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        Figure 4.1 Inflows and outflows for a variable-head
powerplant.

Chapter 4
Benefit Functions

This chapter presents the benefit functions associated with different water uses in a river basin.
Benefit functions fit into two categories: downward sloping prices (the first part of this chapter)
and constant prices (in the second part of the chapter). The following uses are considered: 1)
hydropower with variable-energy head; 2) hydropower with fixed-energy head; 3) water for
irrigation demand areas; 4) water for municipal and industrial demand areas; 5) water for
instream water recreation activities; and 6) water for reservoir recreation activities. The basic
operational characteristics and modeling assumptions for the system components are in the
previous chapter.

Downward Sloping Price Benefit Functions

Variable-Head Powerplant

Hydropower generation is a function of the powerplant discharge, the hydraulic head under
which the turbines operate, and the efficiency of the turbine-generator group. In turn, the
effective head on the powerplant changes with elevation changes of the water surface in the
reservoir forebay and tailrace. The energy rate function (erf), as defined in (3.8), can be
simplified by assuming effective head to be a linear function of reservoir storage. In this
formulation, storage serves as a surrogate for reservoir water surface elevation, and any effect of
backwater on the powerplant tailrace level is ignored. The erf is expressed in megawatt-hours
(MWh) per million cubic meters (Mcm) of
flow through the turbines:   

(4.1)

where  encompasses all the mechanical
and electrical efficiencies of the generation
unit, and a1 and b1 are parameters of the
linear model.

In this formulation, energy production
during a given time interval depends on
the average reservoir storage during that
same time interval. Average storage  i
during time interval i can be estimated as
the storage at the beginning of the period 
Si

o, plus half of the inputs and outputs from
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Figure 4.2  Demand function for hydro-energy.

the reservoir during the period. Using the notation established in Chapter 3 and figure 4.1, the
average storage during the time interval is written as:

(4.2)

where the powerplant release T has been segregated from the general group of controlled
reservoir releases XR. To maintain unit consistency throughout the model formulation, flow
variables denote water volume.

The price for energy sold by powerplants is usually stipulated by the power market to which the
utility sells its energy. It is assumed that an additional powerplant does not significantly change
the power pool, and that it has no effect on the energy price structure. This is generally true
except for small, isolated electrical systems where an additional power utility can significantly
affect energy supply and thus price.

For most electrical systems the price of energy depends on the time of day that the energy is
delivered to the electrical grid. The highest prices are paid for energy delivered during the high
demand on-peak hours. Additional amounts of energy, if available, are sold at lower unit prices
during off-peak demand periods and during the night. This is the core of the classical hydro-
scheduling problem. The three classes of energy are represented in figure 4.2 by a step function,
showing the marginal price paid for energy (where a mill is one-tenth of a cent) as a function of
the plant utilization factor.
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The utilization factor indicates how the available water is used by the hydropower plant, within
the constraint of powerplant capacity and characteristics. In this model, the utilization factor is
the percent of plant operation time during the time interval of analysis (monthly, weekly, daily).
In turn, the operation time can be replaced by the flow percent passing through the turbines,
assuming that the generation units operate at a nominal flow rate. Note that the structure of prices
may remain constant all year or change from season to season; for instance, summer prices for
energy can be higher than winter prices.

The diminishing returns for hydropower in figure 4.2 can be analytically represented by the
exponential function in (4.3), which provides adequate flexibility to represent downward sloping
demand curves:

(4.3)

where T denotes the powerplant release (volume released
during the time period), a2  and b2  are parameters of the exponential function, and pS  accounts for
possible seasonal changes in energy prices with respect to the average annual price P. 

The marginal price function for hydropower assumes that power releases are drawn first during
on-peak hours, then during off-peak hours, and whatever volume of water is left will be used to
generate night (dump) energy. Because the total number of on-peak, off-peak, and night hours of
energy demanded by the electrical grid changes depending on the time interval of simulation
(daily, weekly, or monthly) , the exponential demand curve in figure 4.2 must be built for the
case under consideration and will yield different values for parameters  a2  and b2 .

