Biophysical Setting 1910800 Inter-Mountain Basins Big Sagebrush Shrubland

☐ This BPS is lumped with:
☐ This BPS is split into multiple models:

General Information

Contributors (also see the Comments field) Date 11/18/2005

Modeler 1 Dana Perkins dana_perkins@blm.gov Reviewer Susan Miller smiller03@fs.fed.us
Modeler 2 Carly Gibson cgibson@fs.fed.us Reviewer Lois Olsen lolsen@fs.fed.us
Modeler 3 John DiBari jdbari@email.wcu.edu Reviewer Robert Wooley rwooley@fs.fed.us

Vegetation Type
Upland Shrubland

General Model Sources
- Literature
- Local Data
- Expert Estimate

Dominant Species
ARTRW8
ARTRT
ERNA10
PSSP6
HECO26
ELTR7

Map Zone 19

Model Zone
☐ Alaska
☐ California
☐ Great Basin
☐ Great Lakes
☐ Hawaii
☐ Northeast
☐ Northern Plains
☐ N-Cent.Rockies
☐ Pacific Northwest
☐ South Central
☐ Southeast
☐ S. Appalachians
☐ Southwest

Geographic Range
Sagebrush occurs throughout much of the west. For MZ19, Wyoming and basin big sagebrush are found in southwest MT and east-central ID.

Biophysical Site Description
This type is found between 3000-7000ft elevation on deep, well drained, alluvial soils. Artemisia tridentata ssp. tridentata occurs in swales with deeper soils at lower elevations. Artemisia tridentata ssp. wyomingensis is the more common subspecies in MZ19 and occurs on toeslopes and alluvial fans at mid-elevations.

Vegetation Description
Wyoming and big basin sagebrush subspecies form a mosaic of patches throughout much of this BpS in MZs 10 and 19. Wyoming sagebrush (Artemisia tridentata ssp.wyomingensis) is the dominant species in valley bottoms and on alluvial fans. In deep soils basin big sagebrush (Artemisia tridentata ssp. tridentata) is the dominant subspecies, except on alkaline soils, where greasewood (Sarcobatus vermiculatus) and rabbitbrush (Chrysothamnus spp) may also be present.

Understory grasses include bluebunch wheatgrass (Pseudoroegneria spicata), Thurber needlegrass (Achnatherum thurberianum), needle and thread (Hesperostipa comata), basin wildrye (Leymus cinerius), squirreltail (Elymus elymoides) and western wheatgrass (Pascopyrum smithii). Forbs include hawksbeard (Crepis acuminata), bird's beak (Cordylanthus spp), blue bell (Mertensia spp), Rocky mountain aster (Aster scopulorum), phlox species, lupine (Lupinus spp) and buckwheat (Eriogonum spp).

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Disturbance Description
Fire regime group IV, but may also encompass III and IV. Fire return intervals are estimated to average approximately 60yrs, and range from 10-150yrs. However, questions have recently been raised about the frequency of fire as related to neighboring vegetation types (Baker 2004, in press). Fires were mostly stand replacing (Tirmenstein 1999). Mixed severity fire was probably present where fuel were discontinuous, though there is disagreement about the role of replacement versus mixed severity fire in this type. Ignition sources probably included burning by native Americans under reference conditions (Barrett and Arno 1982, 1999).

It has been hypothesized that prolonged drought has resulted in significant die off in this type.

Insects and disease may have resulted in replacement and mixed-severity disturbances in this type, but little information exists on the frequency of these disturbances under reference conditions. They are not modeled here.

Antelope, mule deer and pygmy rabbits are native herbivores that browse sagebrush.

Adjacency or Identification Concerns
Basin big sagebrush grows in association with Wyoming big sagebrush, mountain big sagebrush and desert shrub communities. Distribution is a result of local soil characteristics on a fine scale (1-500ac). Much of this type has been lost due to land clearing for agriculture or converted to a cheatgrass or greasewood type.

Native Uncharacteristic Conditions
Scale Description
Fuel may be continuous resulting in spread throughout patches. Disturbance size therefore probably resembles the patch size of the vegetation.

Disturbance patch sizes range from 10s - 100s of hectares.

Issues/Problems
It is difficult to map and identify the subspecies of big sagebrushes (Artemesia tridentata) without the aid of field assessments.

Fire size, frequency and severity are variable.

Comments
This model is based on the Rapid Assessment model R0SBBB by Diane Abendroth (diane_abendroth@nps.gov) and reviewed by Bill Baker (bakerwl@uwyo.edu), Don Bedunah (bedunah@forestry.umt.edu), Shannon Downey (shannon_downey@blm.gov), Karen Clause (karen.clause@wy.usda.gov), Dennis Knight (dhknight@uwyo.edu), Thor Stephenson (thor_stephenson@blm.gov), Curt Yanish (curt_yanish@blm.gov), Gavin Lovell (gavin_lovell@blm.gov) and Eve Warren (eve_warren@blm.gov). Only descriptive changes were made to the model.

Peer review for the Rapid Assessment was incorporated 4/26/2005. There was considerable disagreement among reviewers about how to model this type. All comments were incorporated into the description. The following changes were made to the quantitative model based on peer review:
1.) Mixed severity fire was added to the model without changing the overall MFI. Several reviewers agreed this fire type was important to model.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
agreed that mixed fire should be included, though they disagreed at what proportion.

