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Chapter 5
Water Allocation Model

This chapter introduces the method implemented in Aquarius to solve a water allocation
problem. Following definition and mathematical formulation of the problem, the chapter presents
details of the sequential optimization technique that allocates the water throughout the flow
network. A list with operational constraints that typically restrict reservoir storage and release
volumes is presented. The chapter ends with an accounting of the criteria used to find an initial
feasible solution and a discussion of the lengths of the time intervals used for simulating a
system’s operation.

Problem Statement

The aim in using a limited resource, such as water in a river basin, is to realize the greatest
possible value from its allocation over some time period consistent with operational and
institutional constraints and with the highest reliability. In this model "value" is represented by
economic benefit functions that express society's willingness to pay for the various water uses.
These benefit functions may be downward sloping and nonlinear. However, the model can be
adapted to implement other definitions of value. For instance, the user may wish to reflect a set
of priorities such as stipulated by the Doctrine of Prior Appropriation. In this case, the demand
functions would be specified as horizontal, with the constant prices of those functions set to
represent the seniorities of the demand areas holding the water rights. Allowing for capability of
a downward sloping, nonlinear demand function offers the greatest flexibility to the user. 

In modeling an actual allocation problem, it is imperative that problem formulation, particularly
the objective function, retain the essential characteristics of the system being modeled. Realistic
conceptualization of a water allocation problem typically requires relatively complex model
formulations. A common source of this complexity is the nonlinear nature of production and
benefit functions. Nonlinear optimization problems are commonly encountered in water
resources applications. Besides the nonlinearities introduced in the model by hydroelectric power
production, the economic benefits of several different water uses are often best represented by
nonlinear benefit functions. 

Aquarius uses optimization tools to provide the analyst with a way to find the optimal strategies
for allocating water among the several uses. The expression “optimal” is used here in a restrictive
sense, to indicate a water allocation strategy that is best with respect to the physical and
economic criteria specified in a particular model formulation. The model can also analyze
alternative operations, the results of which can be compared to aid the decision maker in
selecting the most socially desirable policy.
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Objective Functional for Optimal Allocation

In Aquarius, water allocation throughout a system and for an entire planning horizon is based on
a global objective; to maximize the sum of all economic benefits from the instream and offstream
water use. The benefit functions for each of the system components were developed in Chapter 4.
What remains is to combine those individual benefit functions B into a total benefit function TB
that reflects all water uses u in the basin, HPWVH, HPWFH, IRR, M&I, IRA and RRA, and all time
periods i in the planning horizon (see also (2.2)). The overall objective is to maximize the total
benefit function TB:

(5.1)

where x denotes the set of control variables, nu is the number of water uses generating revenue in
the basin, and np is the number of time periods (optimization horizon).

Equation (5.1) considers only benefits from water use. Costs of water use, such as the cost of
operating a hydroelectric plant or of constructing an irrigation canal, are not explicitly considered
in the model. The model could be used to evaluate net benefits (i.e., the difference between
benefits and costs) by subtracting costs directly from the benefits in the individual benefit
functions; essentially making each benefit function a net benefit function. 

The problem is to maximize the general nonlinear objective function (5.1), also expressed as f(x),
subject to physical, operational, and institutional restrictions such as:

reservoir storage limitations,
firm water supply, 
seasonality of water supply, 
firm energy production,
max/min instream flows, and
max/min offstream diversions.

Mathematically, these restrictions can be expressed as three types of constraints:

  equality constraints (5.2a)

  inequality constraints (5.2b)

  bounded variables (5.2c)
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where x denotes decision variables, N is the total number of decision variables, Ke  is the number
of equality constraints and K is the total number of constraints. Except for the nonlinear objective
function, the problem above is similar to a standard linear programming problem. The function
ƒ(x) can be any type of nonlinear function subject to the requirement of being continuous and
differentiable. 

Solution Method

There are a variety of approaches for solving the above problem, none of which is uniquely
superior. The solution technique implemented in Aquarius takes advantage of the special case of
the general nonlinear programming problem that occurs when the objective function is reduced to
a quadratic form and all the constraints are linear. Although a quadratic function is the simplest
nonlinear approximation that can be used for a nonlinear objective, it is suitable for solving
multi-reservoir optimization problems with hydropower generation (Díaz and Fontane 1989).
Furthermore, model development indicated that, because of the particular structure of the water
allocation problem, a quadratic approximation of the objective function is advantageous from the
computational viewpoint. A quadratic approximation is a close representation of the nonlinear
objective function defined in (5.1) and also permits larger, valid changes in the control variables
at each step of the solution in comparison to a simple linear approximation. This results in a
faster convergence to the optimal solution and lower risk of solution divergence (Díaz and
Fontane 1989)

