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Abstract.—Data collected on the population status (extirpated or present) of brook trout Salvelinus
fontinalis at the landscape level across the eastern United States is useful for identifying important stressors

and predicting brook trout status at the watershed level. However, when dealing with data compiled over a

large region, a single model may not adequately describe relationships between variables. To find models with

better classification performance, we used a Monte Carlo model-based clustering method with logistic

regression models to obtain subregions with good predictive performance. To subdivide the eastern United

States into subregions, we used Voronoi tessellations with randomly selected centers. The average fraction

correctly classified for fit was the criterion used when searching for optimal models within clusters. Logistic

regression models were chosen by stepwise selection based on five explanatory variables: elevation,

percentage of forested land, percentage of agricultural land, road density, and an environmental factor

(depositional NO
3

and SO
4
). Application of the method to the brook trout status data set resulted in six

subregions and improved predictive ability by approximately 20% relative to the single regionwide model.

Resulting models were also more interpretable than the single model and reflected effects at a smaller spatial

scale. In contrast to results of the single model, the role of elevation in the six subregional models was

consistent with expectations and indicated an increased probability of brook trout presence with increased

elevation. The resulting models should be useful for identification and prioritizing sites for restoration and

recovery programs.

In the 1600s, brook trout Salvelinus fontinalis in the

eastern United States were prevalent from Georgia to

Maine. Human perturbations led to the extirpation of

brook trout from many of the streams in which they

existed (MacCrimmon and Cambell 1969; Galbreath et

al. 2001). According to Hudy et al. (2006), anthropo-

genic physical, chemical, and biological perturbations

have resulted in a significant loss (.50%) of self-

sustaining brook trout populations within 59% of

eastern U.S. subwatersheds, raising concerns among

numerous state and federal agencies, nongovernment

organizations, and anglers.

Many of the brook trout extirpations occurred in the

early 1900s due to logging and agricultural practices.

Changes over the last 100 years were often drastic and

included construction of over 75,000 dams (USACE

1998) and 2 million miles of roads (Navtech 2001) and

a human population increase of 90 million residents

(U.S. Census Bureau 2002). The result has been

dramatic land use changes; currently, over 30% of

the average subwatersheds are classified as areas of

human land use (USGS 2004).

Understanding the relationships between brook trout

population status and perturbations is essential for
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developing useful managerial strategies for watershed-

level restoration, inventory, and monitoring. To help

manage brook trout populations and to prevent further

extirpations, it is necessary to investigate possible

causative factors and to model their influences on

population loss. Prediction of the species’ population

status at a site is essential for risk management and

restoration. Several approaches, including laboratory

and watershed studies and large-scale assessment, can

be used to study factors affecting population loss.

Small-scale assessments are likely to be useful for

individual sites but may not be applicable over the

entire range of the species (see Rashleigh et al. 2005).

Large-scale assessments for many aquatic species have

been useful in identifying and quantifying problems,

information gaps, restoration priorities, and funding

needs (Williams et al. 1993; Davis and Simon 1995;

Frissell and Bayles 1996; Warren et al. 1997; Master et

al. 1998). Previous projects at the landscape scale have

examined bull trout Salvelinus confluentus (Rieman et

al. 1997) and Pacific salmon Oncorhynchus spp.

(Thurow et al. 1997).

The importance of landscape-level brook trout

analysis has been discussed (e.g., Rieman et al. 1997;

Kocovsky and Carline 2006) at the state and basin

levels. Using a landscape-level subwatershed analysis

for the eastern United States, Hudy et al. (2006) and

Thieling (2006) developed a brook trout data set and

Thieling (2006) investigated a variety of modeling

approaches for predicting extirpation of brook trout.

Using classification trees, Thieling (2006) was able to

develop a model that produced reasonably good

prediction with four to five potentially causative

variables. While correct classification rates were

adequate for these models, several regions had

relatively weak classification rates, namely sites in

eastern Pennsylvania and some sections of North

Carolina, Georgia, and Tennessee. Lower classification

rates in some regions suggest that different models

apply in these regions.

We believe that an important component of study

design is the selection of scale for the data analysis.

