Biophysical Setting 1311260

Inter-Mountain Basins Montane Sagebrush Steppe

- **This BPS is lumped with:**
- **This BPS is split into multiple models:**

General Information

<table>
<thead>
<tr>
<th>Contributors</th>
<th>(also see the Comments field)</th>
<th>Date</th>
<th>Reviewer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modeler 1</td>
<td>Jan Nachlinger, jnachlinger@tnc.org</td>
<td>9/8/2005</td>
<td>Reviewer</td>
</tr>
<tr>
<td>Modeler 2</td>
<td></td>
<td></td>
<td>Reviewer</td>
</tr>
<tr>
<td>Modeler 3</td>
<td></td>
<td></td>
<td>Reviewer</td>
</tr>
</tbody>
</table>

Vegetation Type

- Upland Savanna and Shrub-Steppe

Dominant Species

- ARTRV
- PUTR2

- SYOR2
- POFE
- BRMA4

Map Zone

- 13

Model Zone

- Alaska
- California
- Northern Plains
- N-Cent.Rockies
- Great Basin
- Great Lakes
- Hawaii
- Northeast
- Pacific Northwest
- South Central
- Southeast
- S. Appalachians
- Southwest

Geographic Range

Montane and subalpine elevations across the western US from 1000m in eastern OR and WA to over 3000m in the southern Rockies, and within the mountains of NV, including southern NV, western UT, southeast Wyoming and southern ID. In MZ13, restricted to the highest mountains such as the Panamint Range, Inyo Range and Spring Mountains.

Biophysical Site Description

This ecological system occurs in many of the western United States, usually at middle elevations (1000-2500m). Within the Mojave Desert mapping zone (MZ13), elevation is generally above 2450m, with known occurrences above 2790m in the Panamint Range. Immediately north of the Mojave Desert, mountain big sagebrush shrublands occur up 3200m in the White Mountains of California (Winward and Tisdale 1977, Blaisdell et al. 1982, Cronquist et al 1994, Miller and Eddleman 2000). The climate regime is cool, semi-arid to subhumid, with yearly precipitation ranging from 25-90 cm/year (Mueggler and Stewart 1980, Tart 1996). Much of this precipitation falls as snow. Temperatures are continental with large annual and diurnal variation. In general this system shows an affinity for mild topography, fine soils and some source of subsurface moisture. Soils generally are moderately deep to deep, well-drained and of loam, sandy loam, clay loam or gravelly loam textural classes; soils often have a substantial volume of coarse fragments and are derived from a variety of parent materials. This system primarily occurs on deep-soiled to stony flats, ridges, nearly flat ridgetops and mountain slopes. Soils are typically deep and have well developed dark organic surface horizons (Hironaka et al 1983, Tart 1996). However, at the high ends of its precipitation and elevation ranges mountain big sagebrush occurs on shallow and/or rocky soils. All aspects are represented, but the higher elevation occurrences may be restricted to south or west-facing slopes. At lower elevations, mountain big sagebrush occurs in the understory of

Fire Regime Groups: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
curly leaf mountain mahogany and pinyon-juniper woodlands.

Vegetation Description
Vegetation types within this ecological system are usually <1.5m tall and dominated by Artemisia tridentata ssp. vaseyana. Mojave Desert communities of montane sagebrush have received less description than northern mapping zones, but these are seldom dominant. They include Artemisia arbuscula, Ericameria nauseosa, Chrysothamnus viscidiflorus, Ephedra viridis, Symphoricarpos oreophilus, Purshia tridentata, Peraphyllum ramosissimum, Ribes cerceum and Amelanchier alnifolia. The canopy cover is usually between 20-80%. The herbaceous layer is usually well represented, but bare ground may be common in particularly arid or disturbed occurrences. Graminoids that can be abundant include Bouteloua gracilis, Festuca ovina, Elymus elymoides, Danthonia intermedia, Stipa spp, Pascopyrum smithii, Bromus carinatus, Elymus trachycaulus, Koeleria macrantha, Pseudoroegneria spicata, Bromus anomalus, B. marginatus, Achnatherum elpium, Poa fendleri or Poa secunda. Forbs are often numerous and an important indicator of health. Forb species may include Castilleja, Potentilla, Erigeron, Phlox, Astragalus, Geum, Lupinus, Eriogonum, Achillea millefolium, Antennaria rosea, and Eriogonum umbellatum, Artemisia ludoviciana and many others. Mueggler and Stewart (1980), Hironaka et al. (1983) and Tart (1996) described several of these types. Resprouting bitterbrush in mountain big sagebrush types is potentially important to wildlife in early stand development.

