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A B S T R A C T

Conceptual models are an integral facet of long-term monitoring programs. Proposed linkages between
drivers, stressors, and ecological indicators are identified within the conceptual model of most mandated
programs. We empirically evaluate a conceptual model developed for a regional aquatic and riparian
monitoring program using causal models (i.e., Bayesian path analysis). We assess whether data gathered
for regional status and trend estimation can also provide insights on why a stream may deviate from
reference conditions. We target the hypothesized causal pathways for how anthropogenic drivers of road
density, percent grazing, and percent forest within a catchment affect instream biological condition. We
found instream temperature and fine sediments in arid sites and only fine sediments in mesic sites
accounted for a significant portion of the maximum possible variation explainable in biological condition
among managed sites. However, the biological significance of the direct effects of anthropogenic drivers
on instream temperature and fine sediments were minimal or not detected. Consequently, there was
weak to no biological support for causal pathways related to anthropogenic drivers’ impact on biological
condition. With weak biological and statistical effect sizes, ignoring environmental contextual variables
and covariates that explain natural heterogeneity would have resulted in no evidence of human impacts
on biological integrity in some instances. For programs targeting the effects of anthropogenic activities, it
is imperative to identify both land use practices and mechanisms that have led to degraded conditions
(i.e., moving beyond simple status and trend estimation). Our empirical evaluation of the conceptual
model underpinning the long-term monitoring program provided an opportunity for learning and,
consequently, we discuss survey design elements that require modification to achieve question driven
monitoring, a necessary step in the practice of adaptive monitoring. We suspect our situation is not
unique and many programs may suffer from the same inferential disconnect. Commonly, the survey
design is optimized for robust estimates of regional status and trend detection and not necessarily to
provide statistical inferences on the causal mechanisms outlined in the conceptual model, even though
these relationships are typically used to justify and promote the long-term monitoring of a chosen
ecological indicator. Our application demonstrates a process for empirical evaluation of conceptual
models and exemplifies the need for such interim assessments in order for programs to evolve and
persist.

Published by Elsevier Ltd.
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1. Introduction

Most regional and national monitoring programs are developed
upon the same overarching goal of providing natural resource
status and trend assessments beyond the local scale (e.g., Bureau of
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Land Management’s Assessment, Inventory and Monitoring
Strategy; Forest Service and BLM’s Northwest Forest Plan; National
Park Service’s Vital Signs Program; and PacFish–InFish Biological
Opinions Effectiveness Monitoring Program). A key component in
the development of such monitoring programs is the creation of
conceptual models that identify core ecosystem processes and
factors that may impact them directly or indirectly (Fancy et al.,
2009; Noon et al., 1997). Conceptual models can be presented in
many different forms; for example, stressors and processes could
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be listed in tabular form, as flow charts with boxes and arrows
connecting the individual components, or as cartoons (e.g., Gross,
2003; Margolius et al., 2009). The utility of framing monitoring
programs around conceptual models is the development of
scientifically sound monitoring questions, selection of relevant
ecological indicators of resource condition, identification of drivers
and stressors, and as a communication and information organiza-
tion tool (Barrows and Allen, 2007; Fancy et al., 2009; Lindenmeyer
and Likens, 2009; Noon et al., 1997; Ringold et al., 1999).

Interestingly, although there is emphasis on creating concep-
tual models during program development, many times the
primary measurable objectives are in terms of status and regional
trend assessments (“surveillance monitoring”, Nichols and
Williams, 2006). Consequently, most initial and interim planning
focuses on the choice of sampling design (where and how many
sample points are selected), temporal revisit design (frequency of
data collection over years), or response design (what and how
field measurements are collected) that precisely characterize
biological condition (status) and maximize trend detection (e.g.,
Urquhart et al., 1998; Manley et al., 2004; Sims et al., 2006;
Reynolds et al., 2011; Levine et al., 2014). For programs targeting
the effects of anthropogenic activities, however, it is imperative to
identify and measure land use practices and mechanisms that
have led to degraded conditions (i.e., moving beyond simple
status and trend estimation). Knowledge of such causal linkages is
needed for prescribing appropriate changes in management to
reduce stressor(s) and improve resource condition. Here we
assess whether data collected as part of a regional aquatic
Fig. 1. Spatial distribution of landownership and PIBO sample sites within each of the thr
and mesic sites [ppt � 1.05 m yr�1]) sampled throughout the Interior Columbia and Up
monitoring program, PacFish–Infish Biological Opinions Effec-
tiveness Monitoring Program (PIBO) (PACFISH, 1994), can be used
to estimate causal pathways as articulated in the original
conceptual model. The PIBO program was developed in response
to listing of steelhead (Oncorhynchus mykiss) and bull trout
(Salvelinus confluentus) under the Endangered Species Act with a
specific focus on evaluating the status and trends of federally-
managed headwater streams in the Interior Columbia River Basin
and has since expanded to the upper Missouri River Basin (Fig. 1,
Kershner et al., 2004).

The PIBO program has been implemented for over a decade,
making it ideal for employing causal models to rigorously
evaluate whether the original conceptual model of drivers and
stressors is supported by the available monitoring data. We
describe our process of translating the ecological information
within the tabular conceptual model into a causal graph. The
linkage structure portrayed in the graph is inherently a complex
causal hypothesis and can be considered as a series of working
hypotheses for how structure and function of an ecological
system responds to various anthropogenic stressors and natural
environmental gradients (Grace et al., 2012; Shipley 2009). Some
of the advantages of utilizing these models for analyses include
tests of mediation (see Burdon et al., 2013; Cubaynes et al., 2012;
Gimenez et al., 2012; Riseng et al., 2011), estimation of cumulative
and indirect effects (e.g., Clough, 2012), and accounting for
context dependency and mitigating factors as commonly
encountered with probabilistically sampled data collected across
large spatial domains (brief introduction to causal models in
ee precipitation groups (arid [ppt � 0.66 m yr�1], medium [0.66 < ppt < 1.05 m yr�1],
per Missouri River Basins.
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Appendix A). To our knowledge there have been few published
attempts to explicitly evaluate the hypotheses conveyed in the
conceptual model underpinning a monitoring program as we do
here. Our analytical framework provides an interim assessment of
the monitoring program by linking monitoring data back to the
original conceptual model and demonstrates the practice of
adaptive monitoring at a regional scale (Lindenmeyer and Likens,
2009; Reynolds et al., 2011).

2. Methods

2.1. Study area and sampling design

The study area spans approximately 740,000 km2 of the Interior
Columbia River Basin and the Upper Missouri River Basin (Fig. 1).
Elevations vary considerably throughout the study area
(450–2460 m) and climatic zones are defined by altitudinal and
latitudinal gradients. Ambient air temperatures and precipitation
(type and quantity) vary considerably, but the climate is generally
characterized by relatively cold winters and hot, dry summers,
with monthly average temperatures ranging from �12 to 0 �C in
January and from 11 to 23 �C in July. Winter precipitation
predominantly falls in the form of snow with mean annual
precipitation ranging from 0.24 m yr�1 at arid sites to around
2 m yr�1 at more mesic sites (2002–08; PRISM Group, Oregon State
University, http://www.prismclimate.org).

Sample sites were selected via a spatially balanced random
sample design (Stevens and Olsen, 2004) and visited based on a
five year rotating panel (a panel is composed of a set of sites with
the same revisit schedule, i.e., every five years). Within each
randomly-selected sub-watershed, stream conditions were evalu-
ated in the most downstream reach where gradient, measured as
the change in the surface water elevations between the bottom and
top of the reach divided by the reach length, was <3% and the
upstream catchment was primarily (>50%) under federal owner-
ship. Where low gradient (i.e., <3%) reaches were limited within a
Fig. 2. Causal graph describing the network of causal pathways among anthropogenic
instream stressors (stream temperature and fine sediments[fines]), and biological c
terminology provided in Appendix A. In brief, covariates account for natural variation of i
debris [LWD], Elevation, Erosivity, Slope, Stream Size) are hypothesized to modify the di
arrow points, e.g., road density may differentially effect fines based on the erosivity of t
Width:Depth Ratio) describe mechanisms for how or why anthropogenic drivers affect
sub-watershed, we sampled the lowest-gradient stream reaches
available and included some with gradients up to 9%; sample
reaches were equal to 20� bankfull width or a minimum of 160 m
in length and a maximum of 500 m (hereafter, referred to as a site).
We focused sampling on wadeable, higher order (3rd/4th) low
gradient reaches as these areas are thought to be most sensitive to
natural and anthropogenic disturbances (Montgomery and Mac-
Donald, 2002) and fish bearing. We used data collected from
2006 to 2010 for a total of 842 sites, which constituted the second
visit for the Upper Columbia sites and first visit for Upper Missouri
sites. To minimize measurement error, we selected these years to
ensure consistent field protocols across relevant habitat and
macroinvertebrate indices.