With large-scale studies, it seems reasonable that

models developed over regional subsets would more

accurately describe brook trout population relationships

than a single model applied over a large area. When the

spatial extent is quite large, it is reasonable to expect

that the model will differ among different regions. For

example, the effect of agricultural practices may differ

between northern and southern regions, resulting in

different stress models. Effects of some stressors may

vary from higher to lower elevations. One approach

used to account for location differences involves

dividing the entire data set into groups or clusters

(e.g., ecoregions, states), such that the observed

measurements of interest are similar within each cluster

and dissimilar among clusters, and then applying

separate models accordingly. This approach is the

basis of biological monitoring procedures such as the

River Invertebrate Predication and Classification Sys-

tem (Wright et al. 1984) and the Australian Rivers

Assessment System (Nichols et al. 2000). Users first

cluster sites based on natural factors that influence

biological conditions and then model the relationships

with stressors. Such clustering methods are inadequate

for our purposes, since there is no guarantee that the

resulting models will correctly identify and classify

relationships between presence–absence and relevant

management variables. Making groups of sites as

different as possible based on natural factors can

weaken stressor relationships if the stressor gradient is

associated with the natural variables or if the stressor

gradient crosses the cluster boundaries. It seems more

logical to establish a regional clustering procedure with

strong relationships between extirpation, stressors, and

physical variables.

We propose a clustering method that uses Voronoi

tessellations for dividing the spatial region into clusters

and logistic regression for modeling brook trout status

within each cluster as a way of finding good models for

predicting status. We evaluate the predictive ability of

cluster-specific logistic regression models for brook

trout status and compare it with the predictive ability of

a single model. We also compare the differences and

similarities in estimated model parameters.

Methods

Brook trout data.—Hudy et al. (2006) and Thieling

(2006) discussed the distribution, status, and threats to

brook trout within the eastern United States. The study

area covered 16 states stretching from Maine to

Georgia, and complete data were available for 3,337

subwatersheds. The candidate stressor metrics included

63 anthropogenic and landscape variables. The re-

sponse variable we used was self-sustaining brook trout

population status (extirpated or present). Sites of

extirpation are those subwatersheds from which

historically self-sustaining populations of brook trout

have been lost. The pattern of extirpation varied

considerably over the study region (Table 1). Three

states in the study had a nearly uniform response (i.e.,

brook trout were present in 98% of the locations). With

these states excluded, the sample size was 2,789

subwatersheds; brook trout populations were catego-

rized as present in 1,717 of the sites and as extirpated

from the remainder.

Statistical methods.—Thieling (2006) screened 63

candidate landscape-level metrics based on redundancy
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(i.e., only one variable was retained for further

screening from a pair of variables with a correlation

greater than 0.80) and significance to the response

variable (using Wald’s chi-square test from logistic

regression and a classification tree search for signifi-

cant variables). Based on the screened variables, we

chose five predictor variables to use for model

building: (1) mean elevation (m) of the subwatershed,

(2) subwatershed road density (km of road per km2 of

land), (3) percentage of subwatershed area in agricul-

tural use, (4) an environmental factor that incorporated

depositional NO
3

and SO
4

(depositional chemistry),

and (5) percentage of forested lands in the water

corridor of the subwatershed. The Navtech (2001)

enhanced Topological Integrated Geographic Encoding

and Referencing system data were the basis of the road

density calculations. Land use variables were obtained

from the 1992 National Land Cover Dataset that was

completed for the study area in 1998 (USGS 2004). To

measure stress from depositional chemistry, estimates

of NO
3

and SO
4

(kg/ha) were obtained by interpolating

existing maps (National Atmospheric Deposition

Program 2005). We first standardized the NO
3

and

SO
4

variables and then summed them to estimate a

deposition factor.

As part of the variable processing, we applied the

Box–Cox transformation approach and transformed

variables as follows: road density (log transformation),

agricultural percentage (square-root transformation),

depositional chemistry (log transformation), and forest

percentage (square-root transformation). We further

centered and scaled all five variables using the mean

and standard deviation calculated from the reference

(presence) group to allow better interpretation of

variable importance.

Our clustering method was a variation on the method

of S. C. B. Prins (unpublished) and had three steps.

First, we partitioned the space using a randomly

selected set of points from within the region. Second,

we fitted a stepwise logistic model within each

partition. Finally, we evaluated the quality of the fit

aggregated across the clusters. These three steps were

repeated a large number of times, varying the number

of partitions, and the best value of the evaluation

criterion was used to determine the final regions and

models. We iterated over these steps to further improve

the fit.