The method approximates the original nonlinear objective function with a quadratic equation
using Taylor series expansion and then solves the problem as a quadratic programming (QP)
problem. Starting with an initial feasible solution, xo, the algorithm carries out a Taylor series
expansion on the nonlinear objective function around the given initial solution, retaining the first
and second order terms to form a quadratic function. The general Taylor series expansion of ƒ(x)
truncated beyond the second order terms yields:

(5.3)

where x  is the increment vector and ƒ(xo) is the gradient vector of ƒ(x) measured at x=xo. The
gradient is computed by the first partial derivatives evaluated at x=xo, 

(5.4)

The remaining term, H(xo), denotes the Hessian matrix, which is a real matrix whose elements
are evaluated at the same point x=xo, 
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(5.5)

To achieve the optimization, the quadratic approximation (5.3) of the nonlinear objective should
conform to the standard form of a quadratic programming problem, as defined by:

(5.6a)

  subject to the linear constraints (5.6b)

  and nonnegativity conditions (5.6c)

where w is a scalar, the c and r vectors have known components, A is the matrix of constraint
coefficients, and Q is a square matrix of dimension (NxN). The components of w, the c vector,
and the Q matrix can be obtained by equating (5.3) and (5.6a). Details of the derivation are in
Díaz and Fontane (1989). The final expressions are:

(5.7)

(5.8)

(5.9)

where the only new term is Di , which equals the i th element of the gradient vector ( ƒ/ xi). Once
the equivalent c vector and Q matrix have been explicitly defined, a standard QP code can be
used to solve for the set of x values that maximizes the objective function.
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       Figure 5.1 Sequential maximization of a concave objective function by Sequential
Quadratic Programming (SQP) (Díaz and Fontane 1989).

An efficient QP code is a basic requirement for the success of the proposed solution method. The
routine QPTHOR, based on the General Differential Algorithm (Wilde and Beightler 1967) and
further developed by Leifsson and Morel-Seytoux (1981), is used in Aquarius.

The optimal solution obtained by standard QP is only true for the approximated objective
function (5.3). Because the optimal values of the variables may differ from the initial values upon
which the approximation of the nonlinear quadratic objective function was based, it is necessary
to repeat the process using the new values for the set of variables as the starting point for the next
round of the sequential solution. A succession of these approximations is performed until the
solution of the quadratic programming problem reaches the optimal solution, which is when
successive optimal values do not differ by more than the stipulated tolerance limit, or when the
maximum limit on the number of iterations is reached. Figure 5.1 illustrates the sequential
procedure of successively solving quadratic programming problems, known as Sequential
Quadratic Programming (SQP). The SQP approach implemented in Aquarius is an extension of
the work reported by Díaz and Fontane (1989) and Díaz et al. (1992). 

Linear approximation of the nonlinear objective function (5.1), using sequential linear
programming (SLP), is also a viable alternative to solve the water allocation problem with
Aquarius. SLP convergency to the optimal solution is only possible when a step-bound solution
scheme in the control variables is implemented (Palacios Gomez et al. 1982). This causes SLP to
have a slower rate of convergency toward the optimal solution than SQP (Díaz and Fontane
1989). Morever, optimal values tend to be slightly lower with SLP than with SQP, with the
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difference more pronounced as the complexity of the water allocation problem increases.
Nevertheless, for small flow networks or when only some of the variables in the objective
function are nonlinear, SLP is an efficient algorithm.

Objective Function Differentiation

The gradient vector in (5.3) and the Hessian matrix in (5.5) require computation of first, second,
and second-cross partial derivatives of the global objective function with respect to the decision
variables x. For a water allocation problem, which may involve many control variables and
complex objective functions, a finite difference scheme may appear to be an expeditious
procedure for the differentiation. However, numerical differentiation is inherently inaccurate,
particularly for high-order differentiation.

In contrast, differentiation via calculus provides the exact results for partial derivatives of any
order. Accuracy of the computations is important if the QP algorithm is to arrive at an exact
solution. Calculus also reduces the computation time drastically. The algebraic derivation of the
partial derivatives using calculus was an involved and time consuming task as the model had to
consider all possible water uses generating revenue in the basin and all possible ways in which
they could interrelate within a flow network. The derivative formulas are in Appendix A. Once
the formulas are completed, assembling the gradient vector and Hessian matrix for any user-
defined network topology is greatly eased, partly due to the object-oriented modeling framework
adopted. This subject, called the mathematical connectivity of the network, is covered in Chapter
6. The derivatives in Appendix A are organized by type of price function first (downward sloping
benefit functions and constant price functions) and by water user second. For each type of benefit
function, several partial derivatives are considered based on all possible control variable roles in
a flow network. 

