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Chapter 6
Symbolic Modeling of River Basin Systems

This chapter documents the basic architecture of the AQUARIUS software and discusses the
advantages of using an object-oriented programming (OOP) framework for modeling the
hydraulic and mathematical connectivity of the flow network components.  Comprehension of
the material in this section is not essential for using AQUARIUS, and is helped by reading
Chapter 7.  

Object-Oriented Programming Framework

Earlier computer models for solving water resource problems have used algorithmic computer
languages such as FORTRAN.  Although these languages are well suited for numerical or
algorithm-oriented models, they lack the flexibility to allow for alterations, additions, or
deletions of flow network components.  Current research has overcome this problem by using an
OOP language, specifically C++.  Objects are the building blocks of an OOP.  An object contains
properties that communicate with other objects.  In turn, object behavior is controlled by
methods, which are the rules and algorithms that tell an object how to act on the data it receives
in its input slots.  Objects may inherit both data (properties) and behavior (methods) from other
higher-level objects. 

Water systems are ideal candidates to be modeled using an object-oriented framework.  A water
system may include different types of water components, including reservoirs, powerplants,
diversions or junction points, irrigation areas, environmentally-sensitive river reaches, etc, which
can be interpreted as objects of a flow network in which they interact.  AQUARIUS models each
component or structure of the water system as an equivalent node or object in the programming
environment.  In modeling terms, a physical link (e.g., a river reach) connecting two system
components becomes an outflow slot of the upstream object connected to an inflow slot of the
downstream object.

The user interacts with the model through a graphical user interface (GUI) that allows the analyst
to readily create the river basin network of interest.  This is a simple task due to the inherent
capability of the object oriented paradigm for graphical representation.  During the creation of the
flow network, each system component (object) corresponds to a graphical network node.  These
nodes are represented by icons, which are a pictorial representation of the object.  By dragging
one of these icons from the menu, the model creates an instance of the object on the screen.  This
procedure also allows the user to connect graphically the input slots of this object with the output
slots of one or more objects.  By clicking on the icon, the object displays data slots for input and
output and also allows the user to visually inspect for incorrect or missing data.  Details on the
use of the GUI are in Chapter 7.
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The object-oriented terminology and formats for class diagrams used in this document are based
on Booch's notation (Booch 1994).  The following terms are used in this report:

Object-Oriented Programming (OOP):  a programming method in which programs are organized
as cooperative collections of objects that represent an instance of some class, and whose
classes are all members of a hierarchy of classes united via inheritance relationships.

Class:  a set of objects that share a common structure and a common behavior.
Object:  an instance of a class.
Instantiation:  a new object created from a class.
Hierarchy:  a ranking or ordering of abstractions.
Inheritance:  a mechanism of hierarchy in which one class shares the structure or behavior

defined in one or more classes; there is single or multiple inheritance.
Aggregation:  a mechanism of hierarchy wherein a class mimics the behavior of one or more

classes by embedding their instances. 
Polymorphism:  the property of an object, achieved through either inheritance or aggregation,

through which it represents objects of many different classes.
Persistence:  the property of an object through which its existence transcends time and/or space;

the object becomes capable of existing past the lifetime and address space of its creator
(e.g., hard disk).

Runtime Type Identification:  the property of an object through which it stores the identity of its
class so that it is capable of identifying its class type when queried.

Software Architecture

Top-Level Class Diagram

The overall design of AQUARIUS is depicted by the top-level class diagram in figure 6.1.  As
indicated in the figure, all classes implemented in AQUARIUS are organized into three basic
class categories:

Network Worksheet (NWS),  
Water System Components (WSC), and
Water System Links (WSL).  

AQUARIUS is built upon Microsoft Foundation Classes (MFC), which are a set of reusable
classes that provide, with minimal overhead, numerous important functions to software
applications written for Microsoft Windows.  For instance, MFC supplies built-in support for
run-time class identification through the class called CObject.  Because most classes used in
AQUARIUS are derived from CObject, they can take advantage of its run-time class
identification property.  
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Figure 6.1  AQUARIUS top-level class diagram.

MFC provides encapsulation over the traditional message handling of Microsoft Windows,
which relies heavily on callbacks and long switch statements.  In projects using MFC, the
messages are routed to the member functions of the implemented classes.  MFC implements code
for the Document-View architecture of the software, which is required for applications like
AQUARIUS where data are stored and rendered in some format on the screen.  MFC also has the
capability to use Multiple Document Interface (MDI) windows for rendering data in more than
one window.