Under the PIBO monitoring program, sites were selected to
represent both reference and managed conditions based on
current and historic land-management activities within the
upstream catchments. Sites in wilderness areas or in catchments
with minimal land management activities were considered
‘reference’ sites, where minimal land management was defined
as (1) no permitted livestock grazing during the last 30 years, (2)
minimal timber harvest (<10%), (3) minimal road density (0.5 km/
km2) at the catchment scale, (4) no roads within the proximate
(1 km) riparian buffer, and (5) no evidence of historic mining
within riparian areas upstream of the site (Kershner et al., 2004).
Sites in catchments where any one land management activity
exceeded the reference criteria were considered ‘managed’. Within
our study area livestock grazing and forest roads were two of the
most pervasive management activities. Here, we focused our
analysis on only ‘managed’ sites to better isolate the mechanisms
by which management activities (road density, timber harvest, and
grazing) impact biological condition.

2.2. Translating a conceptual model into a causal graph

The original conceptual model prioritized several key chemical,
physical, and biological processes relevant to maintaining or
 drivers in forested streams (% grazing, % forest, and road density in catchments),
ondition as moderated by the landscape context. Introduction to causal model
nstream sediments (e.g., Flow and Gradient). Moderator variables (e.g., large woody
rection and/or strength of the relationship (directed edge) to which the solid black
he parent material within a catchment. Mediators (e.g., Fines, Stream Temperature,

 biological condition (O/E).

http://www.prismclimate.org


Fig. 3. Fitted causal model to three precipitation groups: arid [PPT � 0.66] (a),
medium [0.6<PPT<1.05] (b), and mesic [PPT � 1.05] (c). (+) indicates positive effect,
(�) indicates negative effect of parent on child node based on reduced graph
estimates. Moderation effect estimates when linked to biological condition are
reported in Table 4. Sample sizes (n) indicate the number of sites within each
precipitation group. R2 values were calculated based on variance explained in child
node based on parent nodes only. See appendix C Table C1 for Bayesian posterior
estimates for edge coefficients in reduced graph [excluding edges in gray].
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enhancing native fish populations (Figs. 1–3 in Kershner et al.,
2004). Stream habitat has been identified as one of four key
metrics limiting the success of salmon and steelhead populations
in the Upper Columbia River system (habitat, hatcheries, harvest,
and hydropower; Good et al., 2007; NMFS, 2000) (www.
salmonrecovery.gov). While the PIBO program originated from
concerns over fish species, fishes are impractical for long-term
monitoring because of the difficulty linking changes in stream
habitat to far-ranging species that spend part of their life histories
in large migratory river corridors and the ocean, and currently have
extremely small populations in some areas.

Aquatic macroinvertebrates, on the other hand, spend most or all
of their life cycle in the target streams, are useful indicators of non-
point source pollution (grazing, road building, timber harvest), and
have numerous advantages as bioindicators of stream conditions
(Barbour et al., 1999; Carter et al., 2007; Karr and Chu, 1999).
Consequently, the biotic component of the conceptual model
assumes that macroinvertebrate assemblages are responsive to
habitat alterations, which are known to adversely impact coldwater
fish assemblages. Ultimately all of the identified processes, stressors,
and consequences were linked to aquatic communities in the
conceptual model. As a result, in our causal graph, we used biological
condition as our terminal node (see Table A1 definitions, Fig. 2); we
quantified biological condition as the observed (O) macroinverte-
brate assemblages compared to the expected (E) given the absence of
anthropogenic impairment (O/E; Hawkins et al., 2000; Hawkins and
Carlisle, 2001). The O/E index is a measure of biodiversity and thus
quantifies alterations to aquatic ecosystems as the degree of species
loss in relation to least disturbed conditions, with values less than
one indicating higher levels of species loss.

The expected assemblages (i.e., least disturbed) were predicted
from 201 sites experiencing minimal human disturbance (least
disturbed conditions: 174 calibration and 27 randomly selected
validation sites) that spanned the physiographic diversity of the
study area. The 201 reference sites were grouped into 10 distinct
classes based on the similarity of macroinvertebrate assemblage
composition among sites following the standard methods of
Hawkins et al. (2000). The expected class membership and
subsequent reference macroinvertebrate assemblage (E) of man-
aged sites was predicted by linear discriminant function models
using watershed area, 30-year average monthly maximum air
temperature and the 30-year average precipitation for the
12 months prior to a standardized sample collection date of July,
both derived from PRISM estimates. In addition to the O/E index,
we also explored measures of assemblage structure as our terminal
node (e.g., species diversity, relative abundance of intolerant taxa,
functional feeding groups), but the use of different response
variables did not change the performance or interpretation of the
casual models (data not shown).

Although the tabular conceptual model was useful for
developing the foundations for the PIBO program, causal path-
ways related to O/E were not yet refined with respect to drivers
and stressors that were actually collected (for detailed field
methods see Appendix B). Our first step was to articulate current
scientific knowledge concerning biological and physical relation-
ships for aquatic systems (Table 1). Next, we cross walked these
hypothesized relationships with the measured and derived
variables in order to estimate pathways within a causal model.
The main drivers of interest to the PIBO monitoring program were
percent of grazing, density of roads, and percent of forest within a
catchment (Fig. 2, Table 1). Our hypothesized mechanisms for
how these drivers affect O/E are through sedimentation and
streamwater temperature (mediators in the graph, Fig. 2 and
Table 1). The next step was to consider mitigating factors at the
catchment or reach level that may alter either the driver !
stressor or stressor ! O/E links through dampening or amplifying
the statistical and biological effect sizes (moderators in the graph,
Fig. 2, Table 2). Finally, we included additional covariates to
account for background environmental variation (Fig. 2).

http://www.salmonrecovery.gov
http://www.salmonrecovery.gov


Table 1
Compiled scientific knowledge concerning biological and physical relationships for aquatic systems as conveyed in causal hypotheses represented in Fig. 2.

Causal path Causal hypotheses Citations

% Grazing ! fines ! O/E By altering vegetative composition and cover and trampling stream
banks, cattle grazing can increase fine sediment loading to streams
causing macroinvertebrate assemblages to deviate from reference or
expected conditions

(Duff, 1979; McIver and McInnis, 2007; Saunders and Fausch, 2007)

% Grazing ! width to
depth ratio ! stream
temperature ! O/E

By altering vegetative composition and cover, cattle grazing can
increase the amount of incoming solar radiation, while the trampling of
stream banks can increase width:depth ratios

(Kauffman and Krueger, 1984; Kauffman et al., 1983; Knapp and
Matthews, 1996; Li et al., 1994; McIver and McInnis, 2007; Platts,
1991; Saunders and Fausch, 2007)

Collectively these two mechanisms can increase stream temperatures
causing observed macroinvertebrate assemblages to deviate from
reference or expected conditions

Road density ! fines ! O/
E

Forest road construction can increase fine sediment loading to streams
by accelerating mass wasting events and altering the path, timing, and
magnitude of runoff events
Fine sediment adversely impacts macroinvertebrates, causing O/E to
decrease

(Lenat and Crawford, 1994; King, 1983; Wood and Armitage, 1997)

% Forest ! large woody
debris

The extent of riparian forest influences the amount of large woody
debris (LWD) available for recruitment

(Burns, 1972; Lemly and Hilderbrand, 2000; Tschapalinski and
Hartman, 1983; WoodSmith and Buffington, 1996)

% Forest ! stream
temperature ! O/E

Stream temperature can be inversely related to percent overhead
vegetative cover and increases in stream temperature can cause
macroinvertebrate assemblages to deviate from reference or expected
conditions

(Davies and Nelson, 1994; Johnson and Jones, 2000; Moore et al.,
2005; Tait et al., 1994)
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Specifically, measures of streamflow and gradient were included
as covariates because we expected fine sediment levels to
naturally vary with stream power and we sought to differentiate
natural gradients in fine sediment from anthropogenic impacts.
The result was a causal graph with both fine sediment within a
stream and stream temperature mediating the effect of anthro-
pogenic drivers on O/E (Fig. 2). In addition, watershed attributes
that may mitigate the effects of human disturbance were
included in the model.

