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ABSTRACT: During the past decade, research on large in-stream wood has expanded beyond North America’s Pacifi c Northwest 
to diverse environments and has shifted toward increasingly holistic perspectives that incorporate processes of wood recruitment, 
retention, and loss at scales from channel segments to entire watersheds. Syntheses of this rapidly expanding literature can be 
facilitated by agreement on primary variables and methods of measurement. In this paper we address these issues by listing the 
variables that we consider fundamental to studies of in-stream wood, discussing the sources of variability in their measurement, 
and suggesting more consistency in future studies. We recommend 23 variables for all studies of in-stream wood, as well as 
another 12 variables that we suggest for studies with more specific objectives. Each of these variables relates either to the size 
and characteristics of in-stream wood, to the geomorphic features of the channel and valley, or to the ecological characteristics 
of the riparian zone adjacent to the study reach. The variables were derived from an overview of those cited in the literature and 
from our collective field experiences. Copyright © 2010 John Wiley & Sons, Ltd. 
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Introduction 

The role of downed wood in terrestrial and aquatic ecosystems 
has been investigated for decades (Swanson and Lienkaemper, 
1978; Brown and See, 1981), and research on the physical and 
ecological effects of in-stream wood has increased substantially 
during the past decade (e.g. Gregory et al., 2003a; Montgomery 
and Piégay, 2003). This research has led to syntheses of in-stream 
wood characteristics and dynamics (Harmon et al., 1986; Maser 
et al., 1988; Wohl and Goode, 2008). These syntheses have been 
useful in identifying regional patterns and gaps in knowledge 
(Hassan et al., 2005), but stronger inferences have been ham
pered by the inherently high spatial and temporal variation in 
in-stream wood and by measurement error (Roper and 
Scarnecchia, 1995; Roper et al., 2002; Archer et al., 2004; 
Whitacre et al., 2007). Our review of many studies of in-stream 
wood also revealed inconsistencies in the type of variables mea
sured and methods of measurement. Agreement on the measure
ment and reporting of variables could resolve some of the 
uncertainties associated with understanding in-stream wood pat
terns (Barker et al., 2002). Thus, our objectives in this commen
tary are to list the variables that we consider fundamental to 
studies of in-stream wood and to suggest additions to study design 
and reporting that would enhance the value of individual studies. 

What is In-stream Large Wood? 

The most fundamental questions involving large wood are (1) 
what are the minimum dimensions of a piece and (2) what 
portion of a piece should be measured. The decision about 
piece inclusion can be scaled to the stream dimensions, such 
as channel width, which govern storage and transport (Gurnell, 
2003). In many studies, however, selection of the minimum 
dimensions of pieces that constitute large wood – minimum 
diameters of 5 to 20 cm and minimum lengths of 1 to 3 m – is 
somewhat arbitrary (Ralph et al., 1994). Although some have 
argued that retaining these dimensions facilitates comparisons 
with studies of terrestrial large-diameter fuels or large wood 
in other aquatic systems (Harmon and Sexton, 1996; Gregory 
et al., 2003a), a more fluvially relevant standard may be to 
derive the minimum dimensions from the prevalence of piece 
sizes in channels and riparian zones (Young et al., 2006). 

Other sources of variation between studies involve piece 
measurements vis-à-vis the bankfull channel and treatment of 
that portion of a piece below the minimum diameter. Pieces 
of wood that lean over or bridge a channel are variously 
included or excluded. It seems reasonable to measure the 
portion of wood that falls within the bankfull channel dimen
sions, but characterize the remainder of the piece as being 
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within the riparian zone. This is especially relevant if the 
in-stream wood piece is part of a living tree (Opperman and 
Merenlender, 2007; Opperman et al., 2008). Similarly, some
times only the part of a piece above a minimum diameter is 
measured. This has minimal influence on volume estimates, 
but can positively bias the mean diameter, negatively bias the 
mean length, and obscure relations with riparian large wood. 