Another important service provided by the class CObject is object persistence, which is
implemented using serialization.  Serialization is writing or reading an object to or from a storage
medium such as a disk file.  In addition, MFC provides built-in support for Object Collection
classes to manage a group of objects.  The supported collection classes are:

List: an ordered, nonindexed list of elements, implemented as a double linked list; has a head
and a tail, and adding or removing elements from the head or tail, or inserting elements in
the middle, is very fast; implementation facilitates its use as a stack or a queue.

Array: a dynamically sized, ordered, and integer-indexed array of objects.
Map: a collection class that associates a unique key object with a value object (figure 6.2).
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      Figure 6.2  Sketch of a map class.

MFC provides a high degree of portability.  The application can be easily ported to various
operating systems like Windows 3.1, Windows 95, Machintosh, Unix, and different versions of
Windows NT.

Class Categories

Network Worksheet

The Network Worksheet (NWS), one of the basic classes of AQUARIUS, is composed of two
classes that are responsible for storing and rendering to the screen data associated with any flow
network.  The document class for the NWS, called CntflwDoc, was derived from the class
CDocument contained in the MFC.  The document is a data object that the user interacts with
during editing sessions; for instance, during the creation or alteration of a flow network.  The
view class, called CntflwView, is derived from the class CScrollView.  The view, the user's
window to the data, specifies how the user sees the document's data and interacts with it.  Class
diagrams for the two classes are shown in figure 6.3.



99

Figure 6.3  Class diagrams for the network worksheet (NWS).

Data pertaining to the network, which is also an object, are stored in the document, and the
objects themselves are rendered onto the view window.  Most of the important functions of the
software, such as user interaction, data persistence, and optimization algorithms, are routed to the
individual objects via the message handling facility of the view window.  The document portion
of the NWS (class CntflwDoc) stores the other two basic class categories of AQUARIUS, the

Water System Components (WSC) and the Water System Links (WSL), in two different memory
maps.  Memory map objects are instances of the class CMapStringToObj defined in MFC. 

In addition to the data corresponding to the individual network components, the class CntflwDoc
also stores global data corresponding to the whole network.  Global data include the selected
optimization algorithm, parameters controlling the optimization, the selected period of analysis,
and output data related to the optimal solution.  The class CntflwDoc has an association relation
with the class CGlobalBenGraph, which facilitates the update of the graphical output provided
by the optimization algorithm after each sequence.  This is illustrated in figure 6.4.
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Figure 6.4  Class diagram for the network output data.

Water System Component

Water System Components (WSC) are defined by several classes, depending on the component
of the flow network that requires representation.  The basic class from which all WSC are
derived is CNode.  CNode displays runtime polymorphic behavior by storing an embedded
pointer of the corresponding WSC (aggregation).  The association relationship between CNode
and the WSC is one-to-one (cardinal), which is achieved through containment by reference. 
CNode has an association relationship with the classes for the data structure. This association
relationship depends on the instance of the CNode class (i.e., reservoir, powerplant, etc).  CNode
stores an attribute named data, which is a pointer to the data structure.  Similarly, the data
structure object stores an attribute named parnode, which a pointer to the CNode object.  For
example, when the user selects a reservoir from the WSC palette and drops it into the NWS, an
instance of CNode is created and its attribute name is set equal to reservoir.  At the same time, an
instance of the reservoir data structure is created and embedded into the CNode object.  Because
the class for the data structure is derived from CObject, the reservoir object inherits the object
persistence and runtime class identification properties.  

As illustrated in figure 6.5, the data structure object can be an instance of any of the following
classes:
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Figure 6.5  Associations between CNode object and the system objects.

CDataJunDiv  (junctions and diversions),
CDataResv  (storage capacities),
CDataPower  (hydroelectric plants),
CDataOffstream  (offstream demand areas),
CDataInstream  (instream demand areas), and
CDataWatershed  (water sources).

Figure 6.5 shows the association relation between the CNode Object and the respective WSC
data structures.  The WSC classes use other classes for user interaction, both in terms of inputs
and outputs.

CNode renders itself and returns an image to the view window of the NWS when the view
window handles the redraw message.  By design, there are eight terminals that may act as
input/output connections for an object.  Figure 6.6 shows the specific case of a reservoir.  CNode
stores information about which of the WSC object terminals are active or inactive and controls
the terminal orientation.  When the image of the WSC has to be rendered, the proper bitmap with
its correct orientation is loaded.  The coordinates of each terminal are defined relative to the
upper left corner of the object, and are stored as an array of objects of the CRect class



102

 Figure 6.6  Reservoir node with input and output
terminals. 

