY OTHER USES AND VALUES : NO-ENTRY OTHER MANAGEMENT CONSIDERATIONS : Wood horsetail is poisonous to humans [8].


SPECIES: Equisetum sylvaticum
GENERAL BOTANICAL CHARACTERISTICS : Wood horsetail is a perennial, deciduous, homosporous pteridophyte [1,9].  Sterile stems are green with lacy branches and grow up to 28 inches (70 cm) tall.  Fertile stems are at first unbranched and lack chlorophyll but become branched and green after spores are released. Strobili are usually 1 inch (3 cm) long and are borne on short stalks at the apices of fertile stems [5,18,39].  The spores germinate to produce a distinct gametophytic generation.  The unisexual gametophyte is very small, generally from 0.002 to 0.008 inch (0.5-2.0 mm) in height [9]. Wood horsetail often forms large stands [24].  It has extensive creeping rhizomes which may outweigh aerial shoots by a ratio of 100 to 1 [1]. RAUNKIAER LIFE FORM :       Geophyte REGENERATION PROCESSES : Wood horsetail primarily reproduces by vegetative means; the majority of shoots arise from rhizomes [1,12].  Rhizome systems are extensive, deeply buried, and extremely long-lived (perhaps several thousand years old) [1]. The establishment of gametophytes and subsequent sexual reproduction is rare in the wild due to an extremely narrow habitat tolerance.  The most critical factor for sexual reproduction appears to be the initial establishment of spores.  Gametophytes only establish on recently exposed bare mud, such as around resevoirs or streambanks following flooding.  Wood horsetail has a very limited spore dispersal period, and spores are short-lived.  Male gametophytes grow at a much slower rate than females.  There is also evidence of early male mortality. Gametophytes reach sexual maturity at 3 to 5 weeks and then produce a constant supply of gametes until death.  The sex ratio of a population is determined by environmental conditions; female gametophytes are more likely to be produced under favorable conditions [9].  The frequent occurence of Equisetum hybrids suggests, however, that sexual reproduction is a common occurrence in this genus [10]. SITE CHARACTERISTICS : Wood horsetail most commonly occurs in cool, moist, shaded to somewhat open forests [5,18,21,39].  It also occurs on streambanks, and in bogs, swamps, and forest openings [5,25,30,33].  Wood horsetail is an indicator of boreal and cool-temperate climates, and very moist to wet, nitrogen-poor soils [25].  Soils may be poorly drained to moderately well drained [6,27].  Wood horsetail is found from lowlands to subalpine regions [22].  In the Adirondack Mountains of New York, it occurs from 1,460 to 2,200 feet (438-660 m) in elevation [27].  Gametophytes of wood horsetail are found on substrates with a lower pH than are gametophytes of other horesetail species [10]. SUCCESSIONAL STATUS : Facultative Seral Species Wood horsetail is shade tolerant [25]. It is found throughout all successional stages to climax forests [45].  Wood horsetail colonizes newly exposed mud on streambanks and floodplains [9], and it invades recently burned areas [25].  In floodplain succession in interior Alaska, wood horsetail is common in 200-year-old white spruce-black spruce and climax black spruce/sphagnum forests [41].  It is also widespread in black spruce stands from 26 to 120 years old in Ontario [38].  Wood horsetail is common in stable, mature forests in west-central Alberta [6]. SEASONAL DEVELOPMENT : In the Northern Clay Belt Region, Ontario, fertile shoots of wood horsetail appear before sterile shoots, liberate their spores, and die before sterile shoots complete their growth.  Most fertile shoots die by the end of June, and sterile shoots begin to die in August [1].  In most areas within its distributional range, wood horsetail spores are shed from April through May [5,9,18].


SPECIES: Equisetum sylvaticum
FIRE ECOLOGY OR ADAPTATIONS : Wood horsetail survives repeated fires by means of deeply buried rhizomes that are apparently almost indestructible [1].  The extensive rhizome system penetrates well into mineral soil or clay, allowing revegetation even after severe fire [1,12,45].  Wood horsetail may be the most abundant herb species after fires in black spruce stands in Alaska.  It sprouts after fire in any stage of succession [45]. Wood horsetail also colonizes recently burned areas by wind-dispersed spores [23].  Its phenotypic plasticity enables it to survive the environmental changes associated with postfire succession [1]. FIRE REGIMES: Find fire regime information for the plant communities in which this species may occur by entering the species name in the FEIS home page under "Find Fire Regimes". POSTFIRE REGENERATION STRATEGY :    Rhizomatous herb, rhizome in soil    Geophyte, growing points deep in soil    Ground residual colonizer (on-site, initial community)    Initial-offsite colonizer (off-site, initial community)