The first step involved partitioning the region into k
clusters using Voronoi tessellations and Delaunay

triangulation (Møller 1994; Okabe et al. 2000). To do

this, we randomly generated k points (labeled g
1
, . . .,

g
k
) corresponding to latitudes and longitudes within the

region by selecting an existing site from the data set

and then adding a random value from the uniform

distribution, U(�s, s), where s . 0 is the maximum

perturbation considered for the point. In the initial run,

s was set to 0.50. Each simulation thus generated a

spatial center for each of the k clusters. We then

identified the group of sites that were closest to each of

these centers. In the context of spatial data, the distance

between sites i and j can be measured in several ways,

depending on how curvature of the Earth is accounted

for (Banerjee 2004). Euclidian distance assumes that

the points are on a flat surface. We used geodetic

distance (Banerjee 2004), which assumes that the Earth

is a sphere. The formula is

DðLi;LjÞ
¼ R arccos½sin Li2 sin Lj2

þ cos Li2 cos Lj2 cosðLj1 � Li1Þ�;

where L
i
¼ (L

i1
, L

i2
) represents the vector of longitude

(L
i1

, converted to radians) and latitude (L
i2

) for the

centroid of site i; L
j
is similarly defined for the centroid

of site j, and R is the radius of the Earth (approximately

6,371 km). We calculate D(L
i
, g

j
) for all sites with

locations L
i
(i¼1, 2, . . . n) and cluster centers g

j
(j¼1,

2, . . . k) and assign a site to the closest cluster.

Figure 1 illustrates the tessellation process for a

single simulation. The open circles in the figure

represent the seed points or spatial centers. The

TABLE 1.—Summary of the locations of 3,337 subwater-

sheds for which self-sustaining population status (extirpated or

present) of brook trout was examined by model-based

clustering (N ¼ number of subwatersheds sampled in each

state). Three states (New Hampshire, Vermont, and Maine)

had a nearly uniform response (i.e., brook trout presence in

98% of subwatersheds) and were therefore not modeled; the

remaining states were modeled via logistic regression.

State N

Status

Extirpated Present

Unmodeled states
New Hampshire 47 0 47
Vermont 186 6 180
Maine 315 5 310
Total 548 11 537

Modeled states
Connecticut 175 29 146
Massachusetts 130 20 110
New York 350 115 235
Pennsylvania 1,085 444 641
New Jersey 58 31 27
Ohio 4 1 3
Maryland 132 82 50
Virginia 319 148 171
West Virginia 174 24 150
South Carolina 19 12 7
North Carolina 214 95 119
Tennessee 54 18 36
Georgia 75 53 22
Total 2,789 1,072 1,717
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triangles form the Delaunay triangulation of the region.

The boundaries (dashed lines) for the different clusters

or subregions bisect the sides of the triangles and

define the Voronoi tessellations. Points within a given

cluster are closer to the center of this cluster than to the

center of any other cluster.

Given a clustering of the sites, we used a parametric

model to fit the clustered data. The most commonly

used model for categorical (binary) response data is the

logistic regression model in which the event probability

is modeled by

logitðpÞ ¼ log
p

1� p

� �
¼ xb

¼ b0 þ b1x1 þ b2x2 þ � � � þ bmxm;

where x
1

through x
m

are the explanatory variables and b
is a vector of m þ 1 regression parameters (b

0

corresponds to the intercept term). Logistic regression

models are useful for management purposes, because

parameter estimates measure the importance of a

variable relative to the other variables and can assist

in selecting appropriate management strategies. Statis-

tically, the model has better asymptotic efficiency than

other nonparametric or semiparametric approaches

(Pepe et al. 2005) and is quite robust against link

violation (Li and Duan 1989). We used the m predictor

variables to fit the cluster-specific stepwise logistic

regression models to data in each of the k clusters. A

stepwise procedure was used to eliminate redundant

variables.