Following Laufer and Morel-Seytoux (1979), integration of the product of the energy rate
function (4.1) times the marginal price function (4.3) with respect to the powerplant release Ti ,
yields the hydropower return function that computes the benefit during a given time interval i:

(4.4)

where z is a dummy variable of integration and all other terms have been defined earlier.
Substituting the final expressions of  erf( ) and  b(T) into the integral above, the following
expression is obtained: 

(4.5)

By further expanding (4.5), (4.6) is obtained:
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(4.6)

Carrying out the integration and regrouping some terms, the economic benefit from the operation
of a single powerplant during time period i is obtained:

(4.7)

Note that the storage at the beginning of period i depends on the history of inflows and
outflows from the reservoir up to that period, expressed as:

(4.8)

where again the turbine release T  has been separated from the term XR that represents other
controlled reservoir releases. Substituting (4.8) into (4.7), the total benefit accruing from
hydropower generation (with variable-head) in its expanded form is obtained:

(4.9a)

where all terms have been defined earlier. The lengthy equation (4.9a) is a simple expression that
computes the hydropower benefit as a function of the powerplant release, the history of inflows
to and outflows from the reservoir that regulates flows for the powerplant, and a series of
parameters that represent physical and economic data associated with the hydropower utility.
This expanded form of the benefit function promotes the partial derivatives in Appendix A.
Equation (4.9a) can be written in a more compact form by expressing it in terms of the
average reservoir storage during the interval i:

(4.9b)
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Figure 4.3  In/outflows for a fixed-head powerplant.

The derivation of (4.9a) is based on the assumption that reservoir evaporation is a known
quantity, embedded within the term UR. The implications of this simplification are discussed in
detail in Chapter 5. While it is possible to solve the water allocation problem using the
hydropower benefit function derived above, it is also possible to formulate the hydropower
function more rigorously, where evaporation losses are included explicitly in the simulation of
the reservoir dynamics (see Chapter 5). The result of this more elaborate formulation modifies
(4.9b) by introducing a new parameter as shown in (4.9c):

(4.9c)

Equations (4.9b) and (4.9c) express two alternative formulations to calculate hydropower
benefits under variable hydraulic head. The equation for the term is introduced in Chapter 5,
equation (5.31)

Fixed-Head Powerplant

The hydropower benefit function in
(4.9) can be simplified for a run-of-
river powerplant for which the energy
rate function (4.1) reduces to a single
value because of the fixed energy
head acting on the hydraulic turbines,
that is:

(4.10)

The marginal price of energy is again
indicated as in (4.3), where T denotes
the total volume of water passing
through the turbines (figure 4.3).

Again, the integral of the product of the energy rate times the demand function with respect to the
powerplant release yields the hydropower benefit function. Using the final forms of  erf and b in
(4.10) and (4.3), the following expression is obtained:

(4.11)

where z is a dummy variable of integration. Carrying out the integration, the economic benefit
from the operation of a fixed-head powerplant during time interval i is:
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Figure 4.4  Annual irrigation demand.

(4.12)

In contrast to a variable-head powerplant where a single controlled reservoir release is allowed to
enter the powerplant, the flow T into a fixed-head powerplant can be a function of several
controlled and uncontrolled flow variables. The most general case is depicted in figure 4.3 and
expressed mathematically as:

(4.13)

where XI is substituted by to indicate possible multiple controlled flows entering the
powerplant, and UI is all uncontrolled flows reaching the powerplant. Substituting (4.13) into
(4.12), the expanded form of the fixed-head hydropower benefit function is:

(4.14)

where are the coefficients of the upstream decision variables respectively.

Irrigation Demand Area 

As discussed in Chapter 2, the benefit from an irrigation demand area (IRR) is determined by the
net increase in income from the cultivated irrigated land. Typical of agricultural areas, the IRR
demand curve includes large amounts of low value water. In this model, the marginal value of a
given unit of flow used for irrigation, expressed in dollars per million of cubic meters ($/Mcm),
is assumed to follow an exponential decreasing function (figure 4.4):

(4.15)

where  A  represents the total volume of water
entering the IRR area as indicated in figure 4.5,
and a3  and b3 are the parameters of the
exponential function. In general, the decaying
model in (4.15) provides good fittings of the
marginal-benefit curves derived in practice,
except for the lower portion of the curves.
While the exponential function becomes
asymptotic to the axis, actual demand curves
will intercept the horizontal axis (figure 2.2).
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     Figure 4.5  In/outflows to an irrigation demand area.

