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Appendix A
Derivatives of the Benefit Functions

This appendix provides the analytical derivation of the first and second order partial derivatives
of the benefit functions introduced in Chapter 4. The initial section of this appendix presents
derivatives of the downward sloping benefit functions while the second section corresponds to
the constant price functions. The expressions presented here are part of a library of functions that
are used for the assemblage of the gradient vector and Hessian matrix introduced in Chapter 5,
Method of Solution.

Derivatives of the Downward Sloping Benefit Functions

Variable-Head Hydropower Benefit Function

HPWVH - First Partial Derivatives
The benefit function for a variable-head powerplant, equation (4.9), includes three types of
decision variables: 1) the powerplant release (T variable), 2) controlled releases (XR term) other
than the powerplant release, and 3) controlled inflows (XI term) (figures 3.1 and 4.1). These
controlled outflows and inflows are part of equation (4.9a), and therefore subject to
differentiation. Three cases of first order partial derivatives (FPD) follow.

Case T FPD with respect to powerplant release T for any time step i. The role of Ti  in the
FPD is reflected by the first two lines of (A.1). The release Ti also appears
implicitly in (4.9a) as a reservoir outflow for time periods subsequent to i, from
i+1 to the end of the optimization horizon np. This portion of the derivative is
given by the last term in (A.1).

(A.1)

Case XR FPD with respect to any other controlled release from the same
reservoir that supplies water to the powerplant under consideration. For example,
the FPD in (A.2) is written with respect to the decision variable dA . The controlled
releases in the FPD at any given time step i is reflected by the first term of (A.2). 
Moreover, the variables also appear as reservoir outflows for time
steps i+1 and forward. This is reflected by the second term.
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(A.2
)

Case XI FPD with respect to any of the upstream decision variables flowing
into the reservoir that regulates flows for the powerplant of interest. For example,
the first part of (A.3) reflects the role of in the FPD at a given time step i. 
Moreover, the variables also appear as reservoir inflows in (4.9a) for
time i+1 and forward. This is reflected by the second term.

(A.
3)

where is the coefficient of the upstream decision variable  (controlled
inflow) for which the FPD was written.

HPWVH - Second Partial Derivatives
The second order partial derivatives (SPD) presented in this subsection are from equations (A.1),
(A.2), and (A.3). In each case we provide a reference to the relative position of the SPD within
the global Hessian matrix as discussed in Chapter 6, Mathematical Connectivity of System
Components.

Case T-T FPD and SPD with respect to the same variable T. Three sub-cases are considered:
1.  component submatrix—diagonal terms

(A.4)

2.  component submatrix—off-diagonal terms (lower-triangular)

(A.5)

3.  component submatrix—off-diagonal terms (upper-triangular)

(A.6)
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Case T-XR FPD with respect to variable T, and SPD with respect to other controlled reservoir
release, represented here by Two sub-cases are considered:
1.  link submatrix—diagonal terms

(A.7)

2.  link submatrix—off-diagonal terms (lower-triangular)

(A.8)

Case XR-T FPD with respect to other controlled reservoir release and SPD with respect
to T. Two sub-cases are considered:
1.  link submatrix—diagonal terms

(A.9)

2.  link submatrix—off-diagonal terms (upper-triangular)

(A.10)

Case T-XI FPD with respect to T and SPD with respect to a controlled reservoir inflow, for
example Two sub-cases are considered:
1.  link submatrix—diagonal terms

(A.11)

2.  link submatrix—off-diagonal terms (lower-triangular)

(A.12)

where is the coefficient of the upstream decision
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Case XI-T FPD with respect to a controlled reservoir inflow, for example and SPD
with respect to variable T. Two sub-cases are considered:

1.  link submatrix—diagonal terms  

(A.13)

2.  link submatrix—off-diagonal terms (upper-triangular)

(A.14)

where is the coefficient corresponding to the upstream decision variable
(controlled inflow) for which the SPD was written.

 
Fixed-Head Hydropower Benefit Function

HPWFH - First Partial Derivatives
The benefit function for a fixed-head powerplant, equation (4.14), admits only one case of first
partial derivative:
 
Case XI FPD with respect to any of the upstream decision variables contained in the term

Ti .  For example, writing the derivative for the decision set .

(A.15)

where is the coefficient of the upstream decision variable

HPWFH - Second Partial Derivatives 
The second partial derivatives from equation (A.15) should consider all possible combinations of
the controlled inflows.  Two sub-cases are contemplated:

Case XI 1.  Component submatrix—diagonal terms.  FPD and SPD with respect to the
same variable, for
instance .

