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Abstract

Microsatellite data are widely used to test ecological and evolutionary hypotheses in wild
populations. In this paper, we consider three typical sources of scoring errors capable of
biasing biological conclusions: stuttering, large-allele dropout and null alleles. We
describe methods to detect errors and propose conventions to mitigate scoring errors and
report error rates in studies of wild populations. Finally, we discuss potential bias in eco-
logical or evolutionary conclusions based on data sets containing these scoring errors.
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Introduction

Microsatellites, or simple sequence repeats (SSRs), are
powerful tools commonly used to test a variety of
ecological and evolutionary hypotheses in wild populations.
Errors in scoring microsatellite data can occur at several
steps of the assay, yet conventions in disclosing scoring
errors and standard statistical procedures to mitigate these
errors are lacking (Bonin ef al. 2004; Dakin & Avise 2004).
Despite the implications of including scoring errors in
downstream analyses, both basic researchers (arguably the
vast majority of authors in refereed literature) and the
management community (Paetkau 2003) continue to use
microsatellites without estimating error rates. Fewer still
describe the techniques used to mitigate for errors detected
(but see Barker 2005), or discuss how errors in the data may
bias the conclusions of the study. Studies involving human
genetics, as well as those using noninvasive (e.g. fecal or
hair) or ancient samples, however, are currently among the
few to routinely report error rates (Hoffman & Amos 2005).
As more effective analytical tools for detecting genotyping
errors continue to be developed, it is time to consider
establishing clear and consistent protocols for estimating
error rates, reporting these rates in studies of wild
populations, and mitigating for errors in downstream
analyses and data interpretation. In this paper, we discuss
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three common microsatellite scoring errors, those due to
stuttering, large-allele dropout and null alleles, and consider
their impacts on ecological and evolutionary data interpre-
tation. We recommend standard procedures to mitigate
these impacts, and consider conventions for reporting
potential scoring errors and associated interpretative
biases in the literature.

Three common scoring errors

Taberlet et al. (1996), Bonin et al. (2004) and Hoffman &
Amos (2005) thoroughly discuss the numerous sources of
scoring errors (or mistypes, i.e. assigning at least one wrong
allele to a genotype) in microsatellite data. Three sources
of error, stuttering patterns, large-allele dropout and null
alleles, are of particular concern because, unlike errors
created by stochastic amplifications, these errors tend to
create consistent allelic and genotypic scoring bias that
may, in turn, bias data interpretation.

Some loci tend to produce ‘stutter’ bands due to slipping
by Taq polymerase, which can make interpreting electro-
phoretic output difficult (Jones et al. 1997; van Oosterhout
et al. 2004). The magnitude and shape of stuttering patterns
varies across loci, with some markers displaying very little
stuttering, and others consistently producing two or more
stutter peaks. Interpreting patterns at stutter-prone loci
becomes particularly difficult in the case of adjacent-allele
heterozygotes at loci having a dinucleotide repeat motif.
Such stutter can cause these heterozygotes to be scored as



952 REVIEW

homozygotes for the larger allele. Consistent mistyping of
this form will bias allele frequencies towards larger alleles,
decrease observed heterozygosity and increase the appar-
ent level of inbreeding at affected loci. It is also possible to
mistype a true homozygote as an adjacent-allele heterozy-
gote, but these errors are less likely if the marker has been
screened sufficiently, and the shape of a single allele is well
known.

Large-allele dropout is another potential scoring error
that can bias allele and genotype frequencies. Large-allele
dropout results from the preferential amplification of the
smaller allele in a heterozygous genotype. As a result, the
large allele may have a peak height much shorter than
the small allele, and, if template quality is poor, may fail to
amplify altogether (Bjorklund 2005). This phenomenon
differs from allelic dropout in low-quality samples (Taber-
let et al. 1996; Miller et al. 2002) in that large-allele dropout
is a function of allele size and not stochastic sampling error
of template. While investigating the source of errors in
noninvasive samples, Buchan et al. (2005) found that allelic
dropout increased with allele size and that rates of dropout
remained high at some loci even with increased DNA con-
centration, indicating that technical limitations in amplify-
ing large alleles may exist. Large-allele dropout is more
prevalent in loci with large differences in allele sizes
(Bjorklund 2005). If undetected, large-allele dropout will
cause allele frequencies of shorter alleles to be overesti-
mated and may result in rare large alleles being omitted
from the data set altogether. Also, as with mistyping due
to stuttering, large-allele dropout will decrease observed
heterozygosity and increase the apparent level of inbreed-
ing at affected loci.

