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Designing Log Contour Basins for
Maximum Effectiveness

by Larry J. Schmidt

Various slope treatments are commonly
employed after  wildfires  to reduce
surface runoff and sediment transport
and to provide for the emergency
rehabilitation of burned watersheds.

Slope treatments commonly include log
erosion barriers and the contour felling
of trees.  These practices obstruct flow,
reduce slope length, and cause sediment
deposition.  They consist of an array of
logs felled on the contour with enough
supplemental work to assure full
contact with the ground.

This article is about contour log basins
which are slope treatments designed to
fully detain water from a given design
storm thus eliminating runoff and
sediment transport (figure 1).  They
consist of an array of logs felled on the
contour, with constructed basins placed
on a spacing governed by the design
storm and structure capacity.

Contour log basins work best in areas
where short duration, high intensity,
low volume storms occur, such as in the
Interior West.

Contour log basins:

• Detain surface runoff thus
eliminating sediment transport,

• Provide the necessary capacity and
spacing to detain runoff,

• Control runoff on-site more
effectively than in-channel controls,
and

• Are considered to be successful
when minimal sediment accumulates
behind the structures.

Contour Log Basin Design
Process

The design of contour log basins
follows a fairly simple, systematic
design process.

1. Predict the recovery period in years
to achieve satisfactory hydrologic
condition.

2. Select an acceptable percent risk
over the time required for recovery.
See STREAM NOTES,
“Calculated Risk: A Tool for
Improving Design Decisions”,
October 1998.

3. Determine the equivalent return
period from the table or formula.

4. Consult state NOAA Atlas II for
storm values and adjust rainfall
amounts to 30 minute durations.
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Figure 1. Important construction features of a well-constructed contour log basins.  Photo by Becca Smith
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5. Adjust storm using Runoff Curve Number for the
site if other than a conservative 100%.

6. Determine the design capacity of the structures
(accounting for gaps on the contour between
structures as a percentage of full treatment).

7. Use the design runoff and basin structure capacity
to determine appropriate spacing between courses
(figure 2).

8. If sufficient logs are unavailable to achieve spacing,
use wattles, mulching, or hand dug structures to
supplement treatment.
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Figure 2. Spacing formula for contour basin design.

9. Implement treatment from the top of slope down so
that if a storm occurs during implementation, the
existing treatments will function and remain intact
to the design standard.

10. If treatment from the ridgeline down is infeasible,
consider other options such as mulching.

Effective Application Requirements

• Contour log basins provide an interdependent
network of basins to control runoff; accordingly,
design and implement treatment from the top of the
slope (ridge) down.

• Contour log basins need to be implemented on the
contour, in full contact with ground.

• Effective contour log basins require end sills and
intermediate equalizer baffles to provide sufficient
capacity for runoff detention and to reduce the risk
of complete failure.

• Contour log basin spacing and “brick coursing” are
critical to effectiveness.

• Infiltration in the basins behind the contour log basins
can be enhanced by covering the constructed basin
with  straw mulch to prevent soil puddling.



STREAM SYSTEMS TECHNOLOGY CENTER

Hydrogeological Principles Useful in Predicting the
Effects of Streamflow Alterations on Shallow

Groundwater and Associated Riparian Vegetation

by Mark Cable Rains

Numerous studies have shown that stream water
and shallow groundwater are tightly linked in
alluvial settings, and that changes in stream stage
are propagated rapidly across alluvial aquifers
(Castro and Hornberger 1991, Sophocleous 1991).
Thus, many researchers have assumed that stream
stages approximate water tables in alluvial aquifers
(Auble et al. 1994, Stromberg and Patten 1996).
This assumption is valid in some cases but invalid
in other cases, particularly in arid basin terrain and
more humid mountain terrain.  Even when this
assumption is valid, this relationship only implies
correlation and not causation so the potential
effects of stream flow alterations on shallow
groundwater and associated riparian vegetation
remain unknown.