(A.16)
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2.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
different variables, for instance, and .

(A.17)

Irrigation Benefit Function

IRR - First Partial Derivatives 
The benefit function for an agricultural demand area, equation (4.19), admits a single case of first
partial derivative:

Case XI FPD with respect to any of the upstream decision variables contained in the term
A i .  For instance, writing the derivative for the variable .

(A.18)

where is the coefficient corresponding to the upstream decision
variable that flows into the irrigation zone.

IRR - Second Partial Derivatives 
The second partial derivatives are derived from equation (A.18).  Two sub-cases are considered: 
 
Case XI 1.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to

the same variable. In this case, the decision set is used.

(A.19)

2.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
two different control variables.  For example, sets and .

(A.20)
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Municipal and Industrial Benefit Function

M&I - First Partial Derivatives 
The benefit function for a municipal and industrial demand area, equation (4.24), admits a single
case of first partial derivative:

Case XI FPD with respect to any of the upstream decision variables contained in the term
Di .  For example, taking the derivative with respect to we obtain

(A.21)

where is the coefficient of the decision variable of interest.

M&I - Second Partial Derivatives 
Second partial derivatives are derived from (A.21).  Two cases are contemplated:

Case XI 1.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
the same variable, for instance, .

(A.22)

2.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
two different control variables, for example, and .

(A.23)

where now and are the coefficients corresponding to the two decision
variables of interest.

Instream Water Recreation Benefit Function

IRA - First Partial Derivatives 
The benefit function for an instream water recreation activity, equation (4.29), admits a single
case of first partial derivative:
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Case XI FPD with respect to any of the upstream decision variables contained in the term
Ri .  For example, writing the derivative with respect to yields

(A.24)

where is the coefficient corresponding to the decision variable .

IRA - Second Partial Derivatives 
The second partial derivatives are derived from equation (A.24).  Two cases are contemplated:

Case XI 1.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
the same variable.  In this example  is used.

(A.25)

2.  Component submatrix—diagonal terms.  FPD and SPD taken with respect to
two different control variables, for example, variables  and .

(A.26)

where and correspond to the decision variables of interest.

Reservoir Recreation Benefit Function

The benefit function for reservoir recreation (RRA), equation (4.30), admits partial derivatives
with respect to all controlled releases and inflows to the reservoir where recreation takes place.
The partial derivatives presented herein are organized in a form similar to hydropower.

RRA - First Partial Derivatives

Case XR FPD of the reservoir recreation benefit function with respect to any controlled
release For example, the FPD in (A.27) is written with respect to the
decision variable dA .  The controlled release during time step i yields the first term
of (A.27).  Moreover, also appears as a reservoir outflow for time steps i+1
and forward.  This is expressed by the second term of (A.27).
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(A.27)

Case XI FPD of the reservoir recreation benefit function with respect to any controlled
reservoir inflow For example, the FPD in (A.28) is written with respect
to the decision variable . The first term of (A.28) reflects the role of as a
reservoir inflow during time step i.  Moreover, the also appears as a
reservoir inflow for time steps i+1 and forward.  This is reflected by the second
term of (A.28),

(A.28)

where is the coefficient of the upstream decision variable (controlled
inflow) for which the FPD was written.

RRA - Second Partial Derivatives

Case XR-XR Indicates the case where the FPD and SPD are taken both with respect to
controlled releases. The following SPDs are derived from equation A.27. Three
subcases are considered according to the time steps under consideration. In each
case we provide a reference to the relative position of the SPD within the global
Hessian matrix.

 1.  component submatrix—diagonal terms. FPD and SPD taken at the same time
step i

(A.29)

 2.  component submatrix—off-diagonal terms (lower-triangular). SPD taken at
time steps earlier than the FPD, i.e., for...  j < i 

(A.30)
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 3.  component submatrix—off-diagonal terms (upper-triangular). SPD taken at
time steps later than the FPD, i.e., for...  j > i 

(A.31)

Note: equations (A.29) through (A.31) also apply when the SPD is taken with
respect to the same controlled release as the FPD (e.g., )

Case XI-XI Indicates the case where the FPD and SPD are taken both with respect to
controlled inflows. The following SPDs are derived from equation (A.28). Three
subcases are considered according to the time steps under consideration. In each
case we provide a reference to the relative position of the SPD within the global
Hessian matrix.