Operational Restrictions

As indicated, the model maximizes total return over a planning horizon, subject to all required
operational restrictions. These restrictions, or constraints, represent physical limits in the
operation of reservoirs, powerplants, diversion structures, and other system components. We
present a list of basic operational constraints that are essential for the proper simulation of a
water system. 

Given the multi-site and multipurpose nature of the formulation, it is necessary to adopt a
notation to help us distinguish between variables associated with different system components
(objects) and the relative location of the system components in the flow network. The following
notations complement those in the Storage Reservoirs section of Chapter 3:
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       Figure 5.2 Sets of decision variables in relation to the
object under consideration.

d =   decision variable (controlled flow)
dM =   upper bound of decision variable 
dm =   lower bound of decision variable 
NF =   natural (uncontrolled) flow
S =   reservoir storage
S o =   initial reservoir storage 
S f =   final reservoir storage 
SM =   maximum reservoir operational storage 
Sm =   minimum reservoir operational storage 
E =   net reservoir evaporation
L =   reservoir spillage 
IF =   instream flow
IFM =   maximum instream flow
IFm =   minimum instream flow
OFM =   maximum offstream water supply
OFm =   minimum offstream water supply

Because of the generalized model character, the constraint equations presented below are not for
any specific topology of a flow network, but rather are generally formulated consistent with the
object-oriented approach used throughout this model. Each system component (i.e., each model
object) may have one or more constraints associated with it. Constraint equations can be either
equalities or inequalities depending on the type of object and the nature of the constraint being
imposed. 

The superscript u denotes a variable that originates in the portion of the network upstream from
the object under consideration. The superscript s denotes a variable that outflows from the same
object being analyzed (figure
5.2). The subscript i denotes the
time period. For instance,  i=3 
indicates the third time interval
of the optimization horizon. For
all variables except reservoir
storage, the index i indicates the
variable value during the time
interval such as inflow to a
reservoir during the third time
interval. When referring to
reservoir storage, the index i
should be interpreted as the
storage at the end of the time
period i.
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There may be multiple sources of controlled and uncontrolled flows converging at a given system
component. For example, figure 5.2 depicts a network with three d u sets that are the controlled
inflows to the downstream reservoir. Although not shown in the figure, this may also occur with
upstream mandatory releases, spillages, and natural flows. To simplify the notation, this situation is
denoted in the constraint equations below by underscoring the symbol representing the variables cited
above. The signs of the decision sets d u and d s (i.e., the sign of the coefficients of the decision sets)
and all other terms in the constraint equations are automatically given by the model. In general, signs
will be positive or negative depending on whether the variable of interest contributes flow to or
removes flow from the object under consideration (this is the water-balance concept). More details
concerning the mathematical connectivity of system components are in Chapter 6, Mathematical
Connectivity of System Components.

All restrictions are written using the canonical form of expressing a mathematical programming
problem. The left-hand sides of the constraint equations are the decision variables (unknown
terms). The right-hand sides contain the uncontrolled (known or assumed known) terms. The
expressions include two parameters undefined yet, and , which are derived from the so
called “explicit modeling of reservoir evaporation”. The way and are calculated is
presented later in this chapter. The system restrictions available are:

Maximum reservoir storage: ensures that the storage at the end of any time period i
does not exceed the reservoir's maximum operational capacity (i.e.,  Si  SM ) for i = 1, 2,
..., np, where np is the total number of periods:

(5.10)

Minimum reservoir storage: ensures that the storage at the end of any time period i does
not fall below the reservoir's minimum active capacity (i.e.,  Si  Sm) for i =1, 2, .. np:

(5.11)

Reservoir final storage: imposes a final reservoir storage equal or above a certain level S
f. This prevents the model from generating extra benefits at the expense of depleting a
reservoir's storage at the end of the optimization horizon:

(5.12)
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Maximum instream flow: ensures that flows do not exceed a specified maximum, as
may be required for instream water-related activities such as recreation or environmental
protection (i.e., IF  IFM ):

(5.13)

Minimum instream flow: ensures that flows do not fall below a specified minimum, as
may be required for instream water-related activities such as recreation or environmental
protection (i.e., IF  IFm ):

(5.14)

Diversion node: ensures that the flow diverted from a diversion node does not exceed the
incoming flow:

(5.15)

Maximum offstream flow: ensures that flow supplied to an irrigation or urban area does
not exceed a specified maximum (i.e., OF  OFM ):

(5.16)

Minimum offstream flow: ensures that flow supplied to an irrigation or urban area does
not fall below a specified minimum (i.e., OF  OFm ):

(5.17)