2.3. Bayesian parameter estimation

We hypothesized that precipitation is an overarching driver of
the chemical, physical, and biological processes contained within
the conceptual model (Feminella, 1996; Monk et al., 2008;
Jorgensen et al., 2009). Essentially, we are assuming that
precipitation moderates the entire casual graph. To avoid the
complexity of incorporating an additional moderator, we subset
the data into three groups. Specifically, we post-stratified the sites
into three precipitation groups based on 30-year average
precipitation (arid [ppt � 0.66 m yr�1], medium [0.66 < ppt < 1.05
Table 2
Description of motivation for including moderation effects for some linkages in the caus
strength of the directed edge; it clarifies the when, where, or for whom (Wu and Zum

Moderation Effects

LWD for % grazing ! fines Higher amounts of LWD should result in incre
LWD for fines ! O/E LWD can mitigate the adverse impacts of exce

sediment loading in depositional (e.g., pools) v
greater in erosional habitats

Elevation with % forest ! LWD Higher elevation forests tend to have sparser de
Elevation with % forest ! stream
temperature

Elevation can be considered a surrogate for amb
insolated compared to lower elevation reaches

Stream size with % forest ! stream
temperature

Larger streams are likely to have dampened ef

Erosivity with % grazing ! fines More erosive buffers could amplify the magnit
Slope with % grazing ! fines Steeper slopes will increase the transport of gr
Erosivity with road density ! fines Similar to % grazing
Slope with road density ! fines Similar to % grazing
m yr�1], and mesic sites [ppt � 1.05 m yr�1]) for three separate
analyses. The majority of the PIBO sites have a snowpack
hydrologic regime with peak flows occurring during May and
June. However, the arid sites receive less snowfall resulting in both
reduced magnitude and duration of discharge peaks, as well as
lower base flows, because less precipitation falls as rain compared
to the medium and mesic sites (average bankfull discharge
[cfs] = 50.1 in arid sites compared to 125.4 [cfs] in medium and
253.2 [cfs] in mesic sites).

Based on exploratory analysis, we transformed variables to
achieve linearity, constant variance, and removed extreme outliers.
We used the natural log transformation for fines + 0.05 and LWD + 1
(Keene, 1995). All variables were centered by subtracting the
average value within their respective precipitation group. We
divided elevation by 1000 and erosivity by 100 to avoid numerical
instability in the estimation.

Recently, Grace et al. (2012) provided guidance for a graph-
theoretic approach to structural equation modeling and Shipley
(2013) provided examples of this approach using path analysis, as
we use here (see Appendix A for more details). Based on the
conditional independence relationships (implied by Fig. 2), we
al graph (Fig. 2). A moderator is a contextual variable that modifies the direction or
bo, 2008; Table 1). LWD is an abbreviation for large woody debris.

ased fine sediment retention in pools
ssive fine sediment loading on macroinvertebrates by differentially sorting fine
ersus erosional (e.g., riffles) habitats; macroinvertebrate diversity is typically

nsity trees resulting in less LWD recruitment compared to lower elevation forests
ient air temperatures, such that reaches at higher elevations are likely thermally

 where shading may have a differential impact on instream temperatures
fects of forest cover through shading on stream temperature

ude of grazing impacts on fines deposited in streams
azing derived fine sediment to streams
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modeled the observed data using the following set of equations
(bold indicates vector valued quantities):

O=E ¼ b1fines þ b2streamtemperature þ b3LWD þ b4fines
� LWD þ e1; (1)

Fines ¼ a1%grazing þ a2roaddensity þ a3LWD þ a4flow
þ a5gradient þ a6slope þ a7erosivity þ a8%grazing
� slope þ a9%grazing � erosivity þ a10roaddensity
� slope þ a11roaddensity � erosivity þ a12%grazing
� LWD þ e2 (2)

LWD ¼ g1%forest þ g2%elevation þ g3%forest � elevation
þ e2 (3)

Streamtemperature ¼ d1%forest þ d2elevation
þ d3stream size þ d4width
: depthratio þ d5%forest � elevation
þ d6forest � stream size þ e4; (4)

and

Width : depth ratio ¼ u1%grazing þ e5; (5)

where the coefficient parameters (a, b, g , d, u) in Eqs. (1)–(5)
correspond to the directed edges in the graph (Fig. 2). Moderator
variables are included as interaction terms. We assumed that the
error terms were uncorrelated and consistent with a normal
distribution and verified this assumption using residual diagnostic
plots. Also, because we used centered variables there was no need
to specify an intercept term in Eqs. (1)–(5). We estimated the
parameters of the causal model using Bayesian estimation
implemented in the freeware WinBUGS. Example WinBUGS code
used to fit a model and for estimating the cumulative (total) effects
of grazing on O/E is provided in Appendix D.

We specified diffuse normal priors on the edge coefficients
(g1� normal[0,100]) normal[0,100]) and diffuse gamma priors for
the precisions (e.g., 1/e1� gamma[0.5,1.0]) (Lee, 2007). We ran
three parallel chains with different randomly selected starting
values. We used 15,000 Markov chain Monte Carlo iterations (burn
in of 5000) thinned by 10, resulting in 3000 posterior iterations for
Table 3
Mean (standard deviation) conditions for landuse drivers, mediators, moderators and
descriptions of field methods are provided in Appendix B.

Precipita

Arid (n =

Drivers Road density (km/km2) 1.4 (0
Grazing (%) 86.7 (2
Forest (%) 66.6 (2

Mediators Fines (%) 36.6 (2
Width:depth (m) 27.5 (1
Stream temperature (�C) 12.6 (2

Moderators Elevation (m) 1500.3 (3
Erosivity (unitless) 122.6 (7
LWD (#/100 m) 141.9 (1
Stream size (m) 3.72 

Slope (%) 29.85 

Covariates Flow (cfs) 50.1 (5
Gradient (%) 2.1 (1

Response O/E (unitless) 0.7 (0
each parameter. The Gelman-Rubin R-hat statistics were all less
than 1.1 indicating the chains converged; also trace plots indicated
proper mixing.

For model selection, we estimated the 90% credible intervals
and reduced the linkage set by removing links whose intervals
contained zero. We report the median, 90% and 95% credible
intervals for the direct effects (each link between two nodes) based
on the reduced graphs (Table C1 Appendix C). We also report a
measure of model fit for each child node in the graph as a measure
of variance explained by the parent nodes only, R2.

2.4. Model assessment

A distinction in causal modeling, an inherently multivariate
technique, is that posterior predictive distributions can be created
for each univariate model, Eqs. (1)–(5) (sub-graphs), to assess the
local fit of the model. For these purposes, we randomly selected
25% of the data within each precipitation group as a validation set.
Essentially, we simulated 100 realizations of data under the
assumed reduced models using the last 100 draws from the
posterior distributions for all parameters for comparison to our
hold-out dataset, a posterior predictive distribution (Lee, 2007).

Cumulatively, both model and measurement errors introduce
noise that can constrain the total amount of variance accounted for
in O/E scores as a function of measured stressors. To assess this, we
followed Vander Laan et al. (2013) and computed the maximum
possible variance explained for each precipitation group model,
which was based on the ratio of variance of O/E scores observed at
all sites within a precipitation group (i.e., signal) to variance of
reference site O/E scores used to validate the model (i.e., noise).

3. Results

Land use differed among the three precipitation groups, with
mesic watersheds having the greatest forest cover and least
amount of area contained within grazing allotments compared to
sites in the medium and arid groups (Table 3). Similarly, the mesic
sites were found in larger watersheds (data not shown), occurring
at lower elevations that had more erosive lithologies and greater
frequencies of LWD on average (Table 3). These physiographic
conditions translated to instream conditions characterized by
 the biological response variable compared among precipitation groups. Detailed

tion groups

 212) Medium (n = 422) Mesic (n = 204)

.99) 1.1 (1.04) 1.2 (1.2)
7.6) 65.7 (43.2) 27.3 (42.2)
7.46) 75.4 (18.0) 82.8 (14.1)

7.2) 22.6 (23.1) 18.0 (21.7)
8.4) 38.8 (27.9) 45.2 (31.6)
.4) 11.7 (2.3) 11.6 (2.1)

89.7) 1560.4 (459.7) 1241.6 (403.6)
3.3) 142.8 (81.4) 177.4 (80.2)
46.6) 219.4 (231.4) 315.7 (263.9)
(1.68) 5.74 (2.85) 8.09 (3.89)
(10.28) 35.69 (10.91) 39.65 (10.05)

2.7) 125.4 (156.7) 253.2 (225.8)
.2) 1.9 (1.2) 1.8 (1.0)

.24) 0.87 (0.22) 0.93 (0.21)
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higher width:depth ratios and lower fine sediment levels and
streamwater temperatures for the mesic sites, as compared to sites
in the medium and arid precipitation groups (Table 3).

Thresholds for O/E were developed to create biological
condition classes, typically used for biological status assessment
reporting for managers. Using the accuracy and precision of the
reference site data (mean = 1.03, standard deviation = 0.17), man-
aged sites scoring less than one SD below the mean of reference
sites were in “good” biological condition (i.e., comparable to
reference conditions); managed sites scoring between one SD and
two SD are in “fair” biological condition; and managed sites scoring
more than two SD below the mean of reference sites are considered
in “poor” biological condition (e.g., Ode et al., 2008). O/E was
inversely related to the precipitation groups. The largest percent-
age of sites in poor condition were in the arid group, 49%, compared
to 19% in medium, and only 11% in the mesic group (model building
datasets). Conversely, the mesic group had 75% in good condition,
and the medium group had 59%, whereas only 33% were in good
condition in the arid group (model building datasets).