The third step involved choosing a performance

measure for the clustering solution. Many measures are

possible. Because our focus was on predictive models,

the measure we used was the average fraction correctly

classified for fit (AFCCF; Wilkinson 1999). The

AFCCF is a measure of the classification model’s

ability to make a correct prediction; it estimates the

proportion of correctly classified sites without using a

cutoff for prediction. The formula for AFCCF is

AFCCF ¼

Xn

i¼1

yip̂i þ
Xn

i¼1

ð1� yiÞð1� p̂iÞ

n
;

where y
i

is the value of the ith observation (y
i
¼ 0 for

brook trout presence; y
i
¼ 1 for extirpation), p̂

i
is the

estimated probability of extirpation, and n is the

number of sites. Note that the AFCCF will be between

0 and 1 inclusive. A value of p̂
i
that is high for sites of

extirpation and low for sites of brook trout presence

indicates a model with good classification. In this case,

the AFCCF will have a value closer to 1.0. The

AFCCF is similar to the coefficient of determination

(R2) for regression models in that higher values indicate

a stronger relationship between the model and the data.

We used 10-fold cross validation to correct for possible

bias from using the same data set to test model

accuracy and to fit the model (Hastie et al. 2001). We

used AFCCF rather than a model-building criterion,

such as Akaike’s information criterion, since the focus

was on prediction rather than model building.

The three-step process was repeated many times

(number of simulations S ¼ 10,000) in an attempt to

find near-optimal partitioning. To further improve the

fit, we iteratively searched neighborhoods around the

near-optimal value. Random numbers generated from a

uniform distribution with a smaller parameter (s¼ 0.25

or 0.10) were added to the cluster centers from the

initial optimal fit. We used these perturbed centers as

seeds and repeated the process 100 times. We also used

the same procedure on other near-optimal results to

search for better models.

A potential problem with fitting a logistic regression

model to partitioned data is that complete separation

between status categories or a lack of convergence is

possible. With logistic regression models, these

problems are often due to small sample sizes or regions

that contain one type of status (e.g., extirpation or

FIGURE 1.—Illustration of the Voronoi tessellation method

for a spatial region corresponding to a collection of brook trout

subwatersheds with coordinates given by X (longitude) and Y

(latitude). Open circles represent seed points or spatial centers

that were randomly generated within the region. Triangles

(solid lines) represent the Delaunay triangulation of the region

based on the generated seed points. Boundaries (dashed lines)

for the different clusters or subregions bisect the sides of the

triangles and define the Voronoi tessellations. Subwatersheds

with coordinates inside the boundaries are assigned to that

cluster.
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presence) almost exclusively (i.e., the response is

essentially uniform over the subregion). To reduce the

occurrence of complete separation, we used a minimum

sample size of 100 for the logistic regressions. Smaller

minimum sample sizes tended to result in at least one

cluster containing subwatersheds with mostly uniform

status. Models fit to these data may result in a high

AFCCF for the cluster but do not necessarily have a

good explanatory ability.

We repeated the three steps for a range of cluster

sizes from 2 to a maximum of K clusters during one

randomization–simulation run. The process was re-

peated S times such that the total number of runs was

equal to K 3 S. After obtaining a solution, we varied

the size of S to ensure closeness to optimality and to

evaluate the method’s sensitivity to S.

Users of cluster analysis base their selection of the

number of groups on both subjective and objective

criteria. We selected the optimal partitioning based on

the AFCCF criterion, sample sizes (extirpated and

present) for each group, and interpretation of the results.

Results

Box plots of the transformed variables are displayed

in Figure 2 and indicate a large amount of variation and

a slight amount of separation. Figure 3 displays the

optimal values of the AFCCF criterion for 2–9 clusters

and an S-value of 10,000. The shape of the AFCCF

curve increases quickly, then levels at around six

clusters. Cross validation did not change the AFCCF

values by an appreciable amount.

The six-cluster solution that resulted in the maxi-

mum AFCCF was chosen as the final clustering

solution. We based our decision on interpretation and

the high value of AFCCF, both overall and for

individual clusters. Models with additional clusters

tended to have a slightly better AFCCF due to the

splitting of clusters containing high proportions of

presence, but such models did not produce more

interpretable models. A further check of the six-cluster

solution using 20,000 iterations with additional search-

es resulted in essentially the same model.

Figure 4 displays the geographical locations of the

resulting six clusters. Cluster 1 is a region associated

with the northeastern part of New York, Connecticut,

Rhode Island, and Massachusetts. This cluster contains

the least-disturbed sites and the highest proportion of

sites containing brook trout. Cluster 2 consists mostly

of sites from western New York State. Agriculture

dominates the area, and exotic fishes (e.g., brown trout

Salmo trutta) may affect the presence of brook trout.