Seasonality of water demand: ensures that water deliveries to demand areas follow a
user defined seasonal pattern (see figure 3.7). The constraint is applicable for time periods 
i = 1, 2, ..., npc, where npc denotes the total number of periods within the annual cycle
(npc=12 for monthly intervals). To activate this constraint, the optimization horizon
should encompass entire annual cycles:

(5.18)
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Annual firm water supply: enforces firm levels of annual supply to offstream demand
areas, where AFW represents the contracted annual volume and npc denotes the number of
periods within the annual cycle. To activate this constraint, the optimization horizon
should encompass entire annual cycles:

(5.19)

The sequential-approximation algorithm SQP is well suited for solving this water allocation
problem, which includes only linear constraints. However, the algorithm can be extended to
problems with nonlinear constraint functions by using linear approximations of the nonlinear
constraint equations (not included in the present version of the model).

In the formulation of the water allocation problem, the model automatically includes the
restrictions in equations (5.10) through (5.12). The user has the option to enable or disable
restrictions by toggling on/off the corresponding check-boxes in the input dialog boxes. Even a
mid-size network may include hundreds of constraint equations, depending on the number of
system components and the length of the optimization horizon.

Controlling flows and storage are not the only restrictions commonly found in the operation of
real-world water systems. For instance, the two restrictions below, which are related to
hydropower production, will be incorporated into the model in a future version:

Hydropower Firm Energy. This constraint would be used to guarantee that a reservoir/
powerplant subsystem were operated to guarantee the delivery of a preestablished amount
of electrical energy (megawatt-hours) with assured availability to the electrical network.
Firm-energy levels could be demanded at each powerplant separately or from the system
of powerplants as a whole depending on ownership and agreements among the electrical
facilities within the river basin.

Maximum Energy Sale. This constraint would allow the analyst to impose a maximum
value to the total amount of energy, per simulation period or over the year, that the hydro
system could sell to the electrical grid. Nevertheless, the user can limit the powerplant
discharges as an approximate way to control the electrical output generated.
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Modeling Uncontrolled Releases

The term uncontrolled releases UR (see figure 3.1 and equation (3.3)) refers to the volume of
water evaporated from the reservoir E and the spillway releases at the dam L. Previous versions
of the model use a simplified approach for handling such losses, which treats E and L as
constants for each solution of the QP problem. These constant values are based on the result of
the previous QP solution. By treating evaporation and spills as constant terms in the formulation,
the nonlinear relationships between evaporation-storage and outflow-storage, typical of the
reservoir dynamics, are omitted, yielding a strictly linear set of constraints. 

However, moving reservoir losses to the right side of the constraint equations gives no control to
the model over those outflows, causing E and L to assume a passive role in the optimization.
Version 2000 introduces an alternative formulation of reservoir evaporation in which evaporation
losses are included “explicitly” in the formulation of the reservoir dynamics, rather than
“implicitly”. This more elaborate formulation gives the model the capability to anticipate periods
with extreme evaporation losses and affect the operation of reservoirs accordingly. Furthermore,
version 2000 also presents improvements in the way reservoir spillages are treated. Both
alternative formulations are introduced below.

Implicit Formulation of Reservoir Evaporation

The consequences of assuming known values for evaporation when solving the QP problem are: 
1) the optimal reservoir storage provided by each sequence of the SQP process (i.e., by each
individual QP solution) must be adjusted using an iterative reconciliation procedure to find
accurate estimates of E; and 2) because new values of E were obtained from the previous step, all
RHSs must be recomputed before going to the next optimization sequence. The iterative
reconciliation procedure, performed after each QP solution, works as follows: 1) based on the
last optimal state of the reservoirs, evaporation losses are computed; 2) because the new
evaporation losses probably differ from the old ones (those adopted when solving the last QP
problem), new (adjusted) reservoir storages will result; 3)  based on these adjusted reservoir
storages, evaporation losses are recomputed; 4) step 3 is repeated until S and E values are
reconciled for all reservoirs; that is, until the difference in storages between two consecutive
iterations is below a given threshold, which is a user defined parameter. 