In general, the signs of the estimated edge coefficients in the
causal models were consistent with the a priori hypotheses when
detected for all three precipitation groups. However, the linkage
structure in the reduced graphs and their associated estimates
varied across the three precipitation groups (Fig. 3 and Table C1
Appendix C). Across all three precipitation groups, the maximum
possible variance that could be explained in O/E scores by the
stressors ranged from 57 to 59%. Thus, considering such
constraints, stressors in the arid and mesic models accounted
for a significant portion of the variability in biological condition
(Fig. 3a and c). The variance explained in streamwater temperature
and fine sediment by drivers and covariates was reasonable for
medium and mesic sites (from 23% to 35.4%, Fig. 3). However,
percent variation explained in fine sediments and streamwater
temperature was low in the arid group (6.8% and 14.26%,
respectively Fig. 3a).

The supported causal hypotheses related to management
impacts were variable across the precipitation groups (Table 4).
The causal hypothesis that grazing impacts biological condition
by altering fine sediments was supported only in the medium
group, although the biological effect size was minimal (Table 4).
The effect of grazing on reach width to depth ratio was not
detected in any of the precipitation groups (Fig. 3). Although the
link between width to depth ratio and stream temperature was
Table 4
Summary of statistical support for causal pathways and moderation effects for three diffe
increase in the driver nodes (10% increase for grazing and forest; 1 km/km2 increase for ro
the graph. The moderator variables included in the reduced model are listed, but if there
pathway from % grazing to O/E in the mesic group; however, the indirect effect was essent
reported. Effects on O/E are interpreted in terms of % species loss or gain compared to

Causal pathways Arid 

% Grazing ! fines ! O/E NS 

% Grazing ! width to depth ratio ! stream temperature ! O/E NS 

Road density ! fines ! O/E NS 

% Forest ! LWD [�0.261, �0
% Forest ! stream temperature ! O/E [0.5%, 1.6%] 

Moderation effects

% Grazing ! fines None 

Fines ! O/E None 

% Forest ! LWD None 

% Forest ! stream temperature None 

Road density ! fines None 
maintained in all groups, our quantification of grazing impacts
was not the causal driver of these changes through our
hypothesized trampling effect (Fig. 3, Table 4). We found evidence
that road density within a catchment negatively impacts
condition by increasing fine sediments only in the medium
precipitation group, but again minimal biological significance
(Table 4). The hypothesis that % forest is a measure of potential
supply of large woody debris in streams was supported in the
medium group; however, the negative effect size for the arid
group was contrary to expectations (Table 4). There was weak
evidence that increasing amount of forested habitat benefited
biological condition through decreasing instream temperature
within the arid and medium group (Table 4). In general, the
biological effect sizes for the direct effects of grazing, road
density, or % forest on fines and stream temperature were
minimal or not detected (Appendix C Table C1) leading to the
weak indirect effect estimates of management activities on O/E
(Table 4).

In terms of only mediator relationships, there was evidence that
increasing fine sediments resulted in deviations of macroinverte-
brates assemblages from expected conditions, albeit weak effect
sizes for all groups (Fig. 3, Table C1 Appendix C). The largest
sediment effect was detected in arid sites; we estimated 5% species
loss with a doubling of fine sediments within a stream (90% CDI
2.5–7% loss). The link between stream temperature and O/E was
maintained in both lower precipitation groups, but not in the
wettest group (Fig. 3).

The moderators were important to consider for the medium
and mesic causal graphs, but not for the arid graph (Table 4). For
example in both reduced graphs (Fig. 3b and c), the direct linkage
between grazing and fine sediments would have been removed if
the moderators were ignored (Table 4). In the medium graph,
although biologically weak, there was support for the hypothesis
that increased amounts of LWD in a stream should result in less
fine sediment accumulations in erosional habitats and less
deviations from reference conditions (Table 4). In the mesic sites
there was evidence of LWD moderating the entire pathway from
grazing to O/E mediated by fine sediments (Table 4); however, the
indirect effect of grazing on O/E’s credible interval included zero
(90% CDI �0.0039 to 0.005), likely due to the small effect size for
the direct link between % grazing to fines. We found weak evidence
that for lower elevation sites, increasing forest cover mitigates
departures from reference conditions, as hypothesized, in the
rent precipitation groups. 90% credible intervals for estimated indirect effects of an
ad density) on O/E or LWD. NS indicates no statistical evidence for causal pathway in
 were none we denote it as none. ^ LWD (large woody debris) moderated the entire
ially zero. In medium sites, effects for low and high values of moderator variables are
 least disturbed conditions.

Medium Mesic

LWD (154 pieces per km)[�0.1%, 0.2%]
LWD (568 pieces per km) [0.002%, 0.2%]

NS

NS NS
[�1.8%, �0.08%] NS

.032] [0.012, 0.029] NS
Elevation (1120.2 m)[0.7%, 2%]
Elevation (1840.1 m)[0.3%, 1%]

NS

LWD Slope, LWD^
None LWD^
None None
Elevation Elevation
None None
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medium sites (Table 4). However, in the arid sites elevation was
simply a covariate for stream temperature, not a moderator.

In all three groups, the test of mediation suggested that the
proposed stressors retained in the reduced models fully mediated
the anthropogenic drivers of % grazing, road density, and/or %
forest (Fig. 3). Further there was no evidence of alternative
pathways for the drivers to impact biological condition. In other
words, there was no need to include an additional link from the
drivers directly to O/E in any model (Fig. 3).

3.1. Model assessment

In terms of assessing the local fit of the models, the median
prediction errors for O/E varied with over- or under-predicting by
approximately 0.30 units (Appendix C Table C2). In terms of
classifying a site within a biological condition class based on their
posterior predictive distributions, this translated to all sites being
classified as good condition for the medium and mesic groups (39%
and 33% misclassified, respectively Appendix C Table C3). For the
arid sites, the true positive rate for poor condition sites was 90%
and good condition sites was 57%, but there was no discrimination
of fair sites. These patterns were consistent with the larger R2 for
O/E in the arid group (�18%).

Stream temperature predictions using % forest, elevation, and
width to depth ratio compared to the true observed value varied
with over- or under- predicting by about 3 �C; on average the
prediction error was minimal (median close to zero). Fine
sediment prediction performance was similar in the medium
and mesic precipitation groups. The median predictive error was
0.09 for the medium group and 0.04 for the mesic sites, on the
untransformed scale over-predicting by a factor of 1.09 and 1.04
(Appendix C Table C2). These are reasonable and consistent with
the larger R2 for fine sediments in both models. The arid sites had
the largest median difference in fine sediment between the
validation set values and the means of their respective posterior
predictive distributions resulting in under-predicting by a factor of
0.89 on the un-transformed scale, but this is not surprising given
the low R2 (6.8%) based on just flow and gradient as parents
(covariates) (Appendix C Table C2).

4. Discussion

There is an inherent tension within federally mandated
monitoring programs such as PIBO to balance the need for robust
statistical inferences about status and trends in resource condition at
regional and national levels with the desire to understand
mechanisms that lead to observed degradation or improvement.
Previous analyses with PIBO data have largely focused on habitat
metric differences in managed versus reference sites (Al-Chokhachy
et al., 2011; Kershner et al., 2004). These correlative statistical
techniques are insufficient when trying to understand how or why
management intensity influences biological condition. Here, we
used causal models to evaluate whether the data gathered for status
and trends monitoring can be used to quantify habitat mediated
impacts of anthropogenic drivers on biological condition (O/E)
within managed sites only. This type of interim assessment that links
the monitoring data back to the original causal hypotheses conveyed
in the conceptual model could be the most critical step to ensure
program longevity and management relevancy.

4.1. Ecological implications and suggestions for survey design
adjustments

In our case, the lack of biologically significant results raises
several questions: (1) is refinement of the hypotheses underlying
the conceptual model needed? (2) Was our quantification of nodes
(e.g., response design) in the causal model insufficient for
characterizing subtle response gradients related to land use
drivers? (3) Was the sampling design for status and trend
estimation not suitable for elucidating causal mechanisms? We
address these questions and provide suggestions for refinements
to the response and sampling design that will help close the
apparent inferential disconnect between monitoring status and
trends and the need for statistical inferences regarding anthropo-
genic impacts on biological condition.

Our causal hypotheses were based on decades of both
experimental and observational studies (see citations in Table 1).
However, these were short-term, small sample size research
studies conducted at reach-level over smaller spatial extents,
where biologically relevant effect sizes are more easily detected
(Clary,1995; Kauffman et al.,1983; Saunders and Fausch, 2007), not
watersheds the size of the interior Columbia River Basin as
sampled by PIBO. For example, fine sediment is among the most
ubiquitous aquatic stressors in the U.S. (Paulsen et al., 2008)
known to have adverse effects on benthic assemblages, and grazing
and roads can increase sediment loading to stream systems
(reviewed in Wood and Armitage, 1997). Based on our empirical
evaluation, the signs of the estimated effects matched our a priori
causal hypotheses for this and other attributes, which lend
credibility to the conceptual model. We also found evidence of
the importance of large woody debris in mitigating the adverse
impacts of excessive fine sediment loading associated with grazing
on macroinvertebrates. Consequently, we remain confident in the
causal hypotheses conveyed within the conceptual model.
However, our analyses indicate the importance of setting realistic
expectations for monitoring versus research study designs. An
omnibus survey design for regional status and trend estimation
and explanatory and/or predictive modeling of spatial variability in
ecological indicators as related to anthropogenic factors is likely
unrealistic, as our results showed.