The important point is to clearly state the minimum size 
criteria and inclusion rules and, ideally, to provide data of 
wood measurements in an appendix or electronic data reposi
tory so that other investigators can sort the data to meet dif
ferent criteria (e.g., remove all wood pieces with diameters 
<10 cm where 5 cm was the minimum diameter used). 

Suggested Metrics for In-stream 
Wood Studies 

We identified core variables based on their importance in 
previous studies and based on our collective experience, and 
subdivided them into three categories: wood, geomorphic, 
and riparian (Table I). Variables listed in parentheses are those 
we describe as Level II, or suggested for studies with more 
specific objectives. Wood variables include the size, orienta
tion, and characteristics of wood in the bankfull channel, as 
well as functional parameters directly associated with wood. 
Geomorphic variables include the physical characteristics of 
the stream channel, valley, and drainage basin for a reach, 
defined as the length of channel within which wood is mea
sured. If channel morphology varies substantially within a 
reach, then the reach should be subdivided into geomorphic 
channel units and geomorphic variables measured for each 
unit. Riparian variables include the ecological characteristics 
of the valley reach beyond the channel; i.e., on the fl oodplain 
or in the riparian zone. In the discussion that follows, the 
potential delivery distance of wood falling directly into the 
channel defines the riparian zone. 

Wood variables 

Length 
The entire length of a piece of wood that is contained within 
the bankfull channel can be measured. Alternatively, the 
length measurement may only include the portion within the 
bankfull channel or along the portion of the piece that meets 
the minimum diameter criterion. We suggest measuring both 
the entire length and the length within the bankfull channel, 
and clearly distinguishing these when reporting data. The 
former is likely to prove useful in studies of relative mobility, 
and the latter is necessary to calculate volume of wood per 
unit length or area of channel. We also recommend using the 
vertical and lateral zones described by Robison and Beschta 
(1990) because wood in these zones functions differently with 
regard to fluvial processes and aquatic habitat. 

Diameter 
As noted earlier, at a minimum we suggest measurements of 
diameter at both ends of each piece. We prefer this standard, 
in part, because estimating piece volume is one of the primary 
variables of interest in studies of large wood in streams. 
Nonetheless, we believe that estimates of volume should be 
regarded with some caution. Young et al. (2006) found that 
estimates of piece volume and reach-based volume were 
imprecise, which they attributed in part to differences in taper 
characteristics between species (Husch et al., 2002) and 

between intact and broken pieces (Williams and Gove, 2003). 
Piece volume is typically calculated using the equation for the 
volume of a cylinder, but addressing the effects of piece shape 
on volume would require a third measurement near the mid
point of each piece, which is rarely done. 

Orientation 
Measuring the angle of the wood with respect to the overall 
flow direction at bankfull (Cherry and Beschta, 1989; Robison 
and Beschta, 1990; Braudrick and Grant, 2000; Magilligan et 
al., 2008) provides a readily obtained, quantitative, highly 
comparable metric for assessing stability and transport pro
cesses between pieces at a site and between sites. Alternative 
measures proposed in the literature include orientation with 
respect to the local flow vector (Buffi ngton et al., 2002), fall 
direction or where the piece originated (Sobota et al., 2006) 
and zones of orientation within a 360° range (Magilligan et 
al., 2008). Azimuth and plunge of the wood can also be mea
sured to facilitate three-dimensional statistical analyses (e.g., 
eigenvalue method) and to include the vertical orientation, 
which is relevant to channel hydraulics and pool scour 
(Beschta, 1983; Cherry and Beschta, 1989; Buffi ngton et al., 
2002). 

Rootwad 
The presence or absence of a rootwad can provide important 
information on relative stability and function of the piece 
(Abbe et al., 1997; Braudrick and Grant, 2000). The measure
ment of a rootwad, however, is rarely addressed. Investigators 
measuring piece diameters typically ignore the rootwad and 
the buttswell immediately preceding it, although these por
tions of the wood piece can influence wood volume and piece 
mobility. In some instances a piece of wood is composed 
solely of the rootwad. We suggest measuring the rootwad 
length from the base of the root ball to the furthest extent of 
the bole, and measuring the diameter at the base of the bole 
where it meets the roots. 