SPECIES: Equisetum sylvaticum
IMMEDIATE FIRE EFFECT ON PLANT : Aboveground stems of wood horsetail are killed by fire [1].  Rhizomes are resistant to fire because they are buried deep in mineral soil [12,45]. DISCUSSION AND QUALIFICATION OF FIRE EFFECT : Hamilton's Research Papers (Hamilton 2006a, Hamilton 2006b) provide information on prescribed fire and postfire response of many plant species, including wood horsetail, that was not available when this species review was originally written. PLANT RESPONSE TO FIRE : In the Northern Clay Belt Region of Ontario, wood horsetail recovers rapidly after fire and is one of the most prominent postfire species. It becomes less abundant in the later stages of postfire succession, but is still present under mature spruce (Picea spp.) stands up to 240 years old.  Shoots that appear immediately after fire are sterile, but up to 20 percent of the stems that appear in postfire year 1 are fertile [1]. In central Saskatchewan, wood horsetail was present 4 years after fires on moist and moderately moist sites in jack pine clearcuts [4]. Wood horsetail regenerates rapidly following fire in black spruce/feathermoss forests in southeastern Newfoundland, and its abundance may exceed prefire levels.  Its frequency was 27.8 percent in unburned areas and 21.1 percent in areas that had been burned 5 years previously [16]. On mesic black spruce sites in interior Alaska, wood horsetail is present throughout all stages of postfire succession.  The following cover and frequency percentages were reported [15]: Stage        Years since fireCover  Frequency __________________________________________________________________________ Newly burned        0-1      <0.5      10.0 Moss-herb           1-5       4.0      65.0 Tall shrub-sapling  5-30      2.0      13.0 Dense Tree         30-55     <0.5      11.0 Mixed hardwood-spruce     56-90     <0.5       5.0 Spruce             90-200+    4.0      49.0 After the 1971 Wickersham Dome Fire near Fairbanks Alaska, wood horsetail had the following cover and frequency percentages in lightly burned and severely burned black spruce stands (control plot cover and frequency was 1.25 and 60.0 percent, respectively) [43]:         1971     1972      1973     1974     Light  Severe   Light   Severe   Light  Severe   Light   Severe ___________________________________________________________________________ Cover0.1     02.65     3.35    2.6    3.65.7     8.95 Frequency  10.0     0      95.0     80.0    95.0   80.0      85.0    90.0 In this same study area, wood horsetail had cover values on fireline sites of 4, 40, and 12 percent in 1972, 1975, and 1980, respectively [42]. DISCUSSION AND QUALIFICATION OF PLANT RESPONSE : NO-ENTRY FIRE MANAGEMENT CONSIDERATIONS : NO-ENTRY


SPECIES: Equisetum sylvaticum
REFERENCES :  1.  Beasleigh, W. J.; Yarranton, G. A. 1974. Ecological strategy and tactics of Equisetum sylvaticum during a postfire succession. Canadian Journal of Botany. 52: 2299-2318.  [9965]

 2.  Bernard, Stephen R.; Brown, Kenneth F. 1977. Distribution of mammals, reptiles, and amphibians by BLM physiographic regions and A.W. Kuchler's associations for the eleven western states. Tech. Note 301. Denver, CO: U.S. Department of the Interior, Bureau of Land Management. 169 p. [434]

 3.  Carleton, T. J.; Maycock, P. F. 1980. Vegetation of the boreal forests south of James Bay: non-centered component analysis of the vascular flora. Ecology. 61(5): 1199-1212.  [14734]

 4.  Chrosciewicz, Z. 1983. Jack pine regeneration following postcut burning and seeding in central Saskatchewan. Information Report NOR-X-253. Edmonton, AB: Environment Canada, Canadian Forestry Service, Northern Forest Research Centre. 11 p.  [16916]

 5.  Cody, William J.; Britton, Donald M. 1989. Ferns and fern allies of Canada. Ottawa, ON: Agriculture Canada, Research Branch. 430 p.  [13078]

 6.  Corns, I. G. W.; Annas, R. M. 1986. Field guide to forest ecosystems of west-central Alberta. Edmonton, AB: Canadian Forestry Service, Northern Forestry Centre. 251 p.  [8998]