Substantial effort was placed on developing biological indica-
tors (in our case O/E) and refinement of protocols to minimize
measurement errors of stressors (stream temperature and sedi-
ments) and riparian habitat conditions (Roper et al., 2010;
Whitacre et al., 2007); however, little emphasis or resources were
allocated toward quantifying drivers (e.g., grazing). For example,
the grazing metric, the percent of a catchment contained within a
grazing allotment, was likely quite crude, as it did not quantify the
time since an allotment was last grazed nor frequency, timing,
duration, or intensity of grazing. Such factors have repeatedly been
shown to result in differential rangeland conditions and aquatic
responses to grazing (Briske et al., 2008; Sarr, 2002). Similarly, the
road node was included to directly quantify impacts associated
with roads (e.g., increased sediment supply and transport to
streams), but also as a surrogate for the extent of other
anthropogenic activities occurring within a catchment (e.g., timber
harvest, oil and gas extraction, recreation). We relied on roads as a
surrogate of management actions because of the paucity of
consistent land use information across the study area. Given the
known impacts of these land uses, our analyses indicate the need
for an adjustment to our measurement of driver nodes (i.e., grazing
and roads), as well as additional consideration of other drivers such
as recreation and resource extraction. Better information describ-
ing land use intensity will allow managers to understand which
land uses are having deleterious effects on aquatic resources, the
mechanisms by which degradation occurs, and whether adaptive
management practices (e.g., decommissioning roads, regulating
recreation, timber harvest and grazing) result in improvements to
biological condition across the landscape.

In addition to the quality of data layers used to quantify driver
nodes, summarizing road density and percent grazing within a
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catchment might have obscured relationships with both stressors
and biological responses. Specifically, contemporary forest and
rangeland management have heavily emphasized protection of
riparian buffers, which can mitigate effects of upslope activities on
instream conditions (reviewed in Naiman and Decamps, 1997). For
example, when predicting spatial variability in the biological
condition of streams throughout the eastern U.S., Carlisle et al.
(2009) found estimates of anthropogenic land uses within a
riparian buffer to be better predictors than within catchment
estimates. We explored whether using estimates of grazing and
road density within a 90 m buffer improved our inferences for the
arid sites, but there was little evidence of a relationship between
density of roads and O/E (correlation = �0.004) and we failed to
find a meaningful difference in average O/E between grazed and
ungrazed reaches. Therefore, the choice of catchment-level drivers
in our models did not appear to affect our findings, so much as how
these drivers were quantified.

While higher quality, spatially explicit disturbance information
might improve inferences concerning land use activities, we also
believe that quantification of stressor and biological response
nodes themselves could be improved. The more than 40% of
variance unexplainable by any stressor-driver model highlights the
need for improvements in the biological response model used to
create the O/E metric and/or macroinvertebrate sampling and
processing. Additionally, fine sediment, which is one of the most
ubiquitous stressors and known to have deleterious effects on
benthic organisms (Wood and Armitage,1997), has a measurement
error exceeding 20% among repeated field crew visits (Roper et al.,
2010; Whitacre et al., 2007). Our measurement of fine sediments
was within pool-tails and macroinvertebrate sampling was within
riffle habitats in a reach. This spatial misalignment is likely not an
issue in the case of large fine sediment increases; however, in our
case, we estimated very subtle changes in fine sediment as a result
of altering % grazing within a catchment (Table C1 in Appendix C).
This suggests a potential need for co-location of fine sediment and
macroinvertebrate sampling within the same habitat and field
strategies to minimize controllable sources of error, both of which
could maximize the signal between stressors and biological
responses.

In fact, an important consideration for interpreting our results
relative to previous research studies is the observed gradients of
drivers, stressors, and biological condition (Table 3; e.g., Smart
et al., 2012). Across the three precipitation groups a range of
biological conditions was found, with 49% of arid sites classified as
being in ‘poor’ biological condition, compared to only 19% and 11%
in medium and mesic groups, respectively. Thus, it was not
surprising that the hypothesized stressors of stream temperature
and instream fine sediments were useful for explaining variation in
O/E for the arid group. Conversely, average water temperatures
were below 12 �C and fine sediment levels averaged less than 23%
in the medium and mesic precipitation groups. Such physical
conditions are typical of relatively unaltered, forest and rangeland
systems and unlikely to elicit significant biological responses
(Bryce et al., 2010). Low levels of various stressors and the
predominance of intact biological assemblages are likely to be
emblematic of many public lands where vast tracks of land are in
relatively good condition, most stressors exist as non-point source
pollution, and change in resource condition occurs at relatively
long timescales (Harding et al., 1998). The subtle gradients in
stressors we observed suggest the need to refine the sampling
design.

The PIBO sampling design was a spatially balanced design
(GRTS) without explicit stratification. Use of such a design over a
large geographic region (740,000 km2) resulted in sampling of
streams encompassing substantial environmental heterogeneity
that if unaccounted for in a statistical model may mask subtle
relationships of interest. We addressed this analytical challenge by
subsetting the sites into precipitation groups (post-stratification),
and we included covariates to account for the inherent natural
environmental heterogeneity in the data. Also, we incorporated
moderators to model the context dependency of anthropogenic
impacts on biological condition. For example, inclusion of large
woody debris as a moderator elucidated context-dependent
relationships between grazing and fine sediments in both medium
and mesic precipitation groups. Even though we harnessed these
statistical modeling options, the fact remains the quality of driver
data and possibly the subtle gradients sampled using an
unstructured sampling design were insufficient to quantify causal
mechanisms for stream degradation.

Sampling designs need to be flexible and allow for precise and
unbiased estimates for multiple indicators (Overton and Stehman,
1996; Sergeant et al., 2012). Even though anthropogenic drivers
(e.g., grazing or road density) might be of interest to a long-term
monitoring program, defining strata by levels of a driver variable
could lead to analytical and inference issues because strata
membership will likely vary over the course of decades as policy
and land ownership change (Johnson, 2012; Mahan et al., 2007;
Overton and Stehman, 1996). An alternative, in the absence of the
ability to perform experimental manipulations or stratified
sampling, is to develop a complementary effort that targets
sampling gradients of interest that represent the causal mecha-
nisms of primary concern for resource management (e.g., Burton
et al., 2014). As the original sites were selected using GRTS, one
tractable option is to reduce the sample size from each panel using
the GRTS ordered list and in turn using those resources “saved” to
conduct a more targeted and refined assessment. The adjusted
panels will still have desirable spatial balance properties and we
utilize one of the key benefits to the GRTS sampling design which is
the ability to accommodate increases and decreases in sample size
(Olsen et al., 2012). Within this supplemental effort the primary
objective is to thoroughly investigate the potential impacts of road
density and grazing with local spatially explicit characterization of
the drivers and co-location of sediment and macroinvertebrates.
This approach maintains the current program while adapting to
the emerging needs identified by our analysis for monitoring to be
management relevant.

5. Conclusions

A key component within the adaptive monitoring paradigm is
to learn based on statistical analyses of available monitoring data.
There are few, if any, documented examples of an empirical
evaluation of a regional monitoring program’s conceptual model,
as we have done for PIBO. There are examples of retrospective
power analyses using data collected for status and trend detection
(Mahan et al., 2007; Levine et al., 2014), but these do not address
whether the data can be used to understand why a resource is
degrading or improving over time. Given the significant financial
investment required of long-term, multi-state monitoring pro-
grams (e.g., Henderson et al., 2005; Moyer et al., 2003), ensuring
that management relevant drivers are characterized sufficiently
and can be used in analyses with measured stressors and biological
indicators would significantly increase the ecological value of a
program and ensure its longevity.

We feel the utility of conceptual models as developed for
monitoring programs can be increased by recognizing they
inherently provide testable complex causal hypotheses. Causal
modeling provides a flexible analytic framework for assessing
these proposed direct, indirect, and cumulative effects of drivers
and stressors on ecological indicators. Further, if our estimates
based on observational data had yielded convincing biological
effects this framework could be used for predictions and
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assessments of different interventions to which future observa-
tions could be compared within an adaptive management context.
Arguably, the complexity of the statistical inference methods
presented here may hinder the rapid feedback needed in the
practice of adaptive monitoring. However, Eqs. (1)–(5) could be
estimated using separate multiple linear regression models and
graphical techniques could be used to assess the strength of
associations between connected components in the causal graph. If
no associations are apparent, this could suggest a similar issue may
be encountered as in our investigation.