Null alleles, the third form of scoring error considered
here, are particularly difficult to detect because, by defini-
tion, nulls fail to produce a visible product (Dakin & Avise
2004), typically due to mutation at a priming site. When
present in a data set, samples that are heterozygous for a
null allele will be mistyped as homozygous for the alter-
nate, visible allele, whereas samples that are homozygous
for the null allele will appear to have a failed reaction.
Similar to the scoring errors described above, null alleles
will bias allele frequencies (visible alleles will be overesti-
mated), decrease observed heterozygosity and increase
the apparent level of inbreeding.

Compounded over multiple loci, even a small per-locus
genotyping error rate can result in relatively large prob-
abilities of a multilocus genotype containing at least one
error (Creel et al. 2003; Bonin et al. 2004; Hoffman & Amos
2005), although error rates are rarely equal across loci, and
dropping a single locus may provide a disproportionate
decrease in error rate. Nonetheless, failing to account for
the effects of these scoring errors may result in misinterpre-
tations of the data when testing ecological and evolution-
ary hypotheses.

Preventing, mitigating and reporting scoring errors

Stringent protocols to prevent mistypes of any source are
likely to be included in studies of human genetics and studies
involving noninvasive or other low-quality samples, but
rarely in studies involving high-quality samples from wild
populations. Many of the procedures used in preventing
mistypes are expensive and time-consuming (Tablerlet
et al. 1996; Ewen et al. 2000; Bonin et al. 2004), and others are
not appropriate for studies of species with poorly described
genomes (e.g. when microsatellite primers are transferred
across taxa) or when pedigree information is not available
(preventing checks for Mendelian inheritance). Given the
ubiquity of sources for scoring errors, however, imple-
mentation of quality-assurance procedures is warranted in
any laboratory to insure reproducible and consistent
microsatellite data. Below we discuss potential protocols
to prevent, mitigate and report rates of scoring errors
due to the three sources described above, and recom-
mend standard procedures to be used in studies of wild
populations. The following protocol involves imple-
menting quality assurance procedures at six stages of a
study: screening microsatellite loci, reanalysing a subset of
samples, scoring the full data set, testing for scoring errors,
mitigating for errors in downstream analyses, and reporting
error rates.

Screening microsatellite loci

In the spirit of ‘an ounce of prevention is worth a pound
of cure’, effective screening of microsatellite loci prior to
data collection may mitigate the potential for errors to
compromise the quality of a full data set. Screening a
sufficient number of individuals for each marker provides
information on peak pattern (amount of stuttering), levels
of allelic variation (size range of alleles, a rough indicator
for the potential of large-allele dropout), and allows suspect
loci (those producing inconsistent or difficult to interpret
patterns) to be further tested or omitted. It is difficult to
overstate the importance of visual inspection of electro-
phoretic patterns during marker screening (rather than
relying on automated scoring options), since stochastic
amplifications, stutter patterns and low-height large alleles
(indicative of large-allele dropout) may not be consistently
detected in automated scoring outfiles. Indeed, the accuracy
of automated allele-call programs during data collection
relies on parameter settings determined during the screening
process (see Scoring Data). Perhaps the most effective
screening study involves progeny arrays, defined here as
genotypes from full- or half-sib families and at least one
known parent, and offers a powerful tool to detect scoring
errors. In general, errors in scoring the parental geno-
type(s) will be indicated by actual genotypic distributions
in the progeny failing to fit expected Mendelian ratios
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(Gomes et al. 1999), including the observation of unex-
pected alleles (e.g. a parent that is heterozygous for a null
allele may have progeny that appear homozygous for an
allele not scored in that parent). Additionally, the potential
for large-allele dropout can be tested using ‘artificial’
heterozygotes created by mixing template of two samples
homozygous for different alleles (Wattier ef al. 1998).