Stream water and shallow groundwater interactions
can be quite complex and can vary spatially on a given
river or temporally on a given river segment.
Nevertheless, four basic stream water and shallow
groundwater interaction conditions can be described:
a) shallow groundwater recharged by stream water,
with li t t le to no lateral spreading of shallow
groundwater outside of the active floodway; b) shallow
groundwater recharged by stream water, with extensive
lateral spreading of shallow groundwater outside of
the active floodway; c) shallow groundwater recharged
by regional groundwater; and d) shallow groundwater
recharged by mixed stream water and regional
groundwater (figure 1).  The objectives of this article
are to briefly describe each of these conditions, and to
briefly discuss how stream flow alterations might
affect shallow groundwater and associated riparian
vegetation under each of these conditions.

Figure 1.  Basic stream water and shallow
groundwater interaction conditions: a) shallow
groundwater recharged by stream water, with little to
no lateral spreading of shallow groundwater outside
of the active floodway, b)  shallow groundwater
recharged by stream water, with extensive lateral
spreading of shallow groundwater outside of the active
floodway, b) shallow groundwater recharged by
regional groundwater, and d) shallow groundwater
recharged by mixed stream water and regional
groundwater.
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Stream Water and
Shallow Groundwater Interactions

Shallow Groundwater Recharged by Stream Water

In arid regions, particularly in basin terrain,
groundwater recharge occurs largely through infiltration
of stream water (Stephens 1996, Izbicki et al. 2000).
Where regional water tables are deep and subsurface
deposits are permeable, infiltrating stream water flows
vertically downward due to gravity drainage and a
saturated connection between the stream water and the
regional groundwater may or may not be maintained
(Figure 1a).  Riesenauer (1963) used a numerical
groundwater model to study infiltration of canal water
to a deep, regional water table.  Some saturation did
occur, but only directly below the canal and only to a
limited depth.  The result was a vertical plume of
saturation below the canal.  Izbicki et al. (2000) used
hydrometric and geochemical procedures to study
infiltration in the uplands and channels of the western
Mojave Desert, California.  Infiltration to depths below
the rooting zone occurred only beneath the channels.
Saturation and high moisture contents did occur, but
only directly below the channel and only to
approximately 10 m below the land surface.  Again,
the result was a vertical plume of saturation below the
channel.

Where low-permeability deposits or bedrock occur in
the shallow subsurface, infiltrating stream water may
perch and flow laterally away from the active floodway
(Figure 1b).  Harvey and Sibray (2001) used
hydrometric and geochemical procedures to study
infiltration of canal water in western Nebraska.  The
canal carried water twice a year, once in spring to
recharge reservoirs and once in summer to provide
water for field irrigation.  The canal was dry for the
remainder of the year.  When the canal carried water,
the water table rose rapidly due to infiltration of canal
water.  The infiltrated canal water perched on low-
permeability siltstones and sandstones in the shallow
subsurface and flowed laterally to recharge adjacent
wetlands and lakes.

Stream flow alterations may have pronounced effects
on shallow groundwater and associated riparian
vegetation in both of these cases.  Depending upon local

hydrogeologic conditions, there may be little to no lateral
spreading of shallow groundwater and little to no effect
on shallow groundwater and associated riparian
vegetation outside of the active floodway, or there may
be extensive lateral spreading of shallow groundwater
and pronounced effects on shallow groundwater and
associated riparian vegetation outside of the active
floodway.

Shallow Groundwater Recharged by
Regional Groundwater

In more humid regions, particularly in mountain terrain,
groundwater recharge occurs largely through diffuse
infiltration of precipitation in the uplands (Stephens
1996, Flerchinger and Cooley 2000).  Water tables often
are subdued replicas of land surfaces, with water tables
highest under the uplands and lowest under the lowlands.
Water flows down gradient, so lowlands typically
receive regional groundwater discharge.  In some cases,
most if not all shallow groundwater may be recharged
by regional groundwater discharge (Figure 1c).  Gerla
(1992) used a numerical groundwater model, analytical
particle tracking and geochemical models, and
geochemical data to study the source of surface water
and shallow groundwater in the Red River Valley, North
Dakota.  Surface water and shallow groundwater were
entirely recharged by regional groundwater, the vast
majority of which had flowed more than 100 km through
the deep subsurface prior to discharging to the surface
and shallow subsurface.  This regional groundwater
discharge sustained base flows in the Red River.

