LANDFIRE Biophysical Setting Model

Biophysical Setting 2510800

Inter-Mountain Basins Big Sagebrush Shrubland

☐ This BPS is lumped with:

☐ This BPS is split into multiple models:

General Information

Contributors (also see the Comments field) **Date** 10/18/2005

Modeler 1 Mike Babler mbabler@tnc.org
Modeler 2
Modeler 3

Reviewers
Tim Christiansen tchristiansen@tnc.org

Reviewers

Vegetation Type

- Upland Shrubland

Dominant Species

- ARTR2
- JUNIP
- PURSH
- SAVE4
- ATRIP
- ERNA10
- CHV18
- SYOR2

Map Zone

- 25

Model Zone

- Alaska
- California
- Great Basin
- Great Lakes
- Hawaii
- Northeast
- Northern Plains
- N-Cent.Rockies
- Pacific Northwest
- South Central
- Southeast
- South Central
- S. Appalachians
- Southwest

Geographic Range

Mid-elevation of the Central Rockies through MT, mountainous areas of UT and northwest NM/northeast AZ.

Biophysical Site Description

This vegetation type is found on all aspects. Pure stands are found in areas with deeper soils and less topographic relief, but it is also common on slopes with a gradual shift to a mixed mountain shrub community on steeper slopes and in drainages. Elevation ranges from 1500-2300m (5000-7600ft) and precipitation from 11-20in. Soils are deep, well drained with a pH +/- 7.0. Soil moistures are udic (not dry for as long as 90 cumulative days) and soil temperatures cryic (very cold soils of the Rocky Mountain Region).

Vegetation Description

Dominant shrubs include Artemisia tridentata, Purshia tridentata and Symphoricarpos oreophilus. Other common shrubs include Amelanchier alnifolia, Chrysothamnus viscidiflorus, Cercocarpus montanus, Tetradyinia canescens and Artemisia nova. Other shrubs may be locally common. Herbaceous cover is moderate to abundant ranging from 40-85%. Common grasses include: Festuca idahoensis, Elymus elymoides, Pascopyrum smithii, Elymus trachycaulus, Hesperostipa comata, Nassella viridula, Poa fenderiana and Poa juncifolia var ampla. Indicative forbs include Eriogonum umbellatum, Antennaria rosea, Balsamorhiza sagittata, Lupinus argenteus, Delphinium nuttallianum, Phlox multiflora and Viola nuttallii.

Disturbance Description

Mountain sagebrush steppe dominated by mountain sage, western snowberry and bitterbrush with a grass and forb understory is believed to be the major presettlement vegetation type for the area, although the

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
exact composition of the community before settlement is unknown.

Natural factors affecting sagebrush densities are extreme and prolonged drought; seen in Gunnison in 2001 and 2002. Literature refers to die-off from long term pathogens and defoliators. This includes girdling by voles, leaf defoliation by the Aroga moth, leaf beetles (Trirhabde pilosa) and winter browsing by mule deer and elk. Prolonged snow cover will cause snow mold from fungi as well as mortality due to extended periods of soil saturation.

Fire is a major disturbance factor for mountain big sagebrush (Blaisdell et al 1984, Johnson 2000). Mountain big sagebrush has the fastest recovery rate of the three subspecies, which may be as short as 15yrs (Johnson 2000, local data from various monitoring groups - NPS, BLM, TNC, etc). Fire size for this type is larger than other big sagebrush species because of greater fine fuel load but some unburned pockets will remain. The fire return intervals reported in the literature for this sage type is 50yrs+ (Welch and Criddle 2003). Assuming that recovery rates are correlated with composite fire return intervals, one could posit with some certainty that the fire return interval lies somewhere between 40-75yrs. Ranges lie between 30yrs near ponderosa pine communities and other productive sites (maintaining more early seral types) up to 100yrs on north aspects and on rocky slopes (maintaining more late seral types).

Adjacency or Identification Concerns
Differentiation of Mountain Big Sagebrush Steppe from Wyoming Big Sagebrush may be difficult at the ecotone due to physical similarities and hybridization zones (i.e., species concepts become blurred).

Native Uncharacteristic Conditions

Scale Description
Size of disturbance extent will be limited by the variation of topographical features, age classes of the sage over the landscape and vegetation types, all typical of mountain terrain. Average patch size 100-500ac with larger sizes during drought.