Disturbance Description
Mean fire return intervals in and recovery times of mountain big sagebrush are subjects of lively debate in recent years (Welch and Criddle 2003). Mountain big sagebrush communities were historically subject to stand replacing fires with a mean return interval ranging from 40yrs+ at the big sagebrush ecotone, and up to 80yrs in areas with a higher proportion of low sagebrush in the landscape (Crawford et al. 2004, Johnson 2000, Miller et al. 1994, Burkhardt and Tisdale 1969 and 1976, Houston 1973, Miller and Rose 1995, Miller et al. 2000). Under pre-settlement conditions mosaic burns generally exceeded 75% topkill due to the relatively continuous herbaceous layer. Therefore, replacement fire with a mean FRI of 40-80yrs was adopted here. Brown (1982) reported that fire ignition and spread in big sagebrush is largely (90%) a function of herbaceous cover. These communities were also subject to periodic mortality due to insects, disease, rodent outbreaks, drought and winterkill (Anderson and Inouye 2001, Winward 2004). Periodic mortality events may result in either stand-replacement or patchy die-off depending on the spatial extent and distribution of these generally rare (50-100yrs) events.

Recovery rates for shrub canopy cover vary widely in this type, depending on post fire weather conditions, sagebrush seed-bank survival, abundance of resprouting shrubs (e.g., snowberry, bitterbrush), and size and severity of the burn. Mountain big sagebrush typically reaches 5% canopy cover in 8 to 14 years. This may take as little as 4 years under favorable conditions and longer than 25 years in unfavorable situations (Pedersen et al. 2003, Miller unpublished data). Mountain big sagebrush typically reaches 25% canopy cover in about 25 years, but this may take as few as nine years or longer than 40 years (Winward 1991, Pedersen et al. 2003, Miller unpublished data). Mountain snowberry and resprouting forms of bitterbrush may return to pre-burn cover values in a few years. Bitterbrush plants less than fifty years old are more likely to resprout than older plants (Simon 1990).

Adjacency or Identification Concerns
Inter-Mountain Basins Montane Sagebrush Steppe dominated by mountain big sagebrush (BpS 1126) will contain low/black sagebrush in varying amounts. Small patches will naturally be part of BpS 131126, whereas more extensive areas truly belong to BpS 131079. Both systems (BpS 1126 and 1079) cover high-elevation areas in the Intermountain West. Mountain big sagebrush is a medium-sized shrub with a **Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.**
The NatureServe description does not distinguish between mountain big sagebrush that can be invaded by conifers at mid to high elevations (ie, within the tolerance of pinyon and juniper) and mountain sagebrush steppe that is too high elevation for pinyon to encroach. The ability for pinyon to invade has a large effect on predicted HRV and management.

This type may be adjacent to forests dominated by aspen, white fir, limber pine and bristlecone pine. It also occurs adjacent to pinyon-juniper and curlleaf mountain mahogany woodlands. The ecological system, where adjacent to conifers, is readily invaded by conifers (whitebark pine, limber pine, pinyon-pine and juniper spp) in the absence of historic fire regimes (Miller and Rose 1999).

At lower elevational limits on southern exposures there is a high potential for cheatgrass invasion/occupancy where the native herbaceous layer is depleted. This post-settlement, uncharacteristic condition is not considered here.

Grazing could occur in this system, bringing the herbaceous cover lower.

Native Uncharacteristic Conditions

Shrub cover >50% (remote sensing) is uncharacteristic and conifer cover >80% (remote sensing) is uncharacteristic where trees occur in the context of class E. Uncharacteristic conditions in this type include herbaceous canopy cover <40%.