Such computations raise the following question: Will a QP solution that is feasible with respect
to its constraint set (i.e., the set containing E from the previous QP solution) become infeasible in
the new constraint set?  To answer this question, consider the hypothetical case of a reservoir
storage trajectory constrained by upper and lower bounds in figure 5.3. The thin solid line (old
solution) represents the optimal trajectory derived from the prior QP solution, as adjusted using
the iterative reconciliation procedure. This solution is used as the initial feasible solution for the
next QP solution, which yields a new storage trajectory represented by the dashed line (new
solution). For the portion of the trajectory that is successively moving toward the lower bound
(left side of the graph), the water losses during computation of the new QP solution (from the old
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      Figure 5.3 A storage trajectory adjusted for evaporation losses between Quadratic
Programming solutions. 

solution) are larger than the true losses that would occur at the new solution storage level (i.e.,
the surface area of the reservoir decreases). After evaporation losses and the storage level agree
the new optimal trajectory will recede inward because lowering the evaporation loss will increase
the remaining storage. This is shown by the thick solid line (adjusted new solution) on the graph. 
Similarly, for the portion of the trajectory that moves closer to the upper bound (right side of the

graph), the water losses during computation of the new QP solution are smaller than the true
losses that would occur at the new storage level because the new storage level is higher than that
of the old solution from which the assumed losses were taken. After bringing storage and losses
into agreement using the iterative procedure, the new optimal trajectory will recede inward as
indicated by the thick solid line. These two cases indicate that the prior optimal solution will
remain feasible to the new constraint set, allowing the sequential optimization procedure to
continue. The same conclusion is reached when analyzing a sequence of storage trajectories that
tend to depart from upper and lower reservoir bounds.

Analysis of this hypothetical case shows that the iterative process by which evaporation losses
are evaluated, except under very unusual circumstances, should not cause infeasible solutions as
the storage trajectory progresses toward optimality. Furthermore, the sequential nature of the
SQP algorithm allows for the convergence of uncontrolled outflows toward their exact values. 
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  Figure 5.4  Linearization of the
reservoir area-storage relation.

Explicit Formulation of Reservoir Evaporation

This section presents an alternative formulation in which evaporation losses are not assumed
known at the beginning of each optimization sequence, but are included explicitly in the
derivation of the reservoir dynamics. In this manner, the model strives to minimize reservoir
evaporation losses at the same time that water demands are meet. This formulation brings about
changes in the reservoir storage equation, and consequently, in the expressions for reservoir
physical constraints (see equations (5.10) through (5.12)), and in those benefit functions linked to
reservoir regulation (see equations (4.9c) and (4.30b)).

Linearization of Reservoir Evaporation

According to Chapter 3, Storage Reservoirs, reservoir evaporation losses are computed by
multiplying the surface area of the lake times the seasonal evaporation rate, denoted here by ei
[L/T].  The power function that relates reservoir area A [L2 ] versus reservoir storage S [L3 ]
(equation (3.4b)) can be linearized as shown in figure 5.4 such that evaporation losses E [L3 ]
during any given time interval i can be expressed as:

(5.2
0)

where a and b are the coefficients of
the linear relationship, computed
automatically by the model using a
weighted least-square method. For
convenience, (5.20) is rewritten as:

(5.21)

where  wi = ei a  and  vi = ei b. The
proposed linear model between
surface area and storage in a
reservoir (figure 5.4) is a reasonable
approximation in most cases.

Modified Reservoir Storage Equation

Using the general notation introduced in Chapters 3 and 5, and adopting the expressions for
inflows and outflows to a reservoir given by (3.2) and (3.3), respectively, the storage of a
reservoir at the end of the first period of operation S1  is expressed as:
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(5.22)

where S o is the storage of the reservoir at the beginning of the simulation, I1 indicates all inflows
to the reservoir (controlled and uncontrolled), O1 indicates all outflows from the reservoir
(controlled and uncontrolled) except for evaporation losses, which has been written separately
within the term in brackets.  Evaporation for the period is computed as a function of the average
storage during the time interval. Rearranging terms in (5.22) yields:

(5.23)

in which again variables are grouped to simplify the notation,

(5.24)

where    and   (5.25a), (5.25b)

Similarly, the reservoir storage at the end of the second period can be written as:

(5.26)

Substituting S1 above by the expression in (5.24), and after rearranging terms we obtain,

(5.27)

In general, reservoir storage at the end of any time period i can be expressed as:

(5.28)
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Equation (5.28) can be written in a more compact form in which the products and
terms are grouped under the new symbol as indicated in (C.10):

(5.29)

Equation (5.29), which computes reservoir storage at the end of any time interval of simulation
as a function of inflows, outflows and evaporation parameters, can also be expressed in matrix
form as shown in (5.30):

(5.30)

In order to rebuild the benefit functions for water uses affected by variable water levels in a
reservoir (hydropower and reservoir recreation), it is convenient to introduce here the expression
for the average reservoir storage during any given time interval i:

 (5.31)

where is given by equation (5.29) and is introduced to simplify the notation.