Stream flow alterations may have little to no effect on
shallow groundwater and associated riparian vegetation
in these cases.  For example, Stromberg and Patten
(1996) noted that relationships between stream flow and
tree growth were weak in confined canyons, which they
suggested was due to the fact that trees in confined
canyons were supported by other sources of water such
as regional groundwater discharge.

Shallow Groundwater Recharged by
Mixed Stream Water and Regional Groundwater

In most circumstances, shallow groundwater is
recharged by mixed stream water and regional
groundwater and the situation is more complex
(figure 1d).  Izbicki et al. (1995) used geochemical
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procedures to study groundwater recharge in the Mojave
River basin, California.  They identified two aquifers, a
shallow alluvial aquifer and a deep regional aquifer.  In
most of the alluvial aquifer, shallow groundwater was
recharged solely by stream water.  Where the underlying
bedrock shallowed, however, regional groundwater was
forced toward the surface and shallow groundwater was
recharged by mixed stream water and regional
groundwater.  The issue was more complicated still since
the regional groundwater was recharged partly by stream
water farther up gradient and partly by regional
groundwater discharge from the surrounding mountain
blocks.  Thus, the regional groundwater that discharged
to the alluvial aquifer was at least in part recharged by
the alluvial aquifer itself farther up gradient.

Rains and Mount (2002) used geochemical procedures
to study the origin of shallow groundwater in an alluvial
aquifer on Little Stony Creek, California.  Shallow
groundwater was recharged by stream water and regional
groundwater, with stream water the more prominent
source of shallow groundwater in the wet season and
regional groundwater the more prominent source of
shallow groundwater in the dry season.  In the wet season,
continuous stream flows were a relatively large source
of shallow groundwater recharge, while in the dry season,
intermittent stream flows were a relatively small source
of shallow groundwater recharge.  Regional groundwater
was a relatively constant source of shallow groundwater
recharge throughout the year because the alluvial aquifer
was a regional low perpendicular to the regional
groundwater flow path.

In these circumstances, the effects of stream flow
alterations on shallow groundwater and associated
riparian vegetation cannot be easily predicted.  Aquifers
with multiple sources of groundwater recharge respond
dynamically to stress, so one cannot predict future shallow
groundwater conditions by simply assuming that one
source of shallow groundwater recharge will decrease
while other sources of shallow groundwater recharge will
remain unchanged (Theis 1940).  If stream flows are
reduced, then shallow groundwater recharge by stream
water could be reduced and hydraulic heads in the alluvial
aquifer could decline.  If hydraulic heads in the alluvial
aquifer decline, then hydraulic gradients from the regional

aquifer to the alluvial aquifer could increase and
regional groundwater discharge to the alluvial aquifer
could increase. In an extreme case, total shallow
groundwater recharge could remain unchanged,
though the relative contributions of stream water and
regional groundwater to shallow groundwater
recharge could substantially change.  In most cases,
total shallow groundwater recharge would decrease,
though the magnitude of the decrease would depend
upon local and regional hydrogeologic conditions.

Concluding Remarks

Stream water and shallow groundwater interactions
can be quite complex, and two or more of these stream
water and shallow groundwater interaction conditions
may occur at different locations on a given river or at
different times on a given river segment.  Therefore,
predicting the effects of stream flow alterations on
shallow groundwater and associated riparian
vegetation is a daunting task.  Numerical modeling
can help, but data to adequately model entire river
systems typically are lacking.  Furthermore, water
flows according to governing equations and is
relatively well-behaved, while vegetation changes
according to a wide variety of physical and biological
factors and is relatively ill-behaved.  Thus, while it is
difficult to predict the effects of stream flow alterations
on shallow groundwater, it is more difficult still to
predict the effects of stream flow alterations on
associated riparian vegetation.  However, careful
consideration of the hydrogeologic characteristics of
the river or river segment of interest can be useful.
For example, stream flow alterations may have
pronounced effects on shallow groundwater and
associated riparian vegetation where shallow
groundwater is recharged by stream water, but little
to no effect on shallow groundwater and associated
riparian vegetation where shallow groundwater is
recharged by regional groundwater.  Therefore, a basic
understanding of the hydrogeologic principles
described herein can be used to make first order
approximations of the effects of stream flow
alterations on shallow groundwater and associated
riparian vegetation.