(con_rect[8]).  This allows the correct
terminal to process the message when
the user clicks on the WSC to make
connections.  Coordinate information is
stored as Cstring objects for each
terminal, which provides access to the
memory map for links.  Corner
terminals are capable of providing only
single outputs, whereas the in-between
terminals are capable of multiple
inputs.

In this report, we show in detail one of
the classes depicted in figure 6.5, the
CDataReserv class.  This class is used
to represent storage capacities.  The
class diagram for CDataReserv is
shown in figure 6.7.  As mentioned, the
class CDataResv is derived from the
class CObject.  In turn, CDataResv has 
association relationships with the 
following classes:

CResvSheet,
CDlgResvOut,
CDlgResvTabOut, and
COutGraph.

The CResvSheet class, used for entering physical data for a reservoir, is derived from the
CPropertySheet class as defined in MFC.  This class has association relationships with different
classes derived from CPropertyPage.  An instance of the class CResvSheet is created on demand
whenever the user chooses the Physical Input option from the object Tools Palette, and clicks on
an instance of the reservoir class in the NWS.  When the CResvSheet instance is created, the data
for the reservoir are retrieved and displayed on a tab-dialog box.  Similarly, when the user
chooses the option for saving the entered data, the data are processed from the tab-dialog box and
saved into the instance of the class CDataResv.

The CDlgResvOut class, used to select graphical outputs variables from the operation of a
reservoir object, is derived from the CDialog class as defined in MFC.  The object of this class is
created on demand whenever the user chooses the Graphical Output option from the object tools
Palette and clicks on a reservoir icon on the NWS.  When a CDlgResOut instance is created, a
dialog box is created displaying the reservoir output variables available.
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Figure 6.7  Class diagram for the CDataResv class.

The CDlgResvTabOut class, used to select output variables for the graphical/tabular folder, is
also derived from the CDialog class as defined in MFC.  When the dialog box of this class is
invoked, the user can choose any of the output variables available for a reservoir and drop the
variable into the graphical/tabular folder.  Objects of this class are created on demand whenever
the user chooses the Select Output Variable option from the objects tools palette and clicks on
the corresponding reservoir icon on the NWS.

The COutGraph class is responsible for the display of graphical output in a window.  The
reservoir object has a one-to-many association relationship of cardinality 5 with this class. 
Consequently, the reservoir stores 5 pointers to the objects of class COutGraph.  These objects
are created to plot the following reservoir output variables: inflows, releases, storage, evaporation
losses and economic revenues.  Graphical output windows are created whenever the user clicks
on the corresponding check box of the CDlgResvOut dialog box. 
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Figure 6.8  Class diagram for water systems links.

Water System Links

This class category is comprised of the following two subclasses:
River Reach and 
Conveyance Structures (Canal/Pipeline).

The classes CDataRiv and CDataConvey are derived from the class CObject and have
association relationship with the classes CRivSheet and CConveySheet, respectively (see figure
6.8).  The tab-dialog boxes CRivSheet and CConveySheet are used by the analyst for entering
physical input data.  The dialog boxes use property pages to incorporate input data related to
physical characteristics and hydraulic properties of the WSL objects.  

During validation of the network, discussed in Chapter 7, WSL are classified according to the
place they occupy in the flow network.  The classification of links is performed automatically by
the model following the set of decision rules that follow:

natflow arc used to convey water from a watershed (water source)
decision arc used to convey water into portions of the network where a water allocation

decision needs to be made.  Possible cases are: 1) at diversion points, offstream link
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of a DIV node; 2) to control direct water extraction from a reservoir serving demand
areas such as HPW, IRR, M&I, IRA or IFP; and 3) to control releases from a
reservoir serving other network portions.

return arc used to carry return flows from offstream demand areas (IRR and M&I nodes)
back to a water course.

spill arc used to evacuate spillages from a reservoir.
 
An arc may require a dual classification if serving more than one purpose in the network, such as:

dec&spill arc acting as a decision and a spill arc. 
 

Mathematical Connectivity of System Components

Solving the water allocation problem in Chapter 5 for any user-defined network requires an
automated procedure to handle the formulation mathematics.  In AQUARIUS, the mathematical
connectivity of the system components is derived automatically from the linkage of the objects
comprising the network, which in turn reflects the direction of flow from one structure to the
next (i.e., their hydraulic connectivity).