Modeling Reservoir Spillages

Aquarius uses a simple approach for modeling reservoir spillage, treating L as
constant for each solution of the QP problem. The assumption of L as constant is
clear in the reservoir’s constraint equations, where all the known (or assumed
known) terms are on the right-hand side. Spillages from each reservoir are detected
at the beginning of the calculations by the algorithm that finds the initial feasible
solution (IFS) to the water allocation problem at hand (topic covered later in this
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Figure 5.5  Spillages penalty function.

chapter). This simple approach has the advantage of not increasing the mathematical
dimensionality of the optimization problem. However, moving reservoir losses to the right side
of the constraint equations gives no control to the optimization model over those outflows.

Version 2000 incorporates a new system component, termed the “Spill Controller”, which helps
incorporate IFS spills into the optimization, and potentially minimizes reservoir spillages subject
to the reservoir’s storage constraints. The spill controller is a pseudo water user that, rather than
rendering benefits, imposes an economic penalty to the operation of the system every time a
reservoir spills. The spill controller acts upon the reservoir to which it is connected to discourage
uncontrolled outflows, and indirectly, over all the system components upstream that provide
inflows to the reservoir under consideration. It should be noted that the spill controller does not
perform a detailed simulation of the spillway operation. In fact, operation of a gate-controlled
spillway is unnecessary for monthly time steps of simulation. For monthly operation the model
passes any excess flood water downstream of the reservoir as a block. 

Spills are controlled based on seasonal penalty functions of the form:

(5.32)

where L is the quantity of water spilled by the
reservoir (in Mcm) and a and b are the
ordinate and the coefficient that controls the
rate of decay of the exponential model,
respectively. The penalty function is
characterized by negative marginal returns to
spillages (figure 5.5), such that initial units of
spillage are penalized more heavily than
additional units (small spillages are eliminated
first). The use of an economic penalty
function to prevent (or minimize) spillages
increases the dimensionality of the
optimization problem because a set of
controlled variables is assigned to each spill
controller.

With the spill controller(s) in place, the model drives an initial solution containing spillages
toward a different and improved solution where excess water is reallocated over the whole
operational horizon in favor of a more profitable water allocation. In this manner, spills from the
IFS are converted to the extent feasible (and subject to the penalty function imposed) into storage
and early releases, giving the optimization scheme the opportunity to transform the excess
volume of water into economically beneficial reservoir releases during other time periods. 
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The utilization of the spill controller requires some prior familiarization of the analyst with the
river system at hand. Because where and when spillages will occur is unknown before hand, the
flow network should be solved first without the presence of spill controller(s). If the optimal
solution presents no spillages, then the problem has been optimally resolved and no additional
runs are needed. However, if spillages are observed in the solution, the user has the option to
minimize them by re-running the model including the spill controller object. To limit
computation time, a minimum number of spill controllers should be added to the flow network.
Typically, there should be one spill controller per river branch in which spillages occur. The
magnitude of the coefficients a and b can be adjusted to minimize spillages until the point that
the physical characteristics of the reservoirs prevent further reduction.

The economic effect of the spill penalty function upon water distribution throughout the network
is difficult to assess. Hence, it is possible that once all (or most of) the spillages with the presence
of the spill controller(s) are eliminated, to set the a coefficient of the penalty functions to zero,
and continue the search for a new equilibrium (optimal) point. This last water allocation reached
with the a coefficients equal to zero will not carry distortions introduced by the explicit cost
assigned to spills (as the original solution did). 

It should be noted that the monetary loss created by the spill controller(s) is never included in the
global objective function result reported by the model. Nevertheless, the value of the penalty
generated by a spill controller can be known by accessing the economic output from that specific
object. At this point the reader may recognize another obvious application of the spill controller
in a flow network. We refer to the possibility of using this water component to control flooding
in a river reach, minimizing economic losses.

Search for a Feasible Solution

The method of solution used by Aquarius requires an initial feasible solution (IFS) to start the
optimization process. This is an important requirement, especially for large, highly constrained
water systems. For small flow networks and short periods of analysis might be reasonable to
expect the user to provide the required IFS. However, more complex situations  such as those
that the current model is designed for, require a modeling approach.

Aquarius contains two different approaches to obtaining an initial feasible solution. The first is
an expeditious “flow cascading” method with some limitations. Nevertheless, this approach
should provide an IFS for most systems and flow conditions. The second approach is a more
robust method based on the same concepts as the “Two-Phase Method of Linear Programming”, 
to the expense of long execution time. If the flow cascading method failed to provide the IFS, the
second approach would complete the task. Because of the long running time of the two-phase
method, version 2000 offers only the flow cascading approach. However, both methods are
described below.
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Figure 5.6  Cascading flows through a network to find an initial feasible solution.