2.) Drought was added as a disturbance agent, causing both replacement type disturbances (once in 1000yrs) and mixed-severity disturbances (once every 50yrs).

3.) The proportion of fire was redistributed among the three classes so that class B had a higher likelihood of fire than class A or C.

These changes resulted in the following changed results in the model: class A changed from 30% to 20%; class B changed from 40% to 30%; class C changed from 30% to 50%.

The following items reviewers disagreed upon or did not have data to support and so were not included in the model, but were added to the description:

1.) The frequency and severity of insects, disease and native grazing disturbances.

2.) Whether or not two additional classes (mid-closed and late-open) should be added.

3.) The frequency of fire in this system. Estimates ranged from 40yrs to 150yrs. The model was left at an overall MFI of 60yrs, as several reviewers agreed upon this number.

Vegetation Classes

Class A 20 %

Early Development 1 All Structure

- **Upper Layer Lifeform**
 - ☑️ Herbaceous
 - □ Shrub
 - □ Tree

- **Indicator Species and Canopy Position**
 - LEC14
 - Upper
 - ELTR7
 - Upper
 - HECO26
 - Upper
 - PSSP6
 - Upper

- **Structure Data (for upper layer lifeform)**
 - Min Max
 - **Cover**
 - Herb 0 %
 - 50 %
 - **Height**
 - Herb 0m
 - Herb 1.0m

- **Tree Size Class**
 - None

- Upper layer lifeform differs from dominant lifeform.

Description

Grass-dominated community following replacement disturbance. Sagebrush will begin to return within ~five years, but relatively low canopy cover (<10%) will remain. This class lasts up to 20yrs post disturbance and succeeds to mid-development open (class B) unless drought or replacement fire cause stand-replacing disturbance.

Class B 30 %

Mid Development 1 Open

- **Upper Layer Lifeform**
 - ☑️ Herbaceous
 - □ Shrub
 - ☑️ Tree

- **Indicator Species and Canopy Position**
 - ARTRT
 - Upper
 - ARTRW8
 - Upper
 - PSSP6
 - Upper
 - LEC14
 - Lower

- **Structure Data (for upper layer lifeform)**
 - Min Max
 - **Cover**
 - Shrub 0 %
 - 40 %
 - **Height**
 - Shrub 0m
 - Shrub 3.0m

- **Tree Size Class**
 - None

- Upper layer lifeform differs from dominant lifeform.

Description

Sagebrush dominated (>10% canopy cover), open shrub community with abundant grasses. This class lasts approximately 20-50yrs post disturbance and succeeds to late-development closed (class B) unless replacement fire or drought cause a transition to class A. Mixed severity fire maintains this condition.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Disturbances

Mature and overmature sagebrush with suppressed understory. Cover may range from 40-80%, but will rarely exceed 60%. This condition begins at age 50 and can perpetuate until disturbance causes a transition to another class. Replacement fire and drought may cause a transition to class A. Mixed severity fire will cause a transition to class C, but is relatively rare.

Fire Regime Groups are:
I: 0-35 year frequency, surface severity;
II: 0-35 year frequency, replacement severity;
III: 35-100+ year frequency, mixed severity;
IV: 35-100+ year frequency, replacement severity;
V: 200+ year frequency, replacement severity.

Class C 50%

Late Development 1 Closed

Upper Layer Lifeform

- ☑ Shrub
- ☐ Tree

Indicator Species and Canopy Position

- ARTRT
- Upper
- POSE
- Lower
- ARTRW8
- Upper
- PSSP6
- Lower

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>41 %</td>
</tr>
<tr>
<td>Height</td>
<td>Shrub 0m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>None</td>
</tr>
</tbody>
</table>

- ☐ Upper layer lifeform differs from dominant lifeform.

Class D 0%

[Not Used] [Not Used]

Upper Layer Lifeform

- ☐ Herbaceous
- ☑ Shrub
- ☐ Tree

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>%</td>
</tr>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>Tree Size Class</td>
<td></td>
</tr>
</tbody>
</table>

- ☐ Upper layer lifeform differs from dominant lifeform.

Class E 0%

[Not Used] [Not Used]

Upper Layer Lifeform

- ☐ Herbaceous
- ☑ Shrub
- ☐ Tree

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cover</td>
<td>%</td>
</tr>
<tr>
<td>Height</td>
<td></td>
</tr>
<tr>
<td>Tree Size Class</td>
<td></td>
</tr>
</tbody>
</table>

- ☐ Upper layer lifeform differs from dominant lifeform.

Description

Wednesday, February 12, 2014
References

Fire Regime Groups: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.

Sources of Fire Regime Data

- Literature
- Local Data
- Expert Estimate

Additional Disturbances Modeled

- Insects/Disease
- Native Grazing
- Other (optional 1)
- Wind/Weather/Stress
- Competition
- Other (optional 2)

Fire Intervals (FI):

Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class.

<table>
<thead>
<tr>
<th>Fire Intervals</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>80</td>
<td>10</td>
<td>150</td>
<td>0.0125</td>
<td>100</td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>80</td>
<td></td>
<td></td>
<td>0.01252</td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire Regime Group: IV

Historical Fire Size (acres)

- Avg 0
- Min 0
- Max 0

Wednesday, February 12, 2014