STREAM SYSTEMS TECHNOLOGY CENTER

Acknowledgements

The motivation for this manuscript came from
discussions held during the Streamside Vegetation-
Hydrologic Interactions Workshop convened by the
USDA Forest Service, Rocky Mountain Research
Center, Stream Systems Technology Center in March
2003.  Kai Rains, Chris Hammersmark, Wendy
Trowbridge, and Dave Merritt provided suggestions
that greatly improved the quality of the manuscript.
Courtnay Duchin drafted figure 1.

References

Auble, G. T., J. M. Friedman, and M. L. Scott.
1994.  Relating riparian vegetation to present
and future streamflows.  Ecological
Applications 4:544-554.

Castro, N. M., and G. M. Hornberger.  1991.
Surface-subsurface water interactions in an
alluviated mountain stream channel.  Water
Resources Research 27:1613-1621.

Flerchinger, G. N., and K. R. Cooley.  2000.  A ten-
year water balance of a mountainous semi-arid
watershed.  Journal of Hydrology 237:86-99.

Gerla, P. J.  1992.  Pathline and geochemical
evolution of ground water in a regional
discharge area, Red River Valley, North
Dakota.  Ground Water 30:743-754.

Harvey, F. E., and S. S. Sibray.  2001.  Delineating
ground water recharge from leaking irrigation
canals using water chemistry and isotopes.
Ground Water 39:408-421.

Izbicki, J. A., J. Radyk, and R. L. Michel.  2000.
Water movement through a thick unsaturated
zone underlying an intermittent stream in the
western Mojave Desert, Southern California,
USA.  Journal of Hydrology 238:194-217.

Izbicki, J.A., P. Martin, and R.L. Michel.  1995.
Source, movement and age of groundwater in
the upper part of the Mojave River Basin,
California, USA.  In Application of Tracers in
Arid Zone Hydrology, IAHS Publication No.
232, 43-56. Wallingford, UK: International
Association of Hydrological Sciences.

Rains, M. C., and J. F. Mount.  2002.  Origin of
shallow ground water in an alluvial aquifer as
determined by isotopic and chemical
procedures.  Ground Water 40:552-563.

Riesenauer, A. E.  1963.  Methods for solving
problems of multidimensional, partially
saturated steady flow in soils.  Journal of
Geophysical Research 68:5725.

Sophocleous, M. A.  1991.  Stream-floodwave
propagation through the Great Bend alluvial
aquifer, Kansas: Field measurements and
numerical simulations.  Journal of Hydrology
124:207-228.

Stephens, D. B.  1996.  Vadose Zone Hydrology.
Boca Raton: Lewis Publishers.

Stromberg, J. C., and D. C. Patten.  1996.  Instream
flow and cottonwood growth in the eastern
Sierra Nevada of California, USA.  Regulated
Rivers: Research & Management 12:1-12.

Theis, C. V.  1940.  The source of water derived
from wells: essential factors in controlling the
response of an aquifer to development.  Civil
Engineer 10:277-280.

Mark Cable Rains, Hydrogeologist, Assistant
Professor of Hydrogeology, Department of
Geology, University of South Florida, Tampa, FL
33620.

STREAM
On-line

Riparian Bibliography

The Rocky Mountain Research Station’s Stream
Systems Technology Center and the University of
Washington’s Center for Water and Watershed
Studies (formerly the Center for Streamside Studies)
have jointly produced a compilation of over 8,000
riparian references through an extensive search of the
published and gray literature, books, and electronic
databases.  The bibliography is updated annually and
is intended for aquatic and riparian ecologists,
hydrologists, geomorphologists, students, and policy
makers.  Through this joint effort, the bibliography is
also available to the general public via the Internet.
This bibliography has an easy to use search engine
and may be found on-line at:

 http://riparian.cfr.washington.edu/.
Check it out!
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Dear Doc Hydro:  I’ve been looking at Bunte and Abt’s
publication, “Sampling Surface and Subsurface
Particle-Size Distributions in Wadable Gravel and
Cobble-Bed Streams” (RMRS GTR-74) and reading
about the characterization of various particle
distribution parameters such as the mean, sorting,
skewness, kurtosis, and the various ways of computing
size distribution percentiles and statistics.  It’s all
pretty  complicated stuff and the equations are pretty
formidable.  Are there any computer programs that
perform these computations and make this task
easier?