 7.  Crandall, Dorothy L. 1965. County distribution of ferns and fern allies in Rhode Island. American Fern Journal. 55(3): 98-112.  [15915]

 8.  Dittberner, Phillip L.; Olson, Michael R. 1983. The plant information network (PIN) data base: Colorado, Montana, North Dakota, Utah, and Wyoming. FWS/OBS-83/86. Washington, DC: U.S. Department of the Interior, Fish and Wildlife Service. 786 p.  [806]

 9.  Duckett, J. G.; Duckett, A. R. 1980. Reproductive biology and population dynamics of wild gametophytes of Equisetum. Botanical Journal of the Linnean Society. 80: 1-40.  [20700]

10.  Duckett, Jeffrey G. 1985. Wild gametophytes of Equisetum sylvaticum. American Fern Journal. 75(4): 120-127.  [20489]

11.  Dyrness, C. T.; Grigal, D. F. 1979. Vegetation-soil relationships along a spruce forest transect in interior Alaska. Canadian Journal of Botany. 57: 2644-2656.  [12488]

12.  Dyrness, C. T.; Viereck, L. A.; Van Cleve, K. 1986. Fire in taiga communities of interior Alaska. In: Forest ecosystems in the Alaskan taiga. New York: Springer-Verlag: 74-86.  [3881]

13.  Eyre, F. H., ed. 1980. Forest cover types of the United States and Canada. Washington, DC: Society of American Foresters. 148 p.  [905]

14.  Fernald, Merritt Lyndon. 1950. Gray's manual of botany. [Corrections supplied by R. C. Rollins]. Portland, OR: Dioscorides Press. 1632 p. (Dudley, Theodore R., gen. ed.; Biosystematics, Floristic & Phylogeny Series; vol. 2).  [14935]

15.  Foote, M. Joan. 1983. Continuation of #7080 - Keywords. PNW-307. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 108 p.  [18707]

16.  Foster, David R. 1984. Phytosociological description of the forest vegetation of southeastern Labrador. Canadian Journal of Botany. 62: 899-906.  [15356]

17.  Gaines, Edward M.; Kallander, Harry R.; Wagner, Joe A. 1958. Controlled burning in southwestern ponderosa pine: results from the Blue Mountain plots, Fort Apache Indian Reservation. Journal of Forestry. 56: 323-327. [988]

18.  Gleason, H. A.; Cronquist, A. 1963. Manual of vascular plants of northeastern United States and adjacent Canada. Princeton, NJ: D. Van Nostrand Company, Inc. 810 p.  [7065]

19.  Great Plains Flora Association. 1986. Flora of the Great Plains. Lawrence, KS: University Press of Kansas. 1392 p.  [1603]

20.  Hatler, David F. 1972. Food habits of black bears in interior Alaska. Canadian Field-Naturalist. 86(1): 17-31.  [10389]

21.  Hitchcock, C. Leo; Cronquist, Arthur. 1973. Flora of the Pacific Northwest. Seattle, WA: University of Washington Press. 730 p.  [1168]

22.  Hulten, Eric. 1968. Flora of Alaska and neighboring territories. Stanford, CA: Stanford University Press. 1008 p.  [13403]

23.  Johnson, E. A. 1975. Buried seed populations in the subarctic forest east of Great Slave Lake, Northwest Territories. Canadian Journal of Botany. 53: 2933-2941.  [6466]

24.  Jones, R. Keith; Pierpoint, Geoffrey; Wickware, Gregory M.; [and others]

. 1983. Field guide to forest ecosystem classification for the Clay Belt, site region 3e. Maple, Ontario: Ministry of Natural Resources, Ontario Forest Research Institute. 160 p.  [16163]

25.  Klinka, K.; Krajina, V. J.; Ceska, A.; Scagel, A. M. 1989. Indicator plants of coastal British Columbia. Vancouver, BC: University of British Columbia Press. 288 p.  [10703]

26.  Kuchler, A. W. 1964. Manual to accompany the map of potential vegetation of the conterminous United States. Special Publication No. 36. New York: American Geographical Society. 77 p.  [1384]

27.  Kudish, Michael. 1992. Adirondack upland flora: an ecological perspective. Saranac, NY: The Chauncy Press. 320 p.  [19377]

28.  Lackschewitz, Klaus. 1991. Vascular plants of west-central Montana--identification guidebook. Gen. Tech. Rep. INT-227. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 648 p.  [13798]