Cluster 3 covers eastern Pennsylvania and southeastern

FIGURE 2.—Box plots of five transformed predictor variables (elevation [m]; depositional NO
3

and SO
4

[chemistry]; road

density [km road/km2 land]; percent area in agricultural use [agriculture]; and percentage of forested lands in the water corridor

[total forest]) used in model-based clustering of brook trout population status (extirpated [E] or present [P]) in subwatersheds of

the eastern USA. The box indicates the 75th and 25th percentiles; the middle bar represents the median; whiskers extend to the

largest (and smallest) observations within 1.5 times the interquartile range of the box where interquartile range is the range of the

75th and 25th percentiles. Extreme values are indicated by asterisks.

FIGURE 3.—Tenfold cross-validated values of the average

fraction correctly classified for fit (cross-validated AFCCF, y-

axis) presented in relation to the number of clusters (2–9, x-

axis) evaluated in 10,000 simulations; here, AFCCF describes

the ability of each set of models to predict brook trout

population status (extirpated or present) in eastern U.S.

subwatersheds and indicates that six is the optimal number

of clusters for use in modeling.
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New York. Loss of natural landscapes due to

urbanization and loss of forest are probably important

factors in this region. Western Pennsylvania and the

northern parts of Virginia and West Virginia make up

cluster 4. Local geological patterns and mining are

likely to be determinants of status in this region.

Clusters 5 and 6 correspond to the southern Appala-

chian Mountains region, divided into north and south,

respectively.

Table 2 lists the values of the AFCCF criterion for

each cluster. The overall AFCCF was 0.76. The

AFCCF values based on 10-fold cross validation

results were essentially the same as the regular

estimates. Relative to the single-cluster model, the

improvement was over 20%, as measured by increase

in AFCCF. The AFCCF values tended to be good for

all clusters except perhaps cluster 6. Thieling (2006)

indirectly identified cluster 6 as an area with lower

classification rates than other regions.

Table 3 summarizes the parameter estimates and

their significance in the logistic regression models for

the model-based clustering and single-model approach-

es. There was heterogeneity in both the magnitude and

sign of the coefficient estimates between the single

regionwide model and the six subregional models and

among subregional models. Based on the single model,

the parameter estimate for elevation was relatively

small and positive at 0.211. Elevation is partly an

indicator of the water temperature within the sub-

watershed and is confounded with human development

(less in higher elevations) and location of the site

(northern sites tend to have lower elevations). The

estimated coefficient was positive (0.211), which

suggests that higher-elevation streams (which tend to

be cooler) are more likely to be sites of extirpation (in

our models, positive coefficients indicate increasing

probability of extirpation as the value of the explan-

atory variable increases). The positive value of the

coefficient seems to contradict the fact that brook trout

prefer higher-elevation, cooler streams, but the estimate

is valid because it reflects the larger spatial scale.

Brook trout tended to be present in the northern region,

where elevation is lower, rather than the southern

region, where elevation is higher (see the box plots of

elevation in Figure 5). Therefore, the estimate reflected

a general reduction in elevation from south to north

with corresponding declines in temperature and in the

proportion of sites where brook trout are extirpated.

Elevation parameter estimates obtained from the

model-based clustering approach were uniformly

negative (i.e., probability of extirpation decreased as

elevation increased) and reflected influences at a

smaller spatial extent. This result is consistent with

prior local-scale expectations (Hudy et al. 2006).

There were considerable differences among intercept

estimates. The exponential of the estimated intercept

FIGURE 4.—Delineation of six eastern U.S. subregions

identified by a model-based clustering approach as providing

the best ability to predict brook trout status (extirpated or

present) in subwatersheds (shown as points within each

subregion; cluster 1 ¼ northeastern part of New York,

Connecticut, Rhode Island, and Massachusetts; cluster 2 ¼
western New York State; cluster 3¼ eastern Pennsylvania and

southeastern New York; cluster 4¼western Pennsylvania and

northern parts of Virginia and West Virginia; cluster 5 ¼
northern portion of the southern Appalachian Mountains

region; cluster 6 ¼ southern portion of the southern

Appalachian Mountains region). The x-axis is longitude and

the y-axis is latitude.