Part of the flow diverted into the
agricultural zone is consumptively
used, but a fraction of A returns to
the stream via subsurface flow or
drainage systems. Once the return
flow reaches a stream, it is available
for use downstream. This fraction of
the incoming flow, indicated by r in
figure 4.5 is the return flow

coefficient of the irrigation zone. The
return flow coefficient is assumed
constant for all seasons and can be
highly variable from one irrigation
area to another depending on
irrigation practices and soil characteristics.
The integration of (4.15), which is the area under the demand curve, yields the total benefit from
the IRR demand area (i.e., the total willingness to pay for irrigation water in the demand area):

 
(4.16)

where z is a dummy variable of integration. Solving the integral in (4.16), the IRR benefit
function for a single time interval i is obtained, where the parameters a3  and b3 can vary by time
interval (i.e., seasonally):

(4.17)

As depicted in figure 4.5, the total flow A entering the IRR area can be several controlled XI and
uncontrolled UI inflows. Mathematically:

(4.18)

where the term XI is expressed by to indicate possible multiple controlled flows
entering the agriculture irrigation zone. Substituting (4.18) into (4.17), the expanded form of the
benefit function is:

(4.19)

where are the coefficients of the upstream decision variables respectively.
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Figure 4.6  In/outflows to a
municipal and industrial zone.

Municipal and Industrial Demand Area

Empirical studies indicate that the quantity of water demanded by the municipal and industrial
(M&I) sector is sensitive to price (Martin and Thomas 1986, Howe, 1982, Howe and Linaweaver
1967, Foster and Beattie 1979, Lyman, 1992) but not as sensitive as irrigation demand.
Compared with agricultural, the M&I sector demands limited quantities of water but is willing to
pay relatively higher prices; M&I demand tends to be relatively inelastic. The analytical form of
the M&I demand curve available in the model also follows an exponential decaying model:

(4.20)

where D represents the total
volume entering the M&I area and 
a4  and b4  are parameters of the
exponential function. In general,
only a small portion of the flow D
diverted into the demand zone is
consumptively used. The unused
portion, indicated by the return
flow coefficient r in figure 4.6,
becomes wastewater flow that,
after treatment, is available to other
users.

The integral of the demand curve
(4.20) yields the total benefits
stemming from the municipal and
industrial water use:

(4.21)

where z is a dummy variable of integration. Solving the integral, the M&I benefit function for a
single time interval i is:

(4.22)

Note that in (4.22) the parameters a4  and b4  can vary seasonally. As in the irrigation case, the
amount of water D entering the M&I area can be several controlled and uncontrolled flows
(figure 4.6). Mathematically, the M&I diversion is expressed as:

(4.23)
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        Figure  4.7  Demand function for instream water recreation  
                            (1988 dollars) (Duffield et al. 1992).

where the controlled inflow XI is replaced by to indicate possible linear
combinations of several control variables contributing to flows to the M&I zone. Substituting
(4.23) into (4.22), the expanded form of the M&I benefit function is:

(4.24)

where are the coefficients of the upstream decision variables respectively.

Instream Recreation Area

Because instream recreational (IRA) opportunities are not generally sold in a market, estimating
the benefits from water use for recreation requires unique economic valuation approaches such as
the travel cost method and the contingent valuation method (Freeman 1993). Brown et al. (1991)
list many of the studies performed over the last 20 years that used these methods to focus on the
recreational value of instream flow.

For example, Duffield et al. (1992) used a dichotomous choice, contingent valuation survey to
interview recreationists along the "blue ribbon" trout fishery rivers in Montana. Interviews were
conducted through the summer, and flow conditions were recorded for each interview day. The
information allowed the investigators to develop a relationship between willingness to pay
(WTP) for instream recreational participation and alternative flow conditions. According to
Duffield et al. (1992), the marginal value of a given flow unit is the effect of instream flows on
recreational experience quality,
quantity of use, and lagged effects
on recreation conditions. It is
possible that only one or two of
the three terms may be empirically
significant for a given resource.
Similar to the results provided by
other studies, Duffield et al.
(1992) identified a nonlinear
relation of total recreation benefits
to flow rate, which shows a
concave shape that increases with
flow to a point but then decreases
for further increases in flow (see
figure 4.7). For example, at very
low flows rapids are not a
challenge for whitewater boaters,
at moderate flows floating quality
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      Figure 4.8  In/outflows for an instream recreation area.

improves, but at very high flows the rapids become washed out or too dangerous. This concave
relation applies to all instream recreation activities, but the flow levels at which recreation quality
is maximized differ by activity (Brown et al. 1991).

The analytical form of the demand curve for IRA adopted in this model (4.25) was from the
aforementioned study and is shown in figure 4.7. The marginal recreational value of instream
flow, expressed in dollars per million cubic meter ($/Mcm), is assumed to follow a 
linear decreasing model:

(4.25)

where R  represents the total flow (volume
during the time period) passing through
the recreation area and a5  and b5  are
parameters of the linear function. Because
no consumptive water use takes place in
the IRA reach (except for evaporation and
infiltration losses from the stream, which
are typically small and ignored), the same
amount of flow R is available downstream
from the recreational user (see figure 4.8). 