There’s a very nice program called GRADISTAT that
should meet your needs. GRADISTAT was developed by
Simon Blott and Kenneth Pye of the Department of
Geology, Royal Holloway University of London, England
to assist the wide-ranging needs of researchers in
geomorphology and sedimentology. Soil scientists may
also find the program useful to display soil particle size data.

The program, written in Microsoft Visual Basic, is
integrated into a Microsoft Excel spreadsheet to allow
for both tabular and graphical (frequency and ternary
plots) output. A sample of the types of output is shown
on this page.

Users are required to input the percentage of sediment
present in a number of size fractions.  Data can be the
weight retained on a series of sieves, or the percentage of
sediment detected in size classes derived from a laser
granulometer, X-ray sedigraph, or Coulter counter.  Input
data is limited to an upper size limit of 90 mm, and is
therefore best suited for analyzing finer materials.

Blott and Pye also caution that although the GRADISTAT
program is extremely flexible in terms of input and output,

it remains the responsibility of the user to interpret
the results in an appropriate manner.  They note that
although most sedimentologists have traditionally
worked with phi units, in their opinion, statistics
expressed in metric units are preferred because the
phi scale is seldom used by biologists, soil scientists,
and engineers and metric results are easier to visualize
because they represent the actual size of the particles.

The GRADISTAT program (GRADISTAT.xls) can be
downloaded from the Earth Surface Processes and
Landforms software web site (http://
www.interscience.wiley.com/jpages/0197-9337/
sites.html).  Look for: “Software from ‘Gradistat: a
Grain Size Distribution and Statistics Package for the
Analysis of Unconsolidated Sediments’ by Simon
J. Blott and Kenneth Pye, Earth Surface Processes
and Landforms, Volume 26, Issue 11, pp. 1237–
1248.”

GRAIN SIZE DISTRIBUTION
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    SAMPLE STATISTICS

SAMPLE IDENTITY: Squaw Creek, MT ANALYST & DATE: S. S. Sampler, August 15, 2000

SAMPLE TYPE: Trimodal, Moderately Sorted TEXTURAL GROUP: Gravel
SEDIMENT NAME: Very Coarse Gravel

GRAIN SIZE DISTRIBUTION        
MODE 1: GRAVEL: COARSE SAND: 0.0%
MODE 2: SAND: MEDIUM SAND: 0.0%
MODE 3: MUD: FINE SAND: 0.0%

D10: V FINE SAND: 0.0%
MEDIAN or D50: V COARSE GRAVEL: V COARSE SILT: 0.0%

D90: COARSE GRAVEL: COARSE SILT: 0.0%
(D90 / D10): MEDIUM GRAVEL: MEDIUM SILT: 0.0%
(D90 - D10): FINE GRAVEL: FINE SILT: 0.0%
(D75 / D25): V FINE GRAVEL: V FINE SILT: 0.0%
(D75 - D25): V COARSE SAND: CLAY: 0.0%

Logarithmic
φ

MEAN      : -3.413
SORTING (σ): 2.219

SKEWNESS (Sk ): 0.411
KURTOSIS (K ): 1.703

24945.4

139035.3

METHOD OF MOMENTS

φ
-5.735
-4.731
-0.743

42.48

-7.154
-4.980

0.872
2.546

µm
54000.0
26950.0
1700.0
3351.6
31561.8

142386.9

2.544

-1.745
0.244
5.409

Geometric
µm

2870.1

Arithmetic
µm

24585.5

5.833
61227.5

0.590

0.133

53.97
-1.348
3.129

1.728
-4.762
0.133 Very Platykurtic

Description

Coarse Gravel
Moderately Sorted

6.5%

Geometric Logarithmic

Very Fine Skewed

φ

4.762

µm
21450.7 -4.423

0.789

FOLK & WARD METHOD

93.5%
6.5%
0.0%

49.6%
20.4%
12.7%
6.1%
4.7%

)(x
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