The requirements for the mathematical connectivity of the system components may vary
depending on the characteristics of the optimization technique being implemented.  For the
optimization technique used in the present version of the model, the mathematical connectivity of
a river network serves to:
1) build up the set of operational constraints (Chapter 5, Operational Restrictions) and 
2) assemble the gradient vector and Hessian matrix of the second order approximation of the

total objective function (Chapter 5, Solution Method)

The tasks indicated above required the development of an algorithm capable of automatically
gathering information from the network about controlled and uncontrolled flows occurring
upstream and downstream from a given system component.  The way water sources, reservoirs,
and demand zones are arranged in a river basin (i.e., network topology) determines the hydraulic
and mathematical dependence among them.  Controlled and uncontrolled flows occurring
upstream from a given node influence the decisions at that node.  

Figure 6.9 is a river system that illustrates the intricacies of mathematical connectivity.  The
system has two headwater reservoirs (B and C) with hydropower facilities (the powerplant
connected to reservoir B is a run-of-the-river type).  Releases from the powerplants annexed to
the headwater reservoirs become regulated inflows to downstream reservoir A, which supplies
water to most downstream demand areas including hydropower, urban supply, and a fish habitat
protection area.  An irrigation demand zone and an instream recreation area are in the middle of
the system.
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Figure 6.9  Network that demonstrates mathematical connectivity.

The series of physical links (river reaches, canals/pipelines) connecting water sources, storage
capacities, and demand areas are used by the model to automatically formulate the mathematical
structure of the water allocation problem.  First, the model identifies the decision sets that control
water allocation in the flow network. Five decision sets, dA , dB , dC , dD , and dE , are identified and
randomly numbered by the model.  Links conveying controlled flows are distinguished by dashed
lines in figure 6.9.

The model then collects information regarding all controlled and uncontrolled flows in the
network using a recursive search algorithm.  Some of the output generated by the search
procedure is in table 6.1, which shows the coefficients of the five decision sets.  For example, the
first row corresponds to reservoir A, where the 1.00 values for decision sets dC  and dE correspond
to releases from the two upstream powerplants, reaching reservoir A as controlled inflows. 
Decision set dD carries a coefficient equal to -0.7.  The value assigned to this coefficient (less
than one) indicates that 70 percent of the water diverted from the river into the irrigation area is
consumptively used, with the remaining 30 percent (r = 0.3 for the irrigation area) reaching
reservoir A via return flows.  The remaining two coefficients, -1.00 values for decision sets dA 
and dB , represent controlled outflows from the reservoir under consideration.  The values in table
6.1 can be accessed in the model using the available software menus (see Chapter 7, Exploring
the Network Worksheet Screen).
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Table 6.1  Table of mathematical connectivity.
    dA   dB   dC   dD   dE Decision set
  -1.00 -1.00 1.00 -0.70 1.00 Reservoir A

0.00 0.00 0.00 0.00 -1.00 Reservoir B
0.00 0.00 -1.00 0.00 0.00 Reservoir C
1.00 0.00 0.00 0.00 0.00 Hydroplant A
0.00 0.00 0.00 0.00 1.00 Hydroplant B
0.00 0.00 1.00 0.00 0.00 Hydroplant C
0.00 0.00 1.00 -1.00 1.00 Diversion
0.00 0.00 0.00 1.00 0.00 Agric. IRR
0.00 0.00 1.00 -0.70 1.00 Boating, IRA
0.00 1.00 0.00 0.00 0.00 Urban M&I
1.00 0.80 0.00 0.00 0.00 Fish habitat

 

Figure 6.10 shows the coefficients listed in table 6.1 plus some additional information, also
gathered by the search procedure, for all nodes composing the example network in figure 6.9. 
This information, which is stored as part of the objects data structure, is used by the model to
automatically build the set of constraint equations and compute the gradient vector and Hessian
matrix.  The information collected is organized in four quadrants:  controlled inflows (XI) at the
upper-left corner, uncontrolled inflows (UI) at the lower-left corner, controlled releases (XR) at
the upper-right corner, and uncontrolled releases at the lower-right corner.  The superscript for UI
and UR indicates the originating reservoir.  The reader can check the information in figure 6.10
with assistance from figure 6.9 and table 6.1. 