29.  La Roi, George H. 1967. Ecological studies in the boreal spruce-fir forests of the North American taiga. I. Analysis of the vascular flora. Ecological Monographs. 37(3): 229-253.  [8864]

30.  Lewis, Francis J.; Dowding, E. S. 1926. The vegetation and retrogressive changes of peat areas ("muskegs") in central Alberta. Journal of Ecology. 14: 317-341.  [12740]

31.  Porter, Duncan M. 1979. Rare and endangered vascular plant species in Virginia. Newton Corner, MA: U.S. Department of the Interior, Fish and Wildlife Service. 52 p.  [16514]

32.  Raunkiaer, C. 1934. The life forms of plants and statistical plant geography. Oxford: Clarendon Press. 632 p.  [2843]

33.  Roland, A. E.; Smith, E. C. 1969. The flora of Nova Scotia. Halifax, NS: Nova Scotia Museum. 746 p.  [13158]

34.  Rosie, Rhonda. 1991. Range extensions and rare vascular plants from southeastern Yukon Territory. Canadian Field-Naturalist. 105(3): 315-324.  [18205]

35.  Schaefer, James A.; Pruitt, William O., Jr. 1991. Fire and woodland caribou in southeastern Manitoba. Wildlife Monograph No. 116. Washington, DC: The Wildlife Society, Inc. 39 p.  [15247]

36.  Seymour, Frank Conkling. 1982. The flora of New England. 2d ed. Phytologia Memoirs 5. Plainfield, NJ: Harold N. Moldenke and Alma L. Moldenke. 611 p.  [7604]

37.  Stickney, Peter F. 1989. Seral origin of species originating in northern Rocky Mountain forests. Unpublished draft on file at: U.S. Department of Agriculture, Forest Service, Intermountain Research Station, Fire Sciences Laboratory, Missoula, MT; RWU 4403 files. 7 p.  [20090]

38.  Taylor, S. J.; Carleton, T. J.; Adams, P. 1987. Understory vegetation change in a Picea mariana chronosequence. Vegetatio. 73: 63-72.  [14605]

39.  Taylor, T. M. C. 1970. Pacific Northwest ferns and their allies. Toronto: University of Toronto Press. 247 p.  [21636]

40.  U.S. Department of Agriculture, Soil Conservation Service. 1982. National list of scientific plant names. Vol. 1. List of plant names. SCS-TP-159. Washington, DC. 416 p.  [11573]

41.  Viereck, Leslie A. 1970. Forest succession and soil development adjacent to the Chena River in interior Alaska. Arctic and Alpine Research. 2(1): 1-26.  [12466]

42.  Viereck, Leslie A. 1982. Effects of fire and firelines on active layer thickness and soil temperatures in interior Alaska. In: Proceedings, 4th Canadian permafrost conference; 1981 March 2-6; Calgary, AB. The Roger J.E. Brown Memorial Volume. Ottawa, ON: National Research Council of Canada: 123-135.  [7303]

43.  Viereck, L. A.; Dyrness, C. T. 1979. Ecological effects of the Wickersham Dome Fire near Fairbanks, Alaska. Gen. Tech. Rep. PNW-90. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station. 71 p.  [6392]

44.  Viereck, L. A.; Dyrness, C. T.; Batten, A. R.; Wenzlick, K. J. 1992. The Alaska vegetation classification. Gen. Tech. Rep. PNW-GTR-286. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station. 278 p.  [2431]

45.  Viereck, Leslie A.; Schandelmeier, Linda A. 1980. Effects of fire in Alaska and adjacent Canada--a literature review. BLM-Alaska Tech. Rep. 6. Anchorage, AK: U.S. Department of the Interior, Bureau of Land Mangement, Alaska State Office. 124 p.  [7075]

46.  Wakimoto, Ronald H.; Willard, E. Earl. 1990. Monitoring post-fire vegetation recovery in ponderosa pine and sedge meadow communities in Glacier National Park, NW Montana. Research Joint Venture Agreement INT-89441. Ogden, UT: U.S. Department of Agriculture, Forest Service, Intermountain Research Station. 13 p. Progress Report.  [17634]

47.  McCance, R. M., Jr.; Burns, J. F., eds. 1984. Ohio endangered and threatened vascular plants: Abstracts of state-listed taxa. Columbus, OH: Department of Natural Resources, Division of Natural Areas and Preserves. 635 p.  [22520]

FEIS Home Page