Scale Description

This type occupies areas ranging in size from 10s to 5000s of acres, although patch sizes are generally smaller in the Mojave Desert. Disturbance patch size can range from 10s to 1000s of acres. The distribution of past burns was assumed to consist of many small patches in the landscape.

Issues/Problems

BpS 131126, Inter-Mountain Basins Montane Sagebrush Steppe, was not part of list of keyed BpS for this mapzone due to the paucity of data. BpS 131126 is found, however, in the Inyo Range (Inyo National Forest) and Panamint Range (Death Valley National Park), and, perhaps, in the Spring Mountains depending on whether or not pinyon has invaded shrublands.

Comments

BpS 131126 was derived from BpS 121126, which was developed by Gary Medlyn (gary_medlyn@nv.blm.gov) and Crystal Kolden (ckolden@gmail.com). Modifications to BpS 121126 for MZ13 were for species composition, elevation and scale.

BpS 1126 for MZ12 and MZ17 was based on BpS 1126_a (Mountain Big Sagebrush) from LANDFIRE MZ16. BpS 1126_a is essentially PNVG R2SBMTwc (mountain big sagebrush with potential for conifer invasion) developed by Don Major (dmajor@tnc.org), Alan R. Sands (asands@tnc.org), David Tart (dtart@fs.fed.us), and Steven Bunting (sbunting@uidaho.edu). R2SBMTwc was itself based on R2SBMT developed by David Tart. R2SBMTwc was revised by Louis Provencher (lprovencher@tnc.org) following critical reviews by Stanley Kitchen (skitchen@fs.fed.us), Michele Slaton (mslaton@fs.fed.us), Peter Weisberg (pweisberg@cabnr.unr.edu), Mike Zielinski (mike_zielinski@nv.blm.gov) and Gary Back (gback@srk.com). Reviewers and modelers had very different opinions on the range of mean FRIs and

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
mountain big sagebrush recovery times for rapid Assessment models R2SBMT and R2SBMTw (see Welch and Criddle 2003). It is increasingly agreed upon that a MFI of 20yrs, which used to be the accepted norm, is simply too frequent to sustain populations of greater sage grouse and mountain big sagebrush ecosystems whose recovery time varies from 10-70yrs. Reviewers consistently suggested longer FRIs and recovery times. The revised model is a compromise with longer recovery times and FRIs. Modeler and reviewers also disagreed on the choice of FRG: II (modeler) vs. IV (reviewers). For MZ12 and MZ17, modelers placed this system in Fire Regime Group IV.

The first three development classes chosen for this PNVG correspond to the early, mid-, and late seral stages familiar to range ecologists. The two classes with conifer invasion (classes D and E) approximately correspond to Miller and Tausch's (2001) phases 2 and 3 of pinyon and juniper invasion into shrublands.

Vegetation Classes

<table>
<thead>
<tr>
<th>Class A</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Early Development 1 Open</td>
<td></td>
</tr>
<tr>
<td>Upper Layer Lifeform</td>
<td></td>
</tr>
<tr>
<td>☑ Herbaceous</td>
<td></td>
</tr>
<tr>
<td>☐ Shrub</td>
<td></td>
</tr>
<tr>
<td>☐ Tree</td>
<td></td>
</tr>
<tr>
<td>Fuel Model</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Indicator Species and Canopy Position
- POFE
- BRMAA4
- SYOR2
- ARTRV

Dominant Vegetation
- Herbaceous vegetation is the dominant lifeform. Herbaceous cover is variable but typically >50% (50-80%). Shrub cover is 0-5%. Replacement fire has a mean FRI of 80yrs. Succession to class B after 12yrs.

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Cover</th>
<th>0%</th>
<th>80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tree Size Class</td>
<td>None</td>
<td></td>
</tr>
</tbody>
</table>

Description
- Herbaceous vegetation is the dominant lifeform. Herbaceous cover is variable but typically >50% (50-80%). Shrub cover is 0-5%. Replacement fire has a mean FRI of 80yrs. Succession to class B after 12yrs.