Jams 
Previous studies range from those that simply mention the 
presence of jams to those that inventory jam size and spacing 
(Gregory et al., 1985; Gurnell and Sweet, 1998; Kaczka, 2003; 
Comiti et al., 2008) or characterize the effect of jams on 
hydraulics (Linstead, 2001; Manners et al., 2007) or sediment 
storage (Jeffries et al., 2003; Douglas and Guyot, 2005). Jams 
can exert more substantial geomorphic and ecological infl u
ences than individual pieces of wood (Bilby and Likens, 1980; 
Montgomery et al., 1995; Montgomery et al., 2003a; 
Montgomery et al., 2003b; Abbe and Montgomery, 2003; 
O’Connor et al., 2003), and can have different spatial distribu
tions (Richmond and Fausch, 1995; Kraft and Warren, 2003; 
Warren et al., 2007; Wohl and Jaeger, 2009) and greater sta
bility (Wohl and Goode, 2008) than individual pieces of 
wood. For these reasons, it is important to at least note the 
spatial distribution and size (either number of pieces of wood 
or total dimensions) of jams and the criteria for designating a 
jam. Abbe and Montgomery (2003) proposed three categories 
for jams (transport, in situ, or combination). 

Accumulation 
More than one of the 11 categories suggested here can be 
chosen to characterize the mechanism that retains wood 
within the stream. This is useful for interpreting geomorphic 
function and relative stability of wood. One of the categories 
is debris dams, also known as logjams or jams. This is suffi 
ciently important that we suggest that the presence and char
acteristics of jams deserve separate entries. 

Copyright © 2010 John Wiley & Sons, Ltd. Earth Surf. Process. Landforms, Vol. 35, 618–625 (2010) 
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Table I. Suggested metrics for research-oriented in-stream wood studies 

Levels	 Notes 

Wood – measured for each piece 
Level I Notes 
1. Length Whole piece and length in bankfull channel

 2. Diameter ≥1 measurement 
3. Orientation Angle with respect to downstream bank 
4. Root wad Note if present, including orientation with respect to fl ow 
5. Jams Spatial distribution and size (no. pieces per jam, or total dimensions of jam)

 6. Accumulationa 11 categories
 7. Statusb,c Decay class (six categories), burn status (three categories)
 8. Stabilityd Six categories 

Level II 
9. Species Note species or general category (e.g., deciduous/coniferous) 

10. Submergence Measure in relation to stage 
11. Age	 Tree-ring counting or radiocarbon dates 
12. Biomass/density Based on volume and wood density 
13. Function	 Characteristics of wood function include sediment storage (note if present; ideally, measure dimensions and grain 

size), pool scour (note if present; ideally, measure dimensions), backwater pools (note if present; ideally, 
measure dimensions), fl ow deflection, energy dissipation, and bank stabilization 

Geomorphic (channel and valley) – measured for each reach 
Level I 
1. Channel gradient Average streambed or water-surface gradient at study reach 
2. Channel width Average bankfull channel width at study reach 
3. Flow depth Either bankfull or at time of measurement

 4. Grain size Bed-material size distribution; D50 and sorting at minimum 
5. Discharge Bankfull, mean annual, peak annual, or at time of measurement 
6. Reach length Length of channel along which wood is measured

 7. Channel morphology Cascade, step-pool, plane-bed, pool-riffl e, dune-ripple, braided 
8. Drainage area Area drained by study reach 
9. Elevation At study reach, and range for catchment 

10. Valley side slope Average or maximum side slope values 
11. Confinement Ratio of channel width/valley-bottom width 
12. Connectedness Ratio of channel width/distance to valley wall 
13. Disturbance history Wildfire, blowdown, insect infestation, hillslope mass movements, avalanches 
14. Management history Timber harvest, percent roaded, tie-driven, dams, diversions, etc. 