If, due to intricacies of the flow network, the model is unable to find an IFS that fully complies
with the originally stipulated constraints, the analyst may relax restrictions that impede finding an
initial solution. After an IFS is found with the relaxed set of constraints, the analyst will have an
opportunity to gradually steer the water allocation process in the appropriate direction during the
optimization process. This is possible because the water allocation problem is formulated using
economic variables that can be manipulated during the sequential optimization process without
affecting the feasibility of any intermediate solution. Once the necessary level of flow is attained
as a result of the modified economic conditions, the optimization can be interrupted, the relaxed
constraints reinstated, and the original price structure restored, allowing the model to continue
with the optimization until the final optimal solution is reached. (Note: the feature just described
is still not available in V2000.)

Flow Cascading

The flow cascading approach consists of routing the natural flows originating in the basins
downstream through the flow network. This is done without any operational rules. The routing
algorithm starts at each water source (i.e., a natural flow basin object) and moves downstream
through the network always following the main water course. Computationally, this is a pass of
the algorithm. As the water travels downstream in the network, it satisfies minimum instream
and offstream demands, provided that enough water is available. A demand area that is only
partially satisfied after the first pass may become fully satisfied after the second or third pass,
depending on the number of water sources being routed through that specific network
component. For example, in figure 5.6 only two passes of the algorithm (I and II) provide water
to the offstream irrigation area since the third water source is located downstream from the
demand zone.
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Inflows to a reservoir are passed downstream from the structure and used to satisfy reservoir
demands. Minimum flow requirements are satisfied first, and any remaining water is arbitrarily
assigned to any of the water users connected to the reservoir until maximum capacity is reached.
This occurs without any regulation of reservoir storage. However, for very large inflows and
when the capacity of the demand areas to accept flow is exceeded, the algorithm regulates
reservoir storage by pre-emptying the reservoir during time periods prior to the period with
excessive inflows. If storage regulation alone is unable to contain the inflows, the reservoir is
forced to spill.

The cascading approach may find an IFS, depending on how tightly constrained the water system
is given water availability in the basin. In general, normal and wet flow conditions are best for a
successful run. If flow conditions are very dry, relaxation of constraints, such as specific
minimum flow requirements, increases the chance of a successful run.

Phase 1 of the Two-Phase Method

To find an initial feasible solution as required by the General Differential Algorithm (QPTHOR),
it is possible to use the same procedures as the Simplex Method of Linear Programming (LP)
uses for the same purpose. Some of these procedures involve use of artificial variables to obtain
an initial basic feasible solution to a slightly modified set of constraints (although for QPTHOR,
the initial solution does not need to be basic). From among these procedures, we adopted a well
known algorithm, the Two-Phase Method, for use in Aquarius. Below is a brief description of the
method. For a complete description see Bazaraa and Jarvis (1977).

During the denominated Phase 1 of the Two-Phase method, the restriction set in (5.6b) is
changed by adding a vector of artificial variables xa, leading to the system of equations Ax+xa=r, 
x 0,  xa 0. By construction, A contains an identity matrix associated with the artificial vector.
This gives an immediate basic feasible solution of the new problem, namely,  xa=r and  x=0.
However, even though an initial feasible solution now exists, the problem has in effect been
changed. To get back to the original problem, the artificial variables should be forced to zero to
attain feasibility in the original problem because Ax=r  if and only if  Ax+xa=r  with xa=0. The
modified LP problem solved during Phase 1 with the basic feasible solution x=0 and xa=b is:

Minimize 1 xa (5.33a)

Subject to ... A x + xa = r (5.33b)
 x, xa  0 (5.33c)

where, since the objective function is replaced by an auxiliary function, it is inconsequential that
the original objective function (5.6a) is nonlinear. Then, the Simplex Method is used to minimize
the sum of the artificial variables over the feasible region for the revised problem. The solution
for Phase 1 should have all the artificial variables equal to zero so the solution is also feasible for
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the original problem. At the end of Phase 1 we get either a basic feasible solution of the original
problem or xa=0, which implies that the original problem has no feasible solution. 

Since there is no objective function driving the Phase 1 solution to any particular state of the
system, the constraint set (5.33b) basically defines the IFS. The same set of constraint equations
used to restrict the SQP optimization (see Chapter 5, Operational Restrictions) is also used for
(5.33b). An obstacle during the computation of the constraint set (5.33b) is the dependance of
some of the RHSs on uncontrolled spills and evaporation losses, which are unknown before-hand
(as discussed in Chapter 5, Modeling Uncontrolled Releases). To start the computation process,
evaporation losses are initialized to some reasonable values, whereas spills are initially assumed
equal to zero. In this manner, the model is forced to find an IFS free of spills.