<table>
<thead>
<tr>
<th>Class B</th>
<th>50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid Development 1 Open</td>
<td></td>
</tr>
<tr>
<td>Upper Layer Lifeform</td>
<td></td>
</tr>
<tr>
<td>☑ Herbaceous</td>
<td></td>
</tr>
<tr>
<td>☑ Shrub</td>
<td></td>
</tr>
<tr>
<td>☐ Tree</td>
<td></td>
</tr>
<tr>
<td>Fuel Model</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Indicator Species and Canopy Position
- ARTRV
- PUTR2
- PIPO5
- SYOR2

Upper layer lifeform differs from dominant lifeform.
- Dominant vegetation is herbaceous with scattered shrubs. Shrub cover will be <10% and <0.5m tall.

Structure Data (for upper layer lifeform)

<table>
<thead>
<tr>
<th>Cover</th>
<th>0%</th>
<th>20%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Height</td>
<td>Shrub 0m</td>
<td>Shrub Tall >3.0m</td>
</tr>
<tr>
<td>Tree Size Class</td>
<td>Seedling <4.5ft</td>
<td></td>
</tr>
</tbody>
</table>

Description
- Herbaceous cover 6-25%. Mountain big sagebrush cover up to 20%. Herbaceous cover is typically >50%. Initiation of conifer seedling establishment. Replacement fire mean FRI is 40yrs. Succession to class C after 38yrs.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
Shrubs are the dominant lifeform with canopy cover of 26-45+%. Herbaceous cover is typically <50%. Conifer (juniper, pinyon-juniper, ponderosa pine or white fir) cover <10%. Insects and disease every 75yrs on average will thin the stand and cause a transition to class B. Replacement fire occurs every 50yrs on average. In the absence of fire for 80yrs, vegetation will transition to class D. Otherwise, succession keeps vegetation in class C.

Conifers are the upper lifeform (juniper, pinyon-juniper, ponderosa pine, limber pine or white fir). Conifer cover ranges from 26-80% (pinyon-juniper 35-80% (Miller and Tausch 2000), juniper 26-40%). Herbaceous cover generally less than mid-development classes, but remains between 26-40%. Shrub cover generally decreasing but remains between 26-40% Conifers cover 10-25%.

Conifers are the dominant lifeform (juniper, pinyon-juniper, ponderosa pine, limber pine or white fir). Conifer cover ranges from 26-80% (pinyon-juniper 36-80% (Miller and Tausch 2000), juniper 26-40%)

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.
(Miller and Rose 1999), white fir 26-80%. Shrub cover 0-20%. Herbaceous cover <20%. The mean FRI for replacement fire is longer than in previous states (75yrs). Conifers are susceptible to insects/diseases that cause diebacks (transition to class D) every 75yrs on average.

Disturbances

<table>
<thead>
<tr>
<th>Fire Regime Group**</th>
<th>Fire Intervals</th>
<th>Avg FI</th>
<th>Min FI</th>
<th>Max FI</th>
<th>Probability</th>
<th>Percent of All Fires</th>
</tr>
</thead>
<tbody>
<tr>
<td>Replacement</td>
<td>49</td>
<td>15</td>
<td>100</td>
<td>0.02041</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>Mixed</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface</td>
<td>49</td>
<td></td>
<td></td>
<td>0.02043</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All Fires</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fire Intervals (FI):
Fire interval is expressed in years for each fire severity class and for all types of fire combined (All Fires). Average FI is central tendency modeled. Minimum and maximum show the relative range of fire intervals, if known. Probability is the inverse of fire interval in years and is used in reference condition modeling. Percent of all fires is the percent of all fires in that severity class.

References

**Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.

Winward, A.H. 2004. Sagebrush of Colorado; taxonomy, distribution, ecology, & management. Colorado Division of Wildlife, Department of Natural Resources, Denver, CO.

Fire Regime Groups are: I: 0-35 year frequency, surface severity; II: 0-35 year frequency, replacement severity; III: 35-100+ year frequency, mixed severity; IV: 35-100+ year frequency, replacement severity; V: 200+ year frequency, replacement severity.