Level II 
15. Bank scour Visual estimate of percentage of total stream bank length 
Riparian – measured for each reach 
Level I 
1. Forested	 Yes/no, deciduous/conifer, note cover type if not forested (e.g., willow or herbaceous dominated meadow, 

bedrock) 
Level II 
2. Dominant species Where forested, note forest type(s)/species of trees 
3. Sourcee Six categories 
4. Seral stage Young, mid-successional, or mature 
5. Floodplain survey Dimensions and spatial density of wood on forest fl oor 
6. Basal area Measure of the cross-sectional area of standing trees at breast height (may be measured by species) 
7. Site potential Rate of tree growth, time to reach maturity, longevity of trees 

Note: Level I lists metrics that we propose should be included in all studies; Level II lists those metrics that are more study-specifi c. 
a Accumulation classes: debris jam (part of a jam of three or more pieces), tree/rootwad (associated with a living tree or rootwad), boulder 
(associated with a boulder in the stream), meander (caught on the outside of a bend), bar (sitting on a point, alternate, or mid-stream bar), 
bedrock (caught on bedrock), beaver dam (incorporated in a beaver dam), bank (embedded in the bank, buried by soil or other bank materi
als), log step (forms a step in the stream, can be partially buried in streambed or not buried), buried in bed (portion of log buried in streambed, 
but not functioning as a step), none/other (specify if something else). A piece can have more than one class. 
b Decay classes: rotten (very soft wood that can be pulled apart easily by hand), decayed (moderately soft wood that cannot be pulled apart 
easily), bare (no bark or most bark is gone), limbs (limbs still attached, may have most or all bark intact), bark (all bark intact, a relatively new 
piece of wood), needles/leaves (green or brown needles/leaves still attached, very fresh piece of wood, tree may appear to be living). 
c Burn classes: unburned, partially burned, completely burned. 
d Stability classes: unattached/drift (entire piece is contained within bankfull channel and no portion is buried or pinned), bridge (both ends 
above bankfull channel, center suspended above channel), collapsed bridge (two ends above bankfull channel, broken in middle), ramp (one 
end in channel, the other end above bankfull channel), pinned (all or a portion is lodged beneath other pieces of wood in the stream), buried 
(all or a portion is buried in the streambed). 
e Source classes: unknown (source of wood cannot be determined), riparian (sources of wood appears to be valley bottom adjacent to the 
channel), hillslope (wood originates from a steeper landform adjacent to the valley bottom; either a depositional feature such as a moraine, or 
the valley wall), fl oated (fluvial transport from upstream), hillslope mass movement/debris flow, avalanche (recruitment via moving snow), bank 
undercutting, other (other clearly defined source such as debris flow; explained in comments section). 

Copyright © 2010 John Wiley & Sons, Ltd.	 Earth Surf. Process. Landforms, Vol. 35, 618–625 (2010) 
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Status 
Decay and burn categories are visual assessments of each 
piece that provide information on relative age and stability. 
Burn categories are specific to instances where wood input is 
associated with a wildfire. Robison and Beschta (1990) and 
Schuett-Hames et al. (1999) proposed decay categories based 
on bark conditions, surface texture, presence of branches, 
wood shape and wood color. 

Stability 
This category helps to characterize the relative stability/mobil
ity of the wood based on its position within and above the 
channel, degree of burial, and association with other wood. 
This category may also imply something about the geomor
phic function of the wood, such as the promotion of scour or 
retention of sediment, as well as the method of recruitment 
(Richmond and Fausch, 1995). 

Species 
Where it is possible to identify the species of wood, this infor
mation is useful in studying recruitment, decay rates, and 
retention of wood. In the Colorado Front Range, for example, 
wood from deciduous trees has a much shorter residence time 
in streams than coniferous wood (Wohl and Goode, 2008). 
This contrasts with patterns observed in the southern 
Appalachians, where American chestnut (Castanea dentata) 
constituted a large proportion of the wood in streams fl owing 
through mid- and late-successional forests despite its absence 
from the canopy for decades (Hedman et al., 1996). 