We recommend screening a sufficient number of sam-
ples to allow testing for scoring errors using available
software (see Testing for Scoring Errors). If scoring errors
due to null alleles, stuttering, or large-allele dropout are
detected, primers should be redesigned and/or poly-
merase chain reaction (PCR) conditions optimized to reduce
the overall error rate. Stuttering bands may be reduced by
varying the reaction conditions (e.g. including additives
such as formamide, bovine serum albumin, or dimethyl
sulphoxide), redesigning the reverse primer (Brownstein
etal. 1996), or adjusting the PCR programme by using
touchdown or hot start techniques, reducing the number
of cycles, or maintaining a stringent annealing temperature.
Since different loci may benefit from opposite treatments
(e.g. high or low concentrations of magnesium; short or
long extension times), systematic testing of each variable
will likely be necessary to reduce the number of stutter
peaks. In addition, stuttering patterns may be minimized,
and large-allele dropout prevented by using high-fidelity
Tag or PCR kits designed especially for microsatellite
analysis (e.g. Multiplex PCR Kit from QIAGEN). Suc-
cessfully multiplexing microsatellite loci and reducing the
need for re-amplifications of error-prone loci can reduce
the total number of amplifications needed for a data set,
compensating for the increased cost of these products. Ide-
ally, loci containing null alleles, high error rates, or peak
patterns that are difficult to interpret are dropped from the
analysis. In reality, limited resources, time, or insufficient
screening may prevent the redesigning of primers (Dakin
& Avise 2004), or the goal of the research (e.g. fine-scale
genome mapping) may require that suboptimal loci be
included in the data set (Ewen ef al. 2000). In these cases,
accurately detecting scoring errors, and adjusting down-
stream analyses for their presence, as described below, is
necessary in order to effectively test ecological or evolu-
tionary hypotheses.

Reanalysing a subset of samples

Reanalysing (i.e. independent re-amplification and scoring
of a sample) some or all samples in a study provides the
opportunity to identify and quantify scoring errors. The
most comprehensive approach to resolve a multilocus
genotype is the ‘multiple tube’ approach (Taberlet ef al.
1996), where the same sample is amplified multiple times
for each marker, with the expectation that allelic dropout,
false alleles and other amplification-based errors will be
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mitigated by comparing multiple products to obtain the
true genotype. This method allows for the rate of mistypes
to be estimated over all samples, and is most commonly
used in studies involving noninvasive or ancient DNA
samples. The cost of multiple replicates required to produce
a genotype of certain reliability may be unrealistic for
many laboratories, however, when sample sizes are large.

An alternative to the multiple-tube approach is to re-
genotype a subset of samples, which allows an error rate to
be estimated without the cost of re-amplifying every sam-
ple (Bonin ef al. 2004; Hoffman & Amos 2005). How many
and which specific samples to include depends on the goal
of the reanalyses. A random set of blind samples may be
reanalysed for all loci in order to estimate an error rate at
each locus and over the entire study (Bonin ef al. 2004).
Alternatively, only those loci prone to error may need to be
re-amplified (Paetkau 2003; Hoffman & Amos 2005).

Given high-quality template DNA, we recommend
reanalysing a random 10% of samples at all loci in order to
provide basic estimates of error rates (see Reporting Error
Rates). In addition, any samples found to contain suspect
peak patterns (e.g. indicative of adjacent-allele hetero-
zygotes at a stutter-prone locus) should be reanalysed in
order to confirm the genotype at that locus. Template DNA
of low quality or low concentration may require further
reanalysis in order to determine the true multilocus
genotype of each sample.

Scoring data

Sufficient screening of loci should reveal the expected
range of allele sizes, characteristic peak patterns and
potential scoring problems for each marker locus. Given
this knowledge, we recommend combining automated
allele calling with visual inspection of each sample. This
process, while seemingly redundant, provides a balance
between the efficiency and consistency of automated
allele-calling software, and the accuracy provided by
human inspection in detecting novel alleles outside the
expected size range of a locus, stochastic amplifications
within the size range, and potential mistypes due to stutter
patterns or large-allele dropout.