Constraint Set Assemblage 

The model is capable of attaching operational constraints to the following system components
(see Chapter 5, Operational Restrictions, for more details):

storage reservoirs (RES and RRA),
diversion nodes (DIV),
instream demand reaches (IRA and IFP),
offstream demand areas (M&I and IRR).

After the user specifies which operational constraints are included in the formulation of the water
allocation problem, the NWS delegates the responsibility for building the set of restrictions to
each of the components listed above, as indicated in figure 6.11.
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Figure 6.10  Information collected by the search algorithms.
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 Note: XR for offstream users 
(IRR, M&I) replaced by
return flow coefficient  r.

Figure 6.10  Information collected by the search algorithms (continued).
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Figure 6.11  Network worksheet
assemblage of constraints.

The information required by the system components for the global task of computing the right-
and left-hand-sides of the equality and inequality constraints is gathered from the network, using
the recursive algorithms outlined previously.  Once the NWS completes the constraint set
computation, the information is passed to the optimization routine.  

Gradient Vector and Hessian Matrix Assemblage

How water storages and demands are arranged in a river basin determines the physical and
mathematical interdependence among them.  For instance, in figure 6.9, releases from the
headwater powerplants become regulated inflows to the downstream reservoir, which supply
water to the remaining portion of the system.  The series of links connecting the various
components of a flow network defines the mathematical linkage among the sets of decision
variables and consequently the structure of the gradient vector f and Hessian matrix H in
equations (5.4) and (5.5), respectively.  Diaz and Fontane (1989) demonstrated, in an earlier
study on hydropower exclusively, that it is possible to identify geometrical patterns in the
mathematical structure of the gradient vector and global Hessian regarding the topology of the
flow network.  In this study, we extended the work presented in the aforementioned publication
to river basins with multiple water uses.
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     Figure 6.12  Decision variables entering the      
                  instream recreation area.

AQUARIUS first identifies all controlled and uncontrolled flows present in the network, then
automatically builds the gradient vector and Hessian matrix.  The assemblage of f and H is
determined based on information provided by the network search procedures and the library of
partial derivatives in Appendix A.  The algebraic expressions of the first and second order partial
derivatives of the benefit functions were a property of each water user.  For the example network
under analysis, there are five basic groups of first partial derivatives ( ƒ/ dA , ƒ/ dB , ƒ/ dC , ƒ/ dD

, ƒ/ dE ), one for each decision set, which contain derivatives for np time periods.  The
computation of the gradient vector results from the combination of the following equations:

=  Eq.(A.1)                          for i=1, 2, ..., np

=  Eq.(A.21) + Eq.(A.2)       for i=1, 2, ..., np 

=  Eq.(A.1) + Eq.(A.24) + Eq.(A.3)            for i=1, 2, ..., np

=  Eq.(A.18) + Eq.(A.24) + Eq.(A.3)          for i=1, 2, ..., np

=  Eq.(A.1) + Eq.(A.24) + Eq.(A.3)            for i=1, 2, ..., np

Assemblage of the global Hessian matrix (i.e., the Hessian for the entire network) follows rules
similar to those used for assembling the gradient vector, although, because of the presence of
second cross-partial derivatives, it may appear more involved.  Again, the mathematical
connectivity of the decision sets (dA , dB , dC , dD , dE ) within the global Hessian is based on the
information provided by the search algorithm and the algebraic expressions of the partial
derivatives contained as part of the data structure of the objects.

Although the model requires only five decision
sets to formulate the water allocation, there are
six water users generating revenues in the
basin: the three powerplants, the offstream
demands for agriculture and urban water, and
the instream demand at the recreation site.  The
model expresses controlled flows at the
instream recreation area (IRA) as a linear
combination of the upstream decision sets (see
figure 6.12 and Table 6.1).  
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Figure 6.13 Global Hessian matrix for the example network (equations from Appendix A)

Figure 6.13 is the global Hessian matrix for the example network.  The referenced numbers in the
figure indicate the corresponding equations in Appendix A. Blank portions of the Hessian matrix
are zero values.

Despite the generally complex dependence among decision variables, the global H matrix is
square and symmetric.  Furthermore, as the model randomly selects the order of the decision sets
every time the network is validated, it is possible that associations will change if the network is
altered.  For instance, the decision set dA , which in the example is associated with the releases
from reservoir A to the powerplant, might be associated with some other controlled release if the
network was validated after an alteration was introduced.  The change in the order of the decision
sets would alter the arrangement of the submatrices in the Hessian matrix and possibly yield a
slightly different optimal solution of the water allocation problem due to numerical precision in
the computations.
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