In our case empirical evaluation of the conceptual model
allowed us to identify gaps in our monitoring of context-
dependent mechanisms of how or why management may impact
important conservation targets. We suspect many regionally and
nationally mandated monitoring programs would benefit from this
type of interim assessment and, as a result, might find similar
deficiencies that, if not addressed, would hamper moving from
surveillance into more question-based monitoring.
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Appendix A. Introduction to causal modelling

Recently, Grace et al. (2012) provided guidance for a graph-
theoretic approach to structural equation modeling and Shipley
(2013) provided examples of this approach using path analysis. A
graph is composed of two components: the nodes or random
variables (also, referred to as vertices in statistical literature) and
the linkages or edge structure among nodes. Relationships
between nodes can be described using family tree terminology
(e.g., ancestors, parents, children, and descendants). In a causal
graph, links are directed (represented by an arrow). A directed edge
implies changing the value of a parent node (arrow originates from
this node) will change the child node value (arrow points towards
this node), a cause and effect (Table A1 provides definitions). For
example, in Fig. A1 the parent node of the stressor (the child) is an
Table A1
Definitions for different roles nodes can serve in causal graph. Examples refer to Fig. 3

Variable type Definition 

Parent node An arrow originates from this node 

Child node An arrow terminates at this node 

Root node No edges directed towards them, only away 

Terminal
node

Only edges directed towards them, and no edges pointing away from

Mediators Describe the mechanism or process of how or why an independent v
Moderators Contextual variable that modifies the direction or strength of the direct

whom
Covariates A covariate is associated with a dependent variable and accounts for
Confounders A confounder variable is associated with both a parent and child var
anthropogenic driver. A path is an ordered sequence of links or
edges (such as in Fig. A1 driver ! stressor ! response). Graphs that
contain no cycles (pathways that begin and end at the same node)
and only directed edges are directed acyclic graphs (DAGs) or a
causal graph. The pathways represented in the DAG are causal
hypotheses.

For statistical modeling, the functions or probability distribu-
tions used to test the hypotheses conveyed by the graph are
specified—a causal model. The complete specification of a causal
model is composed of sets of nodes, linkages, and functions (Grace
et al., 2012; Pearl, 2009). The casual graph (DAG, Fig. A1) has a local
Markov property such that we can use local estimation as opposed
to fitting a joint multivariate distribution for the graph [denoted as
P(X), typically assumed multivariate Gaussian]. Essentially, we can
decompose the joint distribution into the product of conditional
distributions as follows P(X) =PiPi[Xi|pa(Xi)], where Pi is a
probability distribution (Guassian, Poisson, etc.), Xi is a node in
the graph and pa(Xi) is the set of parents for node Xi (see Grace
et al., 2012 for a translation of Pearl, 2009). Rather, the local
Markov property implies that a variable (node) is conditionally
independent of its non-descendants (excluding its parents), given
its parents. In Fig. A1, the joint distribution of {driver, stressor,
response, moderator, and covariate}can be decomposed into two
conditional distributions: (1) response given stressor, and (2)
stressor given driver, moderator, and covariate. A key statistical
difference between multiple linear regression and causal models is
the assumption of only one response or dependent variable is
relaxed in the latter. For example in Fig. A1, stressor and response
could be considered dependent variables as they both have a set of
parent nodes (Table A1). As a result, complex hypotheses (network
of predictors) can be conveyed within a causal model providing
more than a simple correlative relationship between two variables.
Finally, the parameters in the conditional distributions can be
estimated using appropriate statistical models.

One of the important aspects of graphical models is the ability
to estimate and operationalize indirect effects via mediator
variables (Grace et al., 2012). Mediator variables describe the
mechanism or process of how or why an independent variable such
as an anthropogenic driver (land use) affects a dependent variable
(biological condition) (MacKinnon et al., 2012; Wu and Zumbo,
2008 Wu and Zumbo, 2008; see Table A1 definitions). For
motivation, consider potential mediators (e.g., fine sediment
concentrations, temperature, or nutrients) for how or why timber
harvest and grazing degrade macroinvertebrate biological integrity
(Banks et al., 2007; Belsky et al., 1999; Beschta, 1997; Tait et al.,
1994). In forested, headwater streams where the predominate
human influences are grazing and forest management, surface
alterations, such as increased road density, can degrade
.

Examples

Stream temperature and fines are
parent nodes of O/E
O/E is the child node of stream
temperature and fines
% Grazing, road density, and % forest

 them. O/E

ariable effects a dependent variable Fines, LWD, stream temperature
ed edge; it clarifies the when, where, or for Erosivity, slope

 natural variation Flow, gradient
iable. Spatial trend in both a parent and

child node



Fig. A1. Illustrative graph of a conceptual model for the indirect effect of a
management action (anthropogenic driver) on a response (e.g., measure of biotic
integrity). Moderators (landscape context at larger scale) may alter the direction
and amplitude of the estimated causal path linking driver to stressor. The causal
graph incorporates environmental heterogeneity by including covariates (natural
environmental heterogeneity at local scale) on the mediator variable (stressor).
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macroinvertebrate assemblages by altering runoff patterns and
increasing fine sediment loading. A test of mediation investigates
whether there is evidence for an additional direct pathway for an
anthropogenic driver (e.g., grazing) to impact biological condition
in the causal model. If data support such an edge (link) inclusion, it
would suggest an alternative mechanism beyond the proposed
mediator for how an anthropogenic driver impacts the response.

A challenge for analyzing data from regional monitoring
programs is differentiating between natural and anthropogenic
gradients when assessing resource condition. This complication
arises due to the myriad of landscape and climate factors operating
at different spatial and temporal scales that can mask effects of
local management practices (Allan, 2004; Cuffney et al., 2010;
Frissell et al., 1986; Larsen et al., 2004). In causal modeling,
inherent environmental heterogeneity (geology, climate, topogra-
phy) can be modeled using moderator variables (Mackinnon et al.,
2012; Wu and Zumbo, 2008). A moderator is a contextual variable
that modifies the direction or strength of the directed edge; it
clarifies the when, where, or for whom (Wu and Zumbo, 2008;
Table A1). For monitoring programs, moderator effects are critical
to consider as the environmental setting or landscape context
could result in differential responses to anthropogenic drivers by
either dampening or perhaps amplifying the effect of the driver on
the stressor, potential mitigating factors. One approach is to
construct homogeneous subsets of data to better detect human
impacts on biological condition (macroinvertebrate assemblage;
e.g., Riseng et al., 2011). We propose another way to handle this
inherent heterogeneity when of ecological interest is to include
moderator variables in a causal modeling framework. Additionally,
covariates can be included that help describe natural background
environmental variation in either response or stressors. We used
moderator variables to contextualize potential mechanisms by
which anthropogenic drivers (primarily, grazing, timber harvest,
and road density) in forested watersheds influence the biological
condition of streams as quantified by macroinvertebrate assemb-
lages.

Another attractive property of causal models are the ability to
estimate cumulative or total effects of a driver on a response
through multiple mediated and possibly moderated causal path-
ways. For example, in Fig. 3 the total effect of grazing on O/E is
found by tracing all paths from the % grazing node to the O/E node.
There are two main pathways for grazing to impact O/E, one is %
grazing ! width:depth ratio ! stream temperature ! O/E, using
Eqs. (1), (4), and (5) this indirect path is estimated by

u1d4b2 (A.1)

The other pathway is mediated by the fine sediment node (fines);
the path is % grazing ! fines ! O/E. However, there are potentially
three moderators, erosivity, slope, and LWD on the link between %
grazing ! fines and LWD also moderates the link between fines
! O/E. To estimate the effect of a X-unit change in grazing along
this complicated pathway is

b1 þ b4LWDð Þ a1 þ a8slope þ a9erosivity þ a12LWDð ÞX; (A.2)

given fixed values of the moderators. These estimated effects
assume all other variables in the equations are held constant, i.e.,
road density, flow, and gradient. The total effect is then the sum of
these two indirect paths from % grazing to O/E, Eqs. (A.1) + (A.2).
Bayesian estimation provides for easy calculation of posterior
intervals of these derived parameters.

Causal models, in general, provide a flexible alternative for
ecological modeling of heterogeneous data to address hypothesis
driven investigations. The local estimation approach is highly
versatile in terms of the probability models specified for the
conditional distributions of child nodes. For our analysis, we
assumed the directed edges were consistent with a linear
relationship with the mean in the child (response) node. Based
on residual and other diagnostic plots our data appeared
consistent with these assumptions and a Gaussian distribution
for the error terms. However, our measure of biological condition
could have been modeled as a multinomial variable with three
condition classes (poor, fair, or good; Carlisle et al., 2009). Also,
others have modeled biological response to fine sediment using
quantile regression (Bryce et al., 2008). Importantly, these other
probability models could be used for conditional distributions
within a causal modeling framework (see Grace et al., 2012;
Shipley, 2009). Further, if spatial autocorrelation were an issue,
these models can be extended to model spatial correlation in both
response and parent nodes (Irvine and Gitelman, 2011). This
flexibility within the causal modeling framework is a clear benefit
for modeling ecological data with the goal of evaluating complex
hypotheses.