Several programs are available to automate scoring of
microsatellite data. GENOTYPER and GENEMAPPER (Applied
Biosystems, Inc.) are capable of scoring alleles, and although
GENOTYPER is more efficient for visual inspection of indi-
vidual samples, GENEMAPPER may be more efficient when
studying well-characterized loci in high-quality samples.
TRUEALLELE (Cybergenetics, Inc.) is designed for allele call-
ing in high-throughput systems. DECODE-GT (Palsson ef al.
1999) complements TRUEALLELE by quality-checking allele
calls, reducing the amount of manual inspection required.
It should be noted that automated allele calling has the
potential to introduce additional scoring errors if the loci
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are not sufficiently described during the screening process.
Such errors are likely when parameters on automated scor-
ing programs do not match the characteristics of a particu-
lar locus, especially when insufficiently stringent in allele
calling (Palsson et al. 1999) or binning (Ghosh et al. 1997).
Inconsistent binning of alleles (required to convert the
raw decimal data into integers) may result in scoring
errors, especially if reaction conditions cause inconsistent
nontemplate nucleotide additions by Tag polymerase
(Smith et al. 1995). Although automated binning of data,
such as that provided by mMs ExceL, will provide consistency
across analyses, the program ALLELOGRAM (Manaster 2002)
graphs each allele and bin, allowing visual inspection
of data for binning errors.

Testing for scoring errors

Once all samples are scored at each locus, the resulting
genotypic data set should be tested for scoring errors.
Statistical tools are available to detect potential scoring
errors from intact genotypes on a per-locus basis. Most
operate by testing for heterozygote deficiencies, which can
be indicative of genotyping errors (Paetkau 2003), particularly
when identified in only a few loci (Gomes ef al. 1999).
Demographic or mating system processes such as a
Wahlund effect or inbreeding are expected to result in
excess homozygosity at all loci, whereas errors due to
stuttering, large-allele dropout and null alleles should
affect only a subset of loci.

Ewen et al. (2000) describes two methods to check for
errors: concordance checking and Mendelian-inheritance
checking. Although neither method will detect all types of
errors, the Mendelian-inheritance checking, which requires
pedigree information, is more robust and recommended
for genotyping studies, whereas the concordance checking
technique is recommended for fine-scale mapping studies
(Ewen et al. 2000). Miller et al. (2002) developed a maximum-
likelihood method to assess genotype reliability and
help focus re-amplification efforts to error-prone loci. This
method only detects errors due to allelic dropout, but has
the potential to reduce the number of re-amplifications of
low-quality samples from seven (Taberlet et al. 1996) to
two replicates without severely decreasing the reliability
of the resulting data (Miller et al. 2002). Large-allele drop-
out may be detected analytically by regressing allele-specific
Fg statistics on allele size, since the deficit of large allele
heterozygotes should result in an excess of short allele
homozygotes, and thus a negative slope (Wattier et al. 1998).

Some software has the capability to test for null alleles in
addition to completing other analyses. In addition to a
suite of individual- and population-level analyses, Gpa
(Lewis & Zaykin 2001) provides per-locus tests for Hardy-
Weinberg equilibrium, deviations from which may indicate
scoring errors. Thomas (2005) provides a concise summary

of error-checking programs for genotype data sets of
known pedigree. cERvUs (Marshall ef al. 1998), a program
for parentage analysis, can detect null alleles and estimate
adjusted allele frequencies for progeny arrays.

Other programs, such as DROPOUT (Mckelvey & Schwartz
2005), which checks for mistypes in capture-mark-recapture
studies, are more specialized. GIMLET (Valiere 2002) and
EXCEL MICROSATELLITE TOOLKIT (Park 2001), check for iden-
tical genotypes, and can be used to estimate error rates
fromreanalysed quality-assurance samples. MICRO-CHECKER
(van Oosterhout ef al. 2004) is designed to test for not only
null alleles, but also to distinguish between scoring errors
due to large-allele dropout and those due to stuttering,
although it can be cumbersome for data sets containing
large numbers of loci or populations.