TABLE 2.—Average fraction correctly classified for fit

(AFCCF) calculations, measuring the predictive ability of six

subregional models of brook trout population status (extirpat-

ed or present) and a single regionwide model for the eastern

USA (observations ¼ subwatersheds with status data). The

AFCCF values based on 10-fold cross validation (AFCCF
cv

)

are also shown.

Model cluster Observations AFCCF AFCCF
cv

1 493 0.87 0.86
2 365 0.80 0.80
3 711 0.71 0.71
4 458 0.75 0.74
5 368 0.77 0.77
6 394 0.69 0.68
Overall 2,789 0.76 0.76
Single 2,789 0.63 0.63
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represents the probability of extirpation at sites with

zeros for all variables (i.e., baseline models). Baseline

(intercept-only) models for most clusters (clusters 1–3

and 5) favored brook trout presence, whereas cluster 6

had a large positive intercept of 3.444. Cluster 6

represented the southern Appalachian area, and the

associated model tended to incorrectly classify sites of

extirpation as being sites of brook trout presence. A

closer look at the original data in that region revealed

some interesting features. Figure 5 presents compari-

sons of the predictor variables across clusters and

status. Cluster 6 represented a subregion of higher

elevation (mountain areas), lower proportions of

agricultural use, and a higher forested percentage

TABLE 3.—Parameter estimates for five predictor variables (elevation [m]; road density [km road/km2 land]; percent area in

agricultural use; depositional NO
3

and SO
4
; percentage of forested lands in the water corridor) used in a single regionwide

logistic model and six subregional models identified from cluster-based modeling of brook trout population status (extirpated or

present) in subwatersheds of the eastern USA (number of sites of extirpation [EX] and presence [PR] are shown). Empty cells

indicate variables that were not added to the given model. Significance was less than 0.01 except for items marked by asterisks

(*P , 0.05).

Model Intercept Elevation Road density Percent agriculture Percent forest Depositional chemistry EX PR

Single �1.169 0.211 0.263 0.486 �0.329 1,717 1,072
Cluster 1 �5.469 �1.811 0.954 0.758* 48 445
2 �0.285 �3.642 1.441 �3.620 166 199
3 �2.583 �1.221 0.313* 0.469 �0.438 304 407
4 0.123 �3.581 0.840 �0.981* 255 203
5 �0.404 �1.581 �0.690* �1.237 �2.919 106 262
6 3.444 �2.272 0.554 5.606 193 201

FIGURE 5.—Box plots of five transformed, centered, and scaled predictor variables (elevation [m]; depositional NO
3

and SO
4

[chemistry]; road density [km road/km2 land]; percent area in agricultural use [agriculture]; and percentage of forested lands in

the water corridor [total forest]) used in six subregional models of brook trout population status (extirpated [E] or present [P]) in

subwatersheds of the eastern USA. Subregion locations (clusters 1–6) are defined in Figure 4. The y-axis defines values of the

indicated variable, while the x-axis is the combination of cluster number and status. Characteristics of the box plots are described

in Figure 1.
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relative to the other subregions. Our prior expectation

was that this area would favor brook trout presence;

hence, we expected the baseline model to have a small

or negative intercept. In fact, sites of presence were not

predominant in this subregion. Cluster 6 contained 193

sites of extirpation and 201 sites of presence, which

suggests that the intercept would be near zero. Instead,

our cluster 6 model produced the positive intercept

estimate of 3.44, which implies that the general pattern

in the area is different from patterns in the other areas

and is suggestive of high baseline extirpation. The

discrepancy indicates that further investigation is

needed to achieve better classification performance.

As indicated by Thieling (2006), past land use practice

and the stocking of exotic rainbow trout O. mykiss into

restored subwatersheds have displaced brook trout;

therefore, rainbow trout presence is a very important

metric affecting brook trout status. Although an

invasive species metric was developed, it was not

sufficiently accurate for good prediction. By using

model-based clustering, we were able to discern such

irregular subregions within the larger region and to

better control the misclassification rate relative to a

single-model approach. In future studies, inclusion of a

better exotic fish metric may further enhance the

model’s predictive performance.