Submergence 
Noting the dimensions of the wood submerged in relation to 
stage is needed to calculate the drag coeffi cient and hydraulic 
resistance associated with individual pieces (Manga and 
Kirchner, 2000; Curran and Wohl, 2003; Daniels and Rhoads, 
2004), thus improving our understanding of the physical infl u
ences of wood on hydraulics, stream morphology, and habitat. 

Age 
Measures of age are not readily obtainable, but are very infor
mative when feasible. Tree-ring counting or radiocarbon 
dating can provide a maximum time that wood has been in 
the channel (Keller and Tally, 1979; Hyatt and Naiman, 2001), 
because in some environments dead trees may remain stand
ing for many years before entering a stream. 

Biomass/density 
This variable can be particularly important when quantifying 
carbon storage in a stream (Seo et al., 2008). Biomass estima
tion, however, rests on accurate estimates of volume and may 
be even more problematic because wood density varies with 
species, age, and stage of decomposition (Brown and See, 
1981; Hardy, 1996), which are rarely assessed. 

Function 
In order to understand the geomorphic function and habitat 
alteration associated with wood, it is useful to at least note 
whether sediment is stored in association with individual 
pieces or jams (Keller and Swanson, 1979). If possible, this 
should be expanded to a measurement of the volume and 
grain-size distribution of stored sediment. As with sediment 
storage, noting the presence of streambed scour and, prefer
ably, measuring basic dimensions and type of scour (Bisson 
et al., 1982; Buffi ngton et al., 2002), provides information 
relevant to geomorphic function and fish habitat (Carlson et 
al., 1990; Fausch and Northcote, 1992; Richmond and Fausch, 
1995). Other characteristics of wood function include back

water pools, fl ow deflection, energy dissipation, and bank 
stabilization. 

Geomorphic variables 

Each of the variables mentioned provides insight into the 
dynamics of wood recruitment and retention within a reach 
and facilitates comparisons among sites. Methods for acquir
ing these data should be fully explained in each case. 

Channel gradient 
Report either the bed gradient or water-surface gradient over 
the study reach length. This facilitates calculation of hydraulic 
parameters useful to understanding wood mobility and aquatic 
habitat. 

Channel width 
An average value of bankfull channel width should be pro
vided, along with a measure of variability and planform irregu
larity. Because wood mobility (Gurnell, 2003) and load (Bilby 
and Ward, 1989; Hassan et al., 2005; Wohl and Jaeger, 2009) 
vary with channel width (Wohl and Jaeger, 2009), reporting 
width facilitates understanding of loads and mobility and com
parison among sites. Although many studies measure wood 
within the bankfull channel, different investigators estimate 
the bankfull dimensions using varying criteria such as fl ow 
recurrence interval, breaks in slope along the channel banks, 
or high-flow indicators (Radecki-Pawlik, 2002; Navratil et al., 
2006). Consequently, it is important to state the criteria used 
to estimate bankfull dimensions. 

Flow depth 
Report either bankfull (preferred) or some measure of fl ow 
depth (mean, maximum) at time of measurement; this is par
ticularly relevant to estimating in-stream transport, which 
depends partly on the ratio of log diameter to fl ow depth 
(Bocchiola et al., 2008). For studies involving fi sh, residual 
pool depth (Lisle, 1987) is commonly an important measure 
that indicates pool depth independent of fl ow (Richmond and 
Fausch, 1995). 

Grain size 
Some estimate of surface bed-material size distribution should 
be provided, as well as a commonly used metric such as D50 

or sorting. It is important to explain the method by which 
grain-size distribution was measured or estimated, given the 
potential for substantial variation among different methods 
(Wohl et al., 1996; Faustini and Kaufmann, 2007; Whitacre 
et al., 2007). The grain size of the channel bed and banks both 
refl ects and influences hydraulics and sediment transport, as 
well as influencing aquatic habitat and community structure 
(Haschenburger and Rice, 2004); thus, more detail about bed 
grain-size distribution is desirable. Useful information includes 
grain-size distributions upstream and downstream from wood 
(Faustini and Jones, 2003); associations between channel 
depositional features such as point or transverse bars and 
wood (Montgomery et al., 2003a); grain-size distributions for 
the bed surface and subsurface (Haschenburger and Rice, 
2004); and the patchiness or size and spatial distribution of 
grain-size categories on the streambed (e.g. boulders, cobbles, 
gravels, sand, silt and clay) (Buffi ngton and Montgomery, 
1999). 