Appendix B. Field methods

Sample sites were visited during baseflow conditions June–
September to minimize sampling error and facilitate safe wading
conditions. Sample reach lengths were determined as a function of
bankfull width (20�) with a minimum sampling length of 160 m, to
increase the likelihood that multiple geomorphic channel units
were sampled (Knighton, 1999). At each sample site we collected
streamwater temperature data, physical habitat data, and macro-
inverterbrate samples. We also used GIS data derived for each
catchment.

Within stream — we estimated the percent fine sediment in
pool tails using a grid-sampling (0.36 m � 0.36 m) approach from
the first 10 pools in the reach, if less than 10 pools occurred all
pools were sampled. Each grid included 50 equally-spaced
intersections, and we collected grid data at three equidistant
locations across the wetted width of the lowermost 10% of each
pool habitat. We enumerated the number of intersections that
overlaid particles with an intermediate axis less than 6 mm,
divided by the total number of intersections in the grid; we then
calculated mean percent fines for each pool and averaged pool
estimates for a site-level estimate of fines sediments (“fines”,
Fig. 3). Finally, we quantified the amount of large woody debris
(“LWD”, Fig. 3) in each site. We enumerated all pieces of LWD
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>0.1 m in diameter and longer the 1 m in length that were at least
partially within the bankfull channel and normalized the counts to
pieces/km. Bankfull widths are the average of the measured
bankfull widths at each transect (n � 21; “stream size” in Fig. 3).
Our measure for width to depth ratio (“width:depth ratio”, Fig. 3) is
the average of the wetted width divided by the water depth from
10 cross sections taken at even numbered transects 2–20. If there
were <6 suitable measurements no value is reported, these records
were not included in the analyses.

We collected streamwater temperatures at 60 min intervals
using Hobo data loggers from July 15th to August 31st and
calculated the average temperatures at each site for our analyses
(degrees celsius; “stream temperature” in Fig. 3).

Benthic macroinvertebrate assemblages were sampled to
quantify stream biological integrity following the methods of
Peck et al. (2006). Macroinvertebrate samples were preserved and
600 random organisms per sample (Caton, 1991; Vinson and
Hawkins, 1996) were identified to the lowest taxonomic resolution
Table C1
Posterior quantiles for edge coefficients based on reduced graphs [Fig. 3 black colored e
denotes the Stream Temperature node in Fig. 3. Detailed field methods for each variab

Arid sites Posterior quantiles

Parent Child 2.50% 

S. Temp. O/E �0.053 

Fines O/E �0.106 

% Forest S. Temp. �0.041 

Elevation S. Temp. �2.060 

Width:depth ratio S. Temp. 0.011 

Gradient Fines 0.011 

Flow Fines �2.351 

% Forest LWD �0.284 

Elevation LWD �0.011 

Medium sites Posterior quantiles

Parent Child 2.50% 

S. Temp. O/E �0.039 

Fines O/E �0.041 

% Forest S. Temp. �0.047 

Elevation S. Temp. �3.031 

% Forest � elevation S. Temp. 0.004 

Width:depth ratio S. Temp. 0.012 

% Forest LWD 0.010 

Elevation LWD �1.470 

% Grazing Fines 0.000 

Road Density Fines 0.049 

Gradient Fines �0.346 

Erosivity Fines 0.134 

Flow Fines �0.004 

LWD Fines �0.047 

LWD � % grazing Fines �0.006 

Mesic sites Posterior quantiles

Parent Child 2.50% 5

Fines O/E �0.0720 �
LWD O/E 0.0129 

LWD � fines O/E 0.0024 

% Forest S. Temp. �0.0570 �
Elevation S. Temp. �3.3881 �
% Forest � elevation S. Temp. �0.0069 

Width:depth ratio S. Temp. 0.0035 

% Grazing Fines �0.0039 �
Slope Fines �0.0535 �
Gradient Fines �0.6099 �
Flow Fines �0.0034 �
LWD Fines 0.0576 

% Grazing � slope Fines �0.0011 �
LWD � % grazing Fines �0.0082 �
possible, generally genus. Prior to analysis, we standardized the
taxonomic resolution among all samples by assigning identified
macroinvertebrates to unambiguous operational taxonomic units
(OTUs) (Cuffney et al., 2007) and counts were standardized to 300
randomly selected individuals per sample.

To compute biological integrity, we constructed an
observed/expected (O/E) type predictive model following the
procedures outlined in Hawkins et al. (2000) and Hawkins and
Carlisle (2001). O/E values compare the actual sampled taxa (O) to
the taxa predicted to occur (E) if the site was in reference condition
(Wright, 2000). The O/E model was developed using 201 reference
sites (174 calibration and 27 validation sites) randomly located
throughout the Interior Columbia River Basin and sampled over an
eight year timeframe (“O/E” in Fig. 3). The final model had
acceptable accuracy and precision (0.95 and 0.16, respectively)
(Ostermiller and Hawkins, 2004; Hawkins, 2006) and effectively
discriminated between reference and managed sites (t = �12.57;
df = 634; p < 0.001).
dges only], excluded edges with 90% credible intervals that included zero. S. Temp.
le are provided in Appendix B.

5% 50% 95% 97.50%

�0.050 �0.036 �0.021 �0.018
�0.100 �0.069 �0.037 �0.030
�0.039 �0.028 �0.017 �0.014
�1.926 �1.128 �0.320 �0.155
0.014 0.030 0.046 0.049
0.012 0.021 0.029 0.031

�2.231 �1.606 �1.010 �0.884
�0.261 �0.146 �0.032 �0.008
�0.010 �0.007 �0.004 �0.003

5% 50% 95% 97.50%

�0.037 �0.028 �0.018 �0.016
�0.038 �0.020 -0.002 0.001
�0.045 �0.033 �0.020 �0.018
�2.946 �2.471 �2.017 �1.925
0.007 0.029 0.051 0.056
0.013 0.020 0.026 0.028
0.012 0.020 0.029 0.031

�1.401 �1.061 �0.716 �0.651
0.001 0.003 0.006 0.006
0.069 0.175 0.274 0.295

�0.330 �0.245 �0.163 �0.147
0.161 0.290 0.418 0.439

�0.003 �0.003 �0.002 �0.002
�0.033 0.037 0.106 0.118
�0.006 �0.004 �0.002 �0.002

% 50% 95% 97.50%

0.0687 �0.0468 �0.0249 �0.0213
0.0191 0.0487 0.0783 0.0846
0.0066 0.0259 0.0452 0.0491
0.0510 �0.0230 0.0058 0.0121
3.2441 �2.4585 �1.6840 �1.5099
0.0006 0.0429 0.0831 0.0899
0.0050 0.0163 0.0269 0.0290
0.0032 0.0006 0.0043 0.0050
0.0499 �0.0334 �0.0169 �0.0140
0.5843 �0.4272 �0.2773 �0.2432
0.0032 �0.0025 �0.0018 �0.0016
0.0893 0.2408 0.3862 0.4179
0.0010 �0.0006 �0.0003 �0.0002
0.0076 �0.0043 �0.0012 �0.0004



Table C2
Quantiles for model based prediction errors for validation dataset by precipitation group ðXvalid;i � X̂model;iÞ,where X̂model;i is the mean of the posterior predictive
distribution and Xvalid;i is the observed value of variable X for site i. The variables to the right of the vertical line enclosed in parenthesis were those used to
predict the variable on the left of the vertical line. The different sets of variables correspond to using the measured values of the parents versus predicting the
values of the parents using the observed values of the root nodes (refer to Fig. 3). S. Temp. denotes the stream temperature node in Fig. 3. Detailed field
methods for each variable are provided in Appendix B.