According to Thieling’s (2006) retrospective study,

the majority of subwatersheds for which extirpation

was predicted but that in fact contained brook trout

were located in eastern Pennsylvania (cluster 2) and

western New York (cluster 3). Thieling’s (2006) study

predicted extirpation in many watersheds because of

high road density and increasing urbanization. How-

ever, in practice, many of these watersheds had high-

elevation refuges where brook trout were present in

small, isolated coldwater habitats.

After clustering, the importance of elevation,

agriculture, and forest outweighed that of road density,

especially in clusters 2 and 3, and we were able to

obtain better prediction for these areas. The deposi-

tional chemistry variable seemed especially important

in clusters 2 (western Pennsylvania) and 5 (Virginia

and West Virginia mountains). Thus, the models

generally conformed to expectations associated with

knowledge about stressors in the subregions defined by

these clusters. Exceptions were the importance of

chemistry in clusters 1 and 6, which had rather low

levels of deposition. For cluster 1, chemistry became

important after we entered elevation into the model;

graphical analysis suggested that chemistry entered the

model because sites of extirpation were lacking at

higher elevations. For cluster 6, graphical analysis

indicated that after adjusting for elevation, the

probability of extirpation increased with decreasing

depositional chemistry. We suspect that in this region,

deposition is probably not a causative factor but is

associated with the west–east spatial gradient.

Discussion

In this paper, we have described a method for using

model-based clustering with spatial data. In particular,

we developed algorithms for segmenting binary

response data collected over a large region based on

the performance of logistic regression models. We used

Voronoi tessellation techniques and a predictive

criterion as the performance measure with a Monte

Carlo search for the optimal clustering solution.

Application of this method to a brook trout data set

demonstrated its potential for achieving better classi-

fication performance than a similar model that ignored

clustering.

The importance of this work rests not so much in the

models and their included variables but rather in the

improvement in predictive ability. Improved prediction

will be useful for prioritizing sites according to

restoration or preservation. For example, a site where

brook trout are present but have a high probability of

extirpation is probably worth preserving. A site of

extirpation that is predicted to have a low probability of

extirpation could be considered a good candidate for

brook trout restoration. An improved predictive ability

provides a better list of sites for restoration and

recovery and hence increases the potential for a more

successful management program.

An important caveat is that these models do not

incorporate historical information. Many physical,

chemical, and biological changes at the watershed

level have occurred over the last 200 years in the brook

trout’s native range in the eastern United States

(MacCrimmon and Campbell 1969; Jenkins and Burk-

head 1993; Marschall and Crowder 1996; Yarnell

1998). Historic and current land use practices (King

1937, 1939; Lennon 1967; Kelly et al. 1980; Nislow

and Lowe 2003); increased water temperature (Meisner

1990); the spread of exotic and nonnative fishes

(Moore et al. 1983; Larson and Moore 1985; Moore

and Ridley 1986; Strange and Habera 1998); fragmen-

tation of habitats by dams and roads (Belford and

Gould 1989; Gibson et al. 2005); changes in water

quality (Fiss and Carline 1993; Gagen et al. 1993;

Clayton et al. 1998; Hudy et al. 2000; Driscoll et al.

2001); changes in stream habitat due to habitat

destruction, stream channelization, poor riparian man-

agement, or sedimentation (Curry and MacNeill 2004);

and natural stochastic events (Roghair et al. 2002) have

eliminated or severely reduced brook trout populations

at local or regional scales (Bivens et al. 1985; SAMAB

1996; Galbreath et al. 2001; Habera et al. 2001;
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McDougal et al. 2001). Although knowledge of these

factors is important for watershed management, the

limited budgets of most agencies would probably

prevent the use of every factor in regional models or in

determining how to subdivide larger regions into

smaller ones for modeling purposes.

Identification of streams requiring management is

difficult given past history and expectation of future

changes. It may take over 50 years for the stream

habitat to recover, even when past land use practices

are remedied (Harding et al. 1998). Cases in point are

subwatersheds that are predicted to contain intact or

reduced populations but that are in fact sites of

extirpation. The highest misclassifications were in

cluster 6, an area where abusive land use practices

historically caused extirpation of brook trout popula-

tions in subwatersheds (King 1937, 1939). Today,

many of these subwatersheds are restored and protected

(National Forest, National Park, and state lands) and

have watershed attributes that would predict brook

trout presence (i.e., high forest percentage, low

percentage of agriculture use, and high elevation).