As no single method will identify all types of errors, the
most effective protocol will use multiple tests to detect
scoring errors (Hoffman & Amos 2005). We recommend a
two-level approach to detect errors: comparing individual
genotypes for each reanalysed sample, and testing for
scoring errors over the entire data set using at least one
statistical program. When mistypes are identified in
reanalysed samples, the potential cause of each scoring error
should be determined by comparing electrophoretic files.
Other samples having similar electrophoretic patterns to
those mistyped should be reanalysed in order to confirm
the genotype at the problem locus (or loci).

Mitigating errors in downstream analyses

If scoring errors are detected, it may be possible to
significantly decrease error rates by reanalysing or dropping
one or a few problematic loci. In addition, demographic or
evolutionary processes should be considered as potential
sources of heterozygote deficiencies if scoring errors are
detected in most or all loci. Scoring errors are expected to
affect only a few loci in well-screened data sets. If error-
prone loci are included in hypothesis tests, downstream
data analyses must be adjusted in order to prevent biases
in biological conclusions.

Typically, errors due to stuttering are best mitigated
by re-amplifying and re-scoring samples displaying
potentially problematic peak patterns (e.g. indicative of
adjacent-allele heterozygotes). Sufficient screening of stutter-
prone loci and comparison of patterns among reanalysed
samples may allow near-neighbour heterozygotes to be
distinguished from homozygous peak patterns. In this
case, careful and consistent manual scoring of electro-
phoretic patterns may reduce the number of scoring errors
in the final data set.

Errors due to large-allele dropout can be mitigated by
re-amplifying all samples homozygous for short alleles,
although this approach can become expensive and time-
consuming for some data sets. We recommend adjusting
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allele frequencies at loci found to contain large-allele drop-
out following the method of Bjoérklund (2005). In this pro-
cedure, the large allele is considered recessive to the short
allele in heterozygotes. The frequency of the large allele is
estimated from the number of homozygotes observed in
the data set, assuming that all alleles at the locus are in
Hardy-Weinberg equilibrium, and the frequency of other
alleles are then adjusted to account for the change in the
‘recessive’ (i.e. large) allele (Bjorklund 2005).

If null alleles are detected, adjusted allele frequencies
can be estimated (assuming Hardy-Weinberg equ-
ilibrium) for cases where all samples have at least one
visible allele (Chakraborty et al. 1992), samples lacking a
visible allele are thought to be artefacts (Brookfield 1996),
or where null homozygotes are present in the data (Brook-
field 1996). MICRO-CHECKER (van QOosterhout et al. 2004)
provides adjusted allele frequencies based on each
potential case. Estimates of adjusted allele frequencies
can also be estimated for populations in Hardy-Weinberg
disequilibrium when an accurate fixation index, independ-
ent of the affected locus, is available (van Oosterhout et al.
2006).

In order to minimize erroneous conclusions due to the
presence of scoring errors, tests of ecological or evolution-
ary hypotheses should use the appropriate adjusted allele
frequencies, and not the raw genotypic data, when possible.
Although some group or population-level estimates require
genotypic data, such as tests for recent population bottle-
necks (Cornuet & Luikart 1996), others, including hier-
archical F-statistics of populations or regions (excluding Fig
and F|), genetic distances, and isolation-by-distance meas-
ures, can be estimated from allele frequency data. The use
of adjusted allele frequencies to calculate these estimates
is hindered, however, by a lack of software accepting allele
frequencies as input. As examples, GpA (Lewis & Zaykin
2001) does not accept allele frequency data, ARLEQUIN
(Schneider ef al. 2000) accepts allele frequency data only on
a single-locus basis, BIosys (Swofford & Selander 1989)
accepts allele frequency data but is limited in the number
of alleles it can accept, and sGs (Degen et al. 2001) accepts
allele frequency data but estimates only a limited number
of parameters. The development of software that accept allele
frequencies when appropriate will facilitate the reporting
of scoring errors and allow more accurate hypothesis test-
ing using microsatellite data from wild populations.