Arid sites 5% 50% 95%

O/E | (S. Temp., fines) �0.34 �0.05 0.28
O/E | (flow, gradient, width:depth ratio, elevation, % forest) �0.40 �0.06 0.34
S. Temp.| (elevation, width:depth ratio, % forest) �3.87 �0.11 3.99
ln(fines)| (flow, gradient) �2.18 �0.12 1.28
ln(LWD)| (elevation, % forest) �4.74 �0.41 2.75

Medium sites 5% 50% 95%

O/E | (fines, S. Temp.) �0.35 0.07 0.30
O/E |(flow, gradient, erosivity, % grazing, road density,LWD, width:depth ratio, elevation, % forest) �0.34 0.08 0.33
S. Temp.| (elevation, % forest, width:depth ratio) �2.58 �0.05 3.09
ln(fines)| (% grazing, LWD, road density, flow, gradient, erosivity) �1.40 0.09 1.47
ln(fines)| (% grazing, elevation, % forest, road density, flow, gradient, erosivity) �1.50 0.11 1.61
ln(LWD)| (elevation, % forest) �2.40 0.12 1.95

Mesic sites 5% 50% 95%

O/E | (fines) �0.40 �0.04 0.22
O/E | (% grazing, LWD, slope, flow, gradient) �0.39 �0.03 0.23
S. Temp.| (width:depth ratio, elevation, % forest) �2.32 0.13 2.65
ln(fines)| (% grazing, LWD, slope, flow, gradient) �1.11 0.04 1.54

Table C3
Prediction assessment for classifying unobserved sites as being in good (O/E � 0.84), fair (O/E between 0.68 and 0.84), or poor biological condition (O/E < 0.68) based on
observed values for parent nodes [O/E| (fines, stream temperature)] versus predictions based on only root nodes [O/E|root of parent nodes]. See Table A1 for terminology of
nodes. Sample sizes for hold-out datasets were mesic n = 52, medium n = 106, and arid n = 53. Kendall’s tau, a measure of concordance between predicted conditional means
and condition class values, is reported in parenthesis (Agresti 2010).

Arid Precipitation Site s 

Predicted with parents (0.54) Predic ted with root variables (0.32)
Poor Fair  Good  Poor  Fair  Good 

Poor 26  0  3 28   0 1 
Observed Fair 7  0  3 10   0 0 

Good 6  0  8 11   0 3 
Medium  Precipitation  Site s 

Predicted with parents (0.25) Predic ted with root variables (0.09)
Poor Fair  Good  Poor  Fair  Good 

Poor 0  0 21   0  0 21 
Observed Fair 0  0 21   0  0 21 

Good 0  0 64   2  0 62 
Mesic Precipitation Sites 

Predicted with parents (0.19) Predic ted with root variables (0.14)
Poor Fair  Good  Poor  Fair  Good 

Poor 0  0  8  0  0 8 
Observed Fair 0  0  9  0  0 9 

Good 0  0 35   0  0 35 
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Reach attributes — we quantified gradient as the change in the
elevation of the water surface between the top and bottom of the
reach, which we measured using a site level and tripod, and
divided this elevation change by site-specific measures of river
length (“gradient”, Fig. 3). We calculated flow based on the variable
infiltration capacity (VIC) model (Wenger et al., 2010). Briefly, the
VIC model is largely physically-based and includes empirically-
derived relationships for infiltration, runoff, and stream baseflow
processes and allows for spatially-continuous streamflow pre-
dictions. Given the importance of stream power in controlling local
habitat processes (Frissell et al., 1986; Beschta and Platts, 1986; Al-
Chokhachy et al., 2011), we included average historic (1915–2006)
measures of bankfull discharge at each site in our analyses (“flow”

in Fig. 3).
Catchment attributes — we initially delineated the catchment

upstream of each sampled site using digital elevation models
(10 m DEMs; http://www.ned.usgs.gov) and Arc Macro Language
in ArcGIS 9.2 (ESRI 2008). Using these delineations, we quantified
differences in soil characteristics by computing a continuous
measure of the uniaxial compressive strength of each lithology
type (“erosivity” in Fig. 3; Cao et al., 2007); here, increasing values
of erosivity positively correspond to the strength of the underlying
lithology. Next, we calculated the average catchment slope based
on the DEMs (“slope” in Fig. 3). Finally, we quantified the percent
of the catchment as forested (“% forest” in Fig. 3, i.e., tree-
dominated vegetation; LANDFIRE, 2008). Also, the elevation at the
bottom of each stream reach was derived from a 10 m DEM (USGS
National Elevation Dataset: http://seamless.usgs.gov/, “elevation”
Fig. 3).

Additionally we quantified information regarding the level of
anthropogenic disturbances in each catchment. First, we calcu-
lated catchment-specific measures of the density of roads (“road
density”, km/km2, in Fig. 3.) from the USFS Geodata Clearing-
house (1:24000 scale; svinetfc4.fs.fed.us/clearinghouse/index.
html). Next, we compiled grazing allotment boundaries from
the USFS and BLM units within our study area and calculated the
percentage that contained a grazing allotment (“% grazing” in
Fig. 3).

Appendix C. Model estimates and predictive error quantiles

We explored how useful the posterior predictive distributions
based on our final graphical models would be for classifying
unobserved sites as good (O/E � 0.84), fair (O/E between 0.68 and
0.84), or poor biological condition (O/E < 0.68). Let Yi denote
the O/E score and Ci the condition class, where poor = 1, fair = 2, and
good = 3 for site i. We calculated the probability for site i being in
the biological condition class k, as Prob(Ci= k) as follows, let
T0 = �1, T1 = 0.68, T2 = 0.84, and T3= +1, then
Prob Ci ¼ kð Þ ¼ R Tk

Tk�1
f y~i jyð Þd y~i , where f ð~yi jyÞ is the posterior

predictive distribution for O/E as a continuous measurement
(Gelman et al., 1995). The models displayed poor predictive ability
consistent with the weakly estimated linkages in all precipitation
groups (Table C3 ).

Appendix D. Supplement winbugs code

Although this software program has been used by the U.S.
Geological Survey (USGS), no warranty, expressed or implied,
is made by the USGS or the U.S. Government as to the accuracy
and functioning of the program and related program material
nor shall the fact of distribution constitute any such warranty,
and no responsibility is assumed by the USGS in connection there
with.
# REDUCED MODEL FOR MESIC SITES 
model{ 

#center variables and perform transformation outside of WinBUGS  

  #measurement equation model or likelihood 
  for(i in 1:N){ 

  Bugs[i]~dnorm(mu[i,1],psi[1])  #O/E Scores 
       Temp[i]~dnorm(mu[i,2],psi[2])  #streamwater temperature  
       fines[i]~dnorm(mu[i,3],psi[4])  
       LWD[i]~dnorm(0,psi[3])  
       graz[i]~dnorm(0,psi[14]) #grazing  
       Grad[i]~dnorm(0,psi[5])  #gradient  
       For[i]~dnorm(0,psi[6]) #% Forest  
       Slope[i]~dnorm(0,psi[7]) #slope  
            Elev[i]~dnorm(0,psi[8]) #elevation 
            Rds[i]~dnorm(0,psi[9])  #road density 
            Flo[i]~dnorm(0,psi[10]) #flow/ discharge 
            Eros[i]~dnorm(0,psi[11])  #erosivity 
            bf[i]~dnorm(0,psi[12])    #stream Size 
            WDwet[i]~dnorm(0,psi[13])  #Width to Depth ratio 

 #these are conditional distrib. on pa(Y_j)  

 #assuming intercepts  are all zero since using centered variables   

 mu[i,1]<-gam1[1]*fines[i]+gam1[2]*LWD[i]+gam1[3]*LWD[i]*fines[i]  

 #O/E| fines, LWD, LWD*fines  

 mu[i,2]<-gam2[1]*For[i] +gam2[2]*Elev[i] +  
gam2[3]*For[i]*Elev[i]+gam2[4]*WDwet[i] 

 #Stream Temp  | % forest Elev %for*Elev WDwet  

 mu[i,3]<-gam4[1]*graz[i]+gam4[2]*Slope[i]+gam4[3]*Grad[i]+  
             gam4[4]*Flo[i]+gam4[5]*LWD[i]+ gam4[6]*graz[i]*Slope[i] 

                +gam4[7]*LWD[i]*graz[i] 

# fines| grazing,  slope, gradient, flow, LWD, grazing*Slope, LWD*Graz  

# RESIDUALS FOR MODEL DIAGNOSTICS 

res.BUGS[i]<-Bugs[i]-mu[i,1]  
res.Fines[i]<-fines[i]-mu[i,3]  

     res.ST[i]<-Temp[i]-mu[i,2] 

} #end of i  

#PRIORS on edge/link coefficients  

for(i in 1:3){  
gam1[i]~dnorm(0,.01)}  

for(i in 1:4){  
gam2[i]~dnorm(0,.01)}  

for(i in 1:7){  
gam4[i]~dnorm(0,.01)}  

#PRIORS on precisions  
for(j in 1:14){  
psi[j]~dgamma(0.5, 1.0)     

#manifest var. prec; this second parameter is the inverse of rgamma in R 
 sgm[j]<-1/psi[j]  } 

#THESE NEED TO BE ON CENTERED SCALE FOR VALUES! Assuming Slope at its mean 
value for mesic sites, so term cancels out 

#10% change in grazing given high LWD [G1-G2] 10 is a increase (=569 LWDFreq) 
#10% change in grazing given low LWD 25% quantile (=155 lwdfreq) 
#LWD on log scale - mean value in mesic of 5.27 

Ind.Graz.loEqn7<-(gam1[1]+gam1[3]*-.23)*(gam4[1]+gam4[7]*-.23)*10  

Ind.Graz.hiEqn7<-(gam1[1]+gam1[3]*1.07)*(gam4[1]+gam4[7]*1.07)*10  

 } 
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