Issues/Problems
Reviewer questions existence of mixed severity component in this model. Southwest Regap indicates this system may not occur in MZ25

Comments
For MZ25 BpS 151080 was imported. This model was based on the Rapid Assessment model R3MASB, by Joe Vinyard (joe_vinyard@co.blm.gov), Ken Holsinger (ken_holsinger@co.blm.gov), Bill Baker (bakerwl@wyo.edu) and reviewed by Bill Baker (bakerwl@wyo.edu) and Tim Christiansen (christta@wsmr.army.mil). Mike Babler (mbabler@tnc.org) made species and other edits for MZ15. These edits should receive further review. R3MASB was adapted from R0SBMT, reflects drier climate and longer fire return intervals observed in Southwest Region.

In the final quality control process, modifications were made to eliminate two VDDT rule violations, and resulted in slight changes to the model results (class C changed from 20% to 25%; class D changed from 35% to 30%).

Vegetation Classes

Fire Regime Groups are:

- I: 0-35 year frequency, surface severity
- II: 0-35 year frequency, replacement severity
- III: 35-100+ year frequency, mixed severity
- IV: 35-100+ year frequency, replacement severity
- V: 200+ year frequency, replacement severity

Monday, March 10, 2014
Class B 30%

Upper Layer Lifeform: Closed

- ☑ Herbaceous
- ☑ Shrub
- ☐ Tree

Fuel Model: 6

Indicator Species and Canopy Position

- ARTR2
- PURSH
- ERNA10
- CHVI8

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>31%</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub 0.6m</td>
</tr>
</tbody>
</table>

Description

Sagebrush cover is >30%. Predominant grass/forb species will vary across geographic area.

Class C 25%

Upper Layer Lifeform: Open

- ☑ Herbaceous
- ☑ Shrub
- ☐ Tree

Fuel Model: 6

Indicator Species and Canopy Position

- ARTR2
- PURSH
- ERNA10
- CHVI8

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>0%</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub 0.6m</td>
</tr>
</tbody>
</table>

Description

Sagebrush cover is generally 5-15%. Predominant grass/forb species will vary across geographic area.

Class D 30%

Upper Layer Lifeform: Open

- ☑ Herbaceous
- ☑ Shrub
- ☐ Tree

Fuel Model: 6

Indicator Species and Canopy Position

- ARTR2
- PURSH
- ERNA10

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>21%</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub 0.6m</td>
</tr>
</tbody>
</table>

Description

Fire Regime Groups are:

- I: 0-35 year frequency, surface severity
- II: 0-35 year frequency, replacement severity
- III: 35-100+ year frequency, mixed severity
- IV: 35-100+ year frequency, replacement severity
- V: 200+ year frequency, replacement severity.
CHVI8

Upper

Sagebrush cover is 20-30%. Predominant grass/forb species will vary across geographic area.

Class E 0 %

[Not Used] [Not Used]

Upper Layer Lifeform
- [] Herbaceous
- [] Shrub
- [] Tree

Fuel Model

Indicator Species and Canopy Position

<table>
<thead>
<tr>
<th>Structure Data (for upper layer lifeform)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min</td>
</tr>
<tr>
<td>Cover</td>
</tr>
<tr>
<td>Height</td>
</tr>
</tbody>
</table>

Tree Size Class

[] Upper layer lifeform differs from dominant lifeform.

Description

Disturbances

Fire Regime Group**: III

Historical Fire Size (acres)

Avg
Min
Max

Sources of Fire Regime Data
- [] Literature
- [] Local Data
- [x] Expert Estimate

Additional Disturbances Modeled
- [x] Insects/Disease
- [x] Native Grazing
- [] Other (optional 1)
- [x] Wind/Weather/Stress
- [] Competition
- [] Other (optional 2)

Fire Intervals

<table>
<thead>
<tr>
<th>Fire Intervals</th>
<th>Avg Fi</th>
<th>Min Fi</th>
<th>Max Fi</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>95</td>
<td>0.01053</td>
<td>76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td>300</td>
<td>0.00333</td>
<td>24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td>72</td>
<td>0.01387</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire Intervals (Fi):
Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average Fi is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class.

References

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.