Discharge 
Some measure of discharge is useful when assessing transport 
capacity and wood retention (Bocchiola et al., 2008). Bankfull 
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discharge, as estimated from channel morphology or a recur
rence interval for gaged sites, is the most widely used and thus 
easiest to compare between sites. 

Reach length 
This value should be provided, as well as the rationale for 
measuring wood within the specified length. This facilitates 
calculation of wood load per area of channel. 

Channel morphology 
Describing the channel morphologic type(s) as per the 
Montgomery and Buffington (1997) classifi cation characterizes 
channel stability and sources of fl ow-energy expenditure. 

Drainage area 
Provide the area drained by the stream at the study reach. 
Because wood characteristics can vary between sites within 
the same watershed in relation to drainage area (Martin and 
Benda, 2001; Marcus et al., 2002; Wohl and Jaeger, 2009), 
this facilitates comparison of wood characteristics within and 
between watersheds. 

Elevation 
Elevation of the study reach and the range of elevations for 
the watershed facilitate cross-site comparisons. 

Valley side slope, confi nement, and connectedness 
These variables can be measured in the field or obtained from 
topographic maps or digital elevation maps. Each provides 
information on potential recruitment processes and sources. 

Disturbance history 
This variable incorporates natural disturbances that can infl u
ence both wood recruitment to streams over years to centuries 
(Young, 1994; Kraft et al., 2002; Zelt and Wohl, 2004) and 
current distribution of pieces within a stream network. The 
type, presence, spatial extent, and relative age of the distur
bance should be noted. 

Management history 
Like disturbance, management activities in the vicinity, 
upstream from the study site, or even upstream within the 
watershed can influence wood recruitment and retention 
(Murphy and Hall, 1981; Carlson et al., 1990; Nowakowski 
and Wohl, 2008). Note the type, presence, spatial extent, and 
relative age of management activities. 

Bank scour 
A visual estimate of the total percentage of stream bank length 
that is actively eroding or unstable provides insight into 
recruitment processes (i.e., bank failure) or channel instability 
related to wood storage and movement. 

Riparian variables 

Forested 
Land cover adjacent to the channel can provide important 
insight into mechanisms and volumes of local wood recruit
ment. Stream segments within meadows, bedrock gorges, or 
talus slopes, for example, will have minimal or no riparian 
recruitment, and this may help to explain variations in wood 
load among different study reaches (Wohl and Jaeger, 2009). 

Dominant species 
At a minimum, noting the type (e.g., deciduous versus conifer
ous) of trees that form the dominant species in forested ripar

ian zones provides information on potential for wood 
recruitment (Bragg et al., 2000; Welty et al., 2002). Reference 
to the dominant forest type (e.g. Mesic – Douglas-fi r series), 
which is available for most federal and state forest lands in 
the United States, can provide insights into the most likely 
species to be recruited to specifi c streams. 

Source 
A visual assessment of the probable source of wood recruit
ment can be used in developing wood budgets that partition 
recruitment among various sources (Benda et al., 2003; May 
and Gresswell, 2003; Webb and Erskine, 2003). 

Seral stage 
The categorical stage of forest development (young, mid-suc
cessional, or mature) and noting whether stands appear even-
or uneven-aged provides information on potential recruitment 
and past forest disturbance (Bragg et al., 2000; Welty et al., 
2002). 

Floodplain survey 
Studies of in-stream wood typically ignore downed wood 
outside the channel, yet wood on the ground within the fl ood
plain creates pieces available for recruitment. Rates and pat
terns of recruitment and retention of wood on the fl oodplain 
can be related to in-stream wood loading (Jeffries et al., 2003; 
Pettit and Naiman, 2006; Young et al., 2006). 