1.  component submatrix—diagonal terms. FPD and SPD taken at the same time
step i

(A.3
2)

 2.  component submatrix—off-diagonal terms (lower-triangular). SPD taken at
time steps earlier than the FPD, i.e., for...  j < i 

(A.33)

 3.  component submatrix—off-diagonal terms (upper-triangular). SPD taken at
time steps later than the FPD, i.e., for...  j > i 

(A.34)

Note: equations (A.32) to (A.34) also apply when the SPD is taken with respect to
the same controlled inflow as the FPD (e.g., )
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Case XR-XI Indicates the case where the FPD and SPD are taken with respect to a controlled
release and a controlled inflow, respectively. The following SPDs are derived
from equation (A.27). In each case we provide a reference to the relative position
of the SPD within the global Hessian matrix. Three subcases exist according to
the time steps under consideration:

1.  component submatrix—diagonal terms. FPD and SPD taken at the same time
step i

(A.3
5)

2.  component submatrix—off-diagonal terms (lower-triangular). SPD taken at
time steps earlier than the FPD, i.e., for...  j < i 

(A.36)

3.  component submatrix—off-diagonal terms (upper-triangular). SPD taken at
time steps later than the FPD, i.e., for...  j > i 

(A.37)

Case XI-XR Indicates the case when the FPD and SPD are taken with respect to a controlled
inflow and a controlled release, respectively. The following SPDs are derived
from equation (A.28). In each case we provide a reference to the relative position
of the SPD within the global Hessian matrix. Three subcases exist according to
the time steps under consideration:

1.  component submatrix—diagonal terms. FPD and SPD taken at the same time
step i

(A.3
8)
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2.  component submatrix—off-diagonal terms (lower-triangular). SPD taken at
time steps earlier than the FPD, i.e., for...  j < i 

(A.39)

3.  component submatrix—off-diagonal terms (upper-triangular). SPD taken at
time steps later than the FPD, i.e., for...  j > i 

(A.40)

Derivatives of the Constant Price Benefit Functions

Variable-Head Hydropower Benefit Function

HPWVH - First Partial Derivatives

Case T FPD with respect to powerplant release T for any time step i.

(A.41)

Case XR FPD with respect to any other controlled release from the same
reservoir that supplies water to the powerplant under consideration.

(A.42)

Case XI FPD with respect to any of the upstream decision variables flowing
into the reservoir that regulates flows for the powerplant of interest.
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(A.43)

HPWVH - Second Partial Derivatives

Case T-T FPD and SPD with respect to the same variable T.  Three sub-cases are
considered:
1.  component sub-matrix—diagonal terms.

(A.44)

2.  component sub-matrix—off-diagonal terms (lower-triangular)

(A.45)

 3.  component sub-matrix—off-diagonal terms (upper-triangular)

(A.46)

Case T-XR FPD with respect to variable T and SPD with respect to other controlled reservoir
release, represented here by Two sub-cases are considered:
1.  link sub-matrix—diagonal terms. 

(A.47)

2.  link sub-matrix—off-diagonal terms (lower-triangular)

(A.48)

Case XR-T FPD with respect to other controlled reservoir release and SPD with respect
to T.  Two sub-cases are considered:
1.  link sub-matrix—diagonal terms

(A.49)
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2.  link sub-matrix—off-diagonal terms (upper-triangular)

(A.50)

Case T-XI FPD with respect to T and SPD with respect to a controlled reservoir inflow, for
example Two sub-cases are considered:
1.  link sub-matrix—diagonal terms

(A.51)

2.  link sub-matrix—off-diagonal terms (lower-triangular)

(A.52)

Case XI-T FPD with respect to a controlled reservoir inflow, for example and SPD
with respect to variable T.  Two sub-cases are considered:
1.  link sub-matrix—diagonal terms.  

(A.53)

2.  link sub-matrix—off-diagonal terms (upper-triangular)

(A.54)

Fixed-Head Hydropower Benefit Function

HPWFH - First Partial Derivatives

Case XI FPD with respect to any upstream decision variable contained in the term Ti . 

(A.55)
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HPWFH - Second Partial Derivatives
SPDs are equal to zero.

Irrigation Benefit Function

IRR - First Partial Derivatives
Case XI FPD with respect to any upstream decision variable contained in the term Ai.  

(A.56)

IRR - Second Partial Derivatives
SPDs are equal to zero.

Municipal and Industrial Benefit Function

M&I - First Partial Derivatives
Case XI FPD with respect to any upstream decision variable contained in the term Di .  

(A.57)

M&I - Second Partial Derivatives
SPDs are equal to zero.

Instream Water Recreation Benefit Function

IRA - First Partial Derivatives
Case XI FPD with respect to any upstream decision variable contained in the term Ri .  

(A.58)

IRA - Second Partial Derivatives
SPDs are equal to zero.
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          Figure B.1  Information defining an exponential demand.