However, when the inflows are characterized by very wet periods, the above restriction may
prevent a solution that satisfies the set of constraints. When this occurs, the Phase 1 problem is
reformulated assuming positive semi-infinite reservoirs and the problem is resolved. Then, water
held artificially in storage (i.e., above the maximum operational storage capacity) is transformed
into spills from the reservoir. The last estimates of spills are used to reformulate the Phase 1
problem for a third time, which finally yields the required IFS.

Although this approach is more involved than the simple flow cascading procedure, the
efficiency of the LP algorithm and the numerical stability of the Two-Phase Method ensures a
much better chance of finding an IFS under all flow conditions.

Time Intervals of Analysis

The analysis performed using Aquarius defines the length and number of time intervals to be
considered. For example, although an analysis at the monthly level may be sufficient during the
planning of a water resources project, simulating the actual operation of a river system may
require weekly or daily time intervals. The length and number of time intervals of an analysis is
also affected by the availability of time-dependent data, especially flow data, required to run the
model and by execution time.

Modeling water allocation in a basin may require considerable detail for some specific water
uses. An example is instream flow to maintain an activity such as whitewater rafting. This water
use is highly seasonal, occurring only a few months of the year, and has a nonuniform demand
within the recreation season. The demand for whitewater rafting changes within the week
because use is greater on the weekends than during weekdays. Detailed consideration of the
water supply for this activity in competition with other water uses in the basin may justify
modeling system operation at a daily time step. Moreover, if the reservoir system contains
enough storage to carry over from one year to the next, then a multi-year operation must be
modeled. In this manner, benefits of storing excess water during wet years for future releases
during dry years can be realized. Contrarily, if the reservoirs fill practically every year, the period
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of analysis can be limited to a single year, known as within-year operation. Each system will
present different characteristics and will impose different time step and time horizon
requirements for optimization.

Aquarius was conceived to simulate the water allocation in a basin using any time interval of
analysis including daily, weekly, and monthly time intervals. Moreover, the model is envisioned
to operate under time intervals of uniform as well as nonuniform length. As an example of the
latter, consider a one-year optimization horizon subdivided into the first 7 days (short-term
operation), the following 3 weeks (medium-term), and the remaining 11 months (long-term).
This partition of the within-year operation into intervals of unequal length may coincide with the
way inflows to the system are forecasted. Because of limitations in the graphical user interface
(GUI) for entering data in the present version of model, only monthly time intervals are accepted.
Future versions of the model may include the necessary GUIs to work at shorter time intervals.

Aquarius can be used in a full optimization mode for general planning purposes or in a quasi-
simulation mode with restricted foresight capabilities. For the latter, the model distinguishes
between the “period of analysis” used to specify the length of the whole segment of time for
which the model will simulate the allocation of water in the basin and the “optimization
horizon”, which is used to specify how far into the future the model should look to build the
optimal operational policies. 

Optimizing the operation of a complex water system for an extended period of time (e.g., a
period equivalent to the system's economic life, as in an analysis performed for planning
purposes) is computationally impractical given typical computing capability. Aquarius offers an
alternative approach, termed a “quasi-continuous optimization”, that allows the user to study the
response of a system for a very long time period (e.g., several decades) in a computationally
manageable manner. The approach decomposes the full solution of the problem into many
consecutive overlapping solutions. Figure 5.7 illustrates this approach for a monthly operation
where the overlapping solutions are each three years.

The solid line of figure 5.7 represents a hypothetical optimal reservoir storage trajectory resulting
from optimizing the system operation for many years. In this example, identical initial and final
storage conditions are imposed, indicated by the horizontal dotted line. The model begins by
optimizing over the first three years (i.e., using an optimization horizon equal to 36 months). The
ending storage for this three-year solution must meet the final storage constraint, as indicated by
the dashed line showing the end of the three-year trajectory. The model disregards the results
from the operation for the third year, saving the state of the system for years one and two. When
the next set of three years is optimized, the model adopts, as the initial state of the reservoir, the
optimal storage found at the end of the second year of operation. The cycle continues for the total
number of years with data available. In figure 5.7 it is assumed that the effect of the imposed
final storage does not extend farther back than one year; that is, the dashed and full lines only
depart from each other during the third year of operation (filled area).
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Figure 5.7  Scheme of quasi-continuous optimization.

Repeated testing shows that this is often a reasonable estimate, although the best length for the
overlapping period should be determined for each specific system. This procedure of quasi-
continuous optimization is believed to circumvent the sometimes undesirable effect of the final
boundary conditions on reservoir operation. In addition, running the model with restricted
foresight capabilities, for example, with an optimization horizon equal to only one or two time
periods, would generate operation policies close to what an operator of a real-world system
would produce. The optimization model will behave very much like a simulation model.
Running Aquarius under these conditions requires the addition of targets for reservoir storages as
part of the data input requirements.
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