However, as past land use practices abated and these

subwatersheds recovered, stocking resulted in natural-

ization of rainbow trout (King 1937, 1939; Lennon

1967; Kelly et al. 1980). Naturalized rainbow trout

now preclude the restoration of brook trout in these

habitat-recovered subwatersheds. Unfortunately, avail-

able metrics for exotic fishes did not perform well in

distinguishing between sites with differing brook trout

status, probably because of a complex interaction

among such factors as natural and manmade barriers,

stocking history, and data set variability in identifying

exotic fishes as threats at the subwatershed level.

Exotic fishes like rainbow trout may have impacts at

different scales throughout the brook trout’s range (i.e.,

stream segment scale), and subwatershed-level analysis

may be inappropriate for determining these effects.

Some metrics may have greater influence on brook

trout populations at different scales (Kocovsky and

Carline 2006). For example, Rashleigh et al. (2005)

were able to predict brook trout presence–absence in

stream segments in the Mid-Atlantic Highlands with a

correct classification rate of 79% using local-scale

metrics of depth, temperature, substrate, percentage

riffles, cover, and riparian vegetation. It is interesting

that prediction rates were only slightly lower for our

models, which were based on larger-scale data.

Despite obvious difficulties in predicting which sites

to manage, we need evaluations of the integrity of

watersheds over the native range of brook trout to

guide decision makers, managers, and the public in

setting priorities for watershed-level conservation,

restoration, and monitoring programs. Improving our

understanding of a species’ current distribution and

population status is one of the key tools in conservation

(Williams et al. 1993; Warren et al. 1997; EBTJV

2006). The ability to predict site quality is essential for

conservation and restoration. We believe that models

based on a species’ full data set, while useful, could

miss important smaller-scale patterns.

Our models demonstrated the importance of eleva-

tion in all six clusters. The large values and negative

signs of the coefficient estimates were indicative of

lower stream temperature and a lesser degree of human

disturbance at higher elevations. Even though elevation

is not a metric that land managers can control, it

suggests the importance of managing high-elevation

streams for purposes of maintaining self-sustaining

brook trout populations. Differential significance of the

four remaining predictor variables and their estimated

values in each cluster can aid land managers in setting

priorities for protective management decisions.

Our models can be used in several ways. First,

identification of a cluster that primarily contains sites

of brook trout presence suggests a region where

preservation and maintenance constitute the correct

strategy. Second, areas with irregular or unexpected

patterns of predicted brook trout status suggest that

further investigation is required for better management

decisions. Third, one can use well-performing predic-

tive models for some study areas to predict future

subwatershed status. Also, interpretation of the result-

ing logistic models can aid in managerial actions if

combined with other professional knowledge (espe-

cially historical information).

Users of our method can easily modify the model

performance criterion to achieve various research

goals. We used the overall AFCCF as the criterion

for obtaining better overall classification relative to the

single-model approach. If one is interested in finding a

‘‘hot spot’’ within the region where the model can

describe the stressor–response relationship well, the

maximum AFCCF can be used as the criterion.

Although we used latitude and longitude as clustering

variables, other variables are possible. In another

application on water quality in the Mid-Atlantic

Highlands, we used elevation and stream width as the

clustering variables. One can also easily extend this

work to other application areas provided that (1)

partitioning of the entire data set makes intuitive sense

and (2) there are sensible clustering variables.

Alternative approaches are available for model-

based clustering. Holmes et al. (1999) used Bayesian

partitioning modeling to split a large region into

disjoint subregions. Their examples involved regres-

sion models that assumed normal or multinomial

responses. Denison and Holmes (2001) also extended
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the method to count data analysis. Chipman et al.

(2002) proposed Bayesian treed models (BTMs) as an

extension of classification trees. The BTMs use a set of

variables to split the data in a manner similar to that

done in classification trees, but then a logistic or

normal regression model is employed as the final step

in each node of the tree. This method allows for richer

models in each partition but permits only axis-parallel

partitions, producing clusters of rectangular shape.

Since each step of the partitioning process involves a

binary cut, the resulting shapes are rather regular.

Further, BTMs are not invariant to transformation of

spatial coordinates. Hence, changing the shape of the

spatial region could result in different clusters.
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