Basal area 
The cross-sectional area of tree cover (in m2/ha) provides 
insights into stem density and tree size, and this metric allows 
comparisons across forest types, especially if basal areas are 
reported by species (Fausch and Northcote, 1992; Nowakowski 
and Wohl, 2008). 

Site potential 
Information on the rate of tree growth, time to attain old-
growth conditions, and longevity of trees in a region is useful 
in understanding wood recruitment (Bragg et al., 2000; Welty 
et al., 2002). 

Additional Information 

An explanation of the overall study design deployed in the 
survey and classification of large wood should be included in 
publications on in-stream large wood. This would include the 
following: 

(1) 	Rationale for reach selection. It is important to explain 
whether the study reach was chosen to represent particular 
characteristics of the area, to avoid certain types of man
agement history, to facilitate repeated access, or based on 
other criteria. It is often not clear in published papers how 
or why a particular study reach was chosen, yet this infor
mation is useful for determining whether a particular 
dataset should be included in a synthesis. 

(2) 	In-stream wood loads. If all of the variables described 
earlier are listed in a paper, readers can compute the 
volume of in-stream wood using one of the typical metrics 
(m3/100 m, m3/ha, pieces/100 m). Providing at least one 
of these calculated values in the paper, however, greatly 
facilitates comparison between sites and regions. 

(3) 	Large wood monitoring. There are relatively few short-term 
(<10 year) published datasets (Lienkaemper and Swanson, 
1987; Benke and Wallace, 1990; Young, 1994; Berg et al., 
1998) on wood dynamics and extremely few long-term 
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(≥10 year) published datasets (Gurnell et al., 2002; Faustini 
and Jones, 2003; Wohl and Goode, 2008). Datasets based 
on monitoring of wood dynamics through time are 
extremely valuable in understanding temporal variations 
in wood recruitment, retention, and function, and there is 
a great need for more of them. For tracking individual 
pieces of large wood over time, we suggest that numbered 
metal tags be nailed into wood pieces during the initial 
and follow-up stream surveys (Acker et al., 2003). This 
facilitates repeat surveys conducted to record movement 
through time, and changes in status, size, stability, and 
function between visits. If wood moves out of a study 
reach, tagged pieces can sometimes be relocated to quan
tify total distance traveled laterally or downstream. New 
wood entering the study reach during the monitoring 
period can be readily identified and tagged. Repeat pho
tography of a reach can also be used to document move
ment and recruitment of new large wood (Hall, 2001a, 
2001b). 

Conclusions 

Although the 23 (or 35) variables listed in Table I may appear 
unmanageable, many of these variables rely on quick visual 
assessments or measurements derived from maps. Inclusion of 
these data in all studies of in-stream wood would substantially 
facilitate the insights and models (e.g. Gregory et al., 2003b) 
that can result from inter-study compilations. 

The great majority of in-stream wood studies to date have 
been conducted in the US Pacifi c Northwest, although within 
the past five years investigators have described different envi
ronments in Europe (Piégay and Gurnell, 1997; Gurnell et al., 
2000; Kail, 2003; Comiti et al., 2006), Asia (Seo et al., 2008), 
South Africa (Gomi et al., 2006; Pettit and Naiman, 2006), 
Australia (Webb and Erskine, 2003), New Zealand (Baillie and 
Davies, 2002; Meleason et al., 2005), South America (Andreoli 
et al., 2007; Comiti et al., 2008), and other parts of North 
America (Thompson, 1995; Downs and Simon, 2001; Hart, 
2002; Marcus et al., 2002; Fausch and Young, 2004; Morris 
et al., 2007; Magilligan et al., 2008). The rapidly growing 
literature from diverse environments makes it particularly 
timely to propose standard techniques for measuring and 
reporting the variables that will allow us to examine regional 
differences in wood recruitment and retention within different 
portions of a drainage network. 
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