Appendix B
Fitting Exponential Demand Functions

This appendix presents the equations used by AQUARIUS to fit exponential inverse demand
functions based on economic information provided by the user.  Further discussion regarding this
topic is in Chapter 2, Economic Demand Functions, General Concepts.

Cases Considered

Three cases are considered for the
analytical fitting of demand curves,
described below with the assistance
of figure B.1:

Case I:  prices and quantities are
known at any two points along the
demand curve. In general, the two
points may represent: (1) the price at
which quantity demanded falls to
zero, {Q1,P1} and (2) the quantity at
which price equals the existing
price, {Q2,P2}.

Case II:  price and quantity are
known at a single point, {Q2,P2}, in
addition to the elasticity at that same
point yielding the dimensionless
slope 2 . 

Case III:  is the combination of Cases I and II, in which three pieces of information are specified
by the user: the two price-quantity points, {Q1,P1} and {Q2,P2}, and the elasticity 2 .

 
Basic Equations

We start the analysis by expressing the exponential inverse demand function  P=a exp(-Q/b) at
the point {Q1,P1}, where demand falls near zero,

(B.1)
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Similarly, the exponential demand function can be written at the equilibrium point {Q2,P2},

(B.2)

By definition, the elasticity  of the demand curve is given by Eq.(B.3) (Chapter 2, Economic
Demand Functions, General Concepts). In particular, for an exponential demand function,
elasticity is expressed by the ratio of the coefficient b and the quantity demanded Q,

(B.3)

Computing the Coefficients “a” and “b”

Each case is analyzed separately:

Case I Given the two paired values {Q1,P1} and {Q2,P2}, the parameters a and b can be
defined with no error since there is only one model of the form P = a exp(-Q/b)
that will assume the exact values f(Q1) and f(Q2).  Working with equations (B.1)
into (B.2) yields:

(B.4)

(B.5)

If one of the points corresponds to the intercept {Q1=0, P=P1}, the coefficients a
and b are given by:

(B.6)

(B.7)
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Case II When one point of the curve is known {P2 , Q2} along with its elasticity 2 , there
is a unique solution to the problem. In this case, the coefficients a and b are
expressed by:

(B.8)

(B.9)

Case III When two points and the elasticity  at one of those points are known, the fitting
problem becomes one of interpolating fitting since there are three pieces of
information and only two parameters to estimate. The problem is reduced to one
of finding the best estimates of the coefficients a and b of the exponential function
P= a exp(-Q/b) using the Least-Squares (LS) principle. This involves minimizing
the sum of all squares of deviations of the observed points and elasticity from the
fitted function.  

When the economic information available, price-quantity points and elasticity, are
thought to be of unequal reliability, the LS criterion can be modified to require
that the squared error terms be multiplied by nonnegative weight factors wi before
the aggregated square error is calculated (weighted least-squares). That is, from
(B.1), (B.2), and (B.3), the weighted sum of the square of the residuals assumes
the form:

(B.10)

where the weighting coefficients w1 , w2, and w , for the two data points and
elasticity, respectively, are a measure of the degree of precision or degree of
importance of the three pieces of information in determining the coefficients of
the demand function. Equation (B.10) is a nonlinear expression that can be
minimized using different techniques.  
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Figure B.2  Graphical user interface (GUI) for fitting an exponential demand curve.

Fitting Example 

Figure B.2 shows the dialog-box presented to the user, which is accessed from the Tools menu,
to estimate the coefficients of the exponential demand function for the three cases described
above.

The Data Points window includes the user specified price-quantity data for two points: {Q1, P1} =
{0, 150} and {Q2,P2} = {30000, 15}; and an estimated regional elasticity 2 = -0.20. When the set
of weights w1, w2, and w3 are entered as {1, 1, 0} (with zero weight for the regional elasticity),
the solution is trivial (Case I) yielding a = 150, b = 13029, and the resulting elasticity at Q2 is 2
= -0.434. A second run assuming equal weights {1, 1, 1} for the three pieces of information
yields the parameters a = 150.02, b = 12959.7, and elasticity at Q2 equal to -0.43.

Knowing the regional elasticity to be -0.2, the weighting coefficients are changed again to
redirect the fitting algorithm to increase the compliance to the regional elasticity value. A new set
of weights {0.1, 1.5, 10} forces the LS fitting procedure to yield a demand function with
parameters a = 188.9, b = 7034.3, and a computed elasticity 2 = -0.23 (figure B.2). Note that this
value approximates the regional elasticity at the expense of the quality of fitting of the two data
points.
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