Typically, parameters estimated for individual popu-
lation samples require genotypic data, and cannot be
estimated from allele frequency data. These parameters
include individual inbreeding or relatedness coefficients,
spatial autocorrelation statistics, assignment of parentage,
individual estimates of fertility and individual estimates of
admixture and population assignment. Care must be taken
to discuss the potential bias in biological conclusions based
on data known to contain scoring errors (see below).
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Reporting error rates

Several methods have been proposed to report scoring
errors. Creel et al. (2003) estimate ‘errors per allele tested’
as the number of errors detected divided by the number
of cases where an error could have been detected. This
distinction measures only those cases where an error will
result in an incorrect genotype, and may result in error
rates that appear higher than those calculated over all
alleles or genotypes. Ewen et al. (2000) in contrast, reports
error rates as the number of genotypes containing an error,
and Bonin et al. (2004) report error rates per allele and per
genotype. Reporting errors in four statistics (errors per
allele and per reaction, summarized for each locus and
over all loci) will facilitate the comparison of error rates
among studies (Hoffman & Amos 2005). Additionally,
error rates should be used to evaluate the quality of the
data, much as statistical tests are required to support
conclusions (Bonin et al. 2004).

We recommend reporting the four statistics proposed by
Hoffman & Amos (2005): errors per allele and per reaction,
summarized for each locus and over all loci. These values
are easily estimated from the random subset of samples
reanalysed for quality assurance. Consistent reporting of
these values will allow more objective review of error rates
observed across studies, and will provide quantitative
measures that can be used to infer the potential effects of
error rates on the resulting biological conclusions. In addi-
tion, the results of each statistical test for scoring errors
should be provided, and if errors are indicated, the data
used in each downstream analysis (genotypic or adjusted
allele frequency) should be clearly indicated, along with
the method of adjustment, if appropriate. In addition, both
raw and adjusted allele frequencies should be reported
when adjusting for a scoring error (Bjorklund 2005).

Potential interpretive bias in biological
conclusions

The procedures described above are designed to minimize
the potential for scoring errors to affect biological conclusions
based on microsatellite data. Conducting downstream
statistical analyses on data sets containing scoring errors
may lead to a misinterpretation of the data and erroneous
ecological or evolutionary conclusions. The robustness of
a statistical analysis to scoring errors varies with the
hypothesis being tested. Estimates of population size are
sensitive to genotyping errors (Mckelvey & Schwartz 2004).
A consensus has not been reached regarding the effect of
scoring errors on parentage analyses. Dakin & Avise (2004)
concluded that the typical frequency of null alleles
(less than 0.2) is ‘unlikely to introduce serious bias into
parentage’ (p. 509). Others note that mistypes can be the
basis to erroneously exclude parents, however, and show
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that allowing up to three mismatches between genotypes
can increase the rate of successfully assigning parentage
(Marshall et al. 1998; Vandeputte et al. 2006). Most estimates
of population differentiation, in contrast, are based on allele
frequencies and not individual genotypes, and reasonable
error rates (< 2% of genotypes mistyped) are unlikely to
seriously bias these results (Bonin et al. 2004). Errors that
produce an apparent excess of homozygotes, including the
three scoring errors considered here, can bias estimates of
some demographic parameters, in particular overestimating
within-population inbreeding (Gomes et al. 1999).

It should be kept in mind, however, that programs to
detect mistyping are not infallible and may falsely identify
scoring errors with the rate of false positives depending on
the algorithm employed. Failing to mitigate for falsely
detected scoring errors is not expected to affect biological
conclusions to the same extent as including error-laden data
in downstream tests, since these procedures (e.g. using
adjusted allele frequencies) typically force the affected locus
into Hardy—Weinberg equilibrium, making downstream
tests of biological hypotheses more conservative.

Despite the potential for scoring errors in microsatel-
lite data to bias ecological and evolutionary conclusions,
these markers are fast becoming a preferred tool for
population genetics studies. In order to produce accurate
analyses of wild populations, researchers must be familiar
with the behaviour of each microsatellite locus and care-
fully consider potential errors in the resulting data set.
Testing for, mitigating and reporting scoring errors due to
stuttering, large-allele dropout and null alleles will help
insure that studies appropriately harness the power of
these markers.
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