The integral of the demand curve with respect to the instream flow yields the total benefits
derived from the IRA river reach:

(4.26)

where z is a dummy variable of integration. Solving the integral in (4.26), the IRA objective
function for a single time interval i is:

(4.27)

that also indicates that the parameters  a5 and b5 can vary seasonally. 

The total flow R  passing through the IWR river reach can be several controlled and uncontrolled
flows as depicted in figure 4.8 and expressed mathematically in (4.28), where the controlled
inflow term XI is expressed by to indicate the possibility of multiple controlled
variables contributing flows to the recreation area:

(4.28)
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     Figure  4.9  Maximum and minimum storage
      levels in a reservoir with

recreation activities.

Substituting (4.28) into (4.29), the expanded form of the benefit function is:

(4.29)

where are the coefficients of the upstream decision variables respectively.

Reservoir Recreation Activities

A recreation benefits curve relates the marginal benefit, expressed in dollars per visitor-day, with
the number of participating people expressed as visitors-day (James and Lee, 1971, p.416). For a
given reservoir capacity (which defines the amount of area suitable for recreation), total annual
potential benefits can be calculated by integrating the marginal curve. 

Reservoir recreation was included in this model assuming that the reservoir already exists (i.e.,
its size was determined by other water uses), and that the aggregate value of the recreation
activity is related to the water level in the lake. In this manner, the reservoirs recreation benefit
(BRRA), expressed as the total economic benefit across all users, is a direct function of the water
stored in the reservoir (in turn a function of the water level), and is assumed to follow a
hyperbolic tangent function, (equation 4.30a):

(4.30)

where represents the average storage during time period i, and a6 , b6 and c6 are coefficients
of the model. The average storage is calculated knowing the inflows and outflows from the
reservoir as indicated by equations (3.2) and (3.3). Equation (4.30a) allows us to set recreation
benefits in commensurate terms with other
water uses. 

Recreation activities may be limited between a
maximum (Srec_max) and a minimum (Srec_min)
reservoir level (figure 4.9), which may not
coincide with reservoir level restrictions for
other water uses (e.g., hydropower). 

Similar to the hydropower case (compare
equations (4.9b) and (4.9c)), the two
approaches used in AQUARIUS for modeling
reservoir evaporation (implicit and explicit),
introduces a change in the derivation of the
benefit function for reservoir recreation.
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Figure 4.10  Fitted reservoir recreation benefit curve

Although in this particular case the expression (4.30) remains valid for either approach, the
term is calculated using equation (4.2) for the former approach and (5.31) for the latter.
Details about the two approaches for modeling reservoir evaporation are presented in Chapter 5.

The hyperbolic benefit function yields an S-shaped curve that most closely fits available data on
the effect of lake level on recreation use (Allen et al. 1998). Figure 4.10 shows a fitting example
in which the maximum and minimum reservoir recreation levels are 9,000 and 6,500 Mcm, and
the estimated benefits are as indicated by the markers. The fitted benefit function is asymptotic to
the lowest and highest reservoir recreation levels. No recreation benefits are realized below the
lowest level. Benefits increase rapidly as the reservoir storage increases from its lowest level, and
reach a maximum when the reservoir is near its maximum capacity.

In order to fit the benefit function to a set of known or assumed points giving the relation of total
benefit to reservoir storage, it is helpful to begin with some pre-estimated parameters. The
seasonal parameters a6 , b6 and c6 can be set once the lowest and highest recreation storage levels
and the maximum total benefit are defined for each season. Parameter a6 is estimated as half of
the maximum benefit. Parameter b6 is a small scaling coefficient (e.g., 0.001) that controls the
slope of the S-shaped curve. Parameter c6 can be initially estimated as the average of the highest
and lowest recreation storage amounts multiplied by the valuer of the parameter b6. After some
visual calibration, the parameters for the case shown in figure 4.10 resulted: a6 = 150 $, b6 =
0.003, and c6 = 21.5.
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  Figure 4.11  Constant
Demand function for energy.

Constant Price Benefit Functions

Variable-Head Powerplant

The energy rate function erf remains as defined
in equation 4.1, while returns for hydroenergy
are represented by the constant function
indicated in (4.31) and displayed in figure 4.11,

(4.31)

where as defined earlier, ps accounts for
seasonal changes in energy prices with respect
to the average annual price P. When no
distinction is made between possible changes in
energy prices during on-peak and off-peak
hours, the integration of the product of the
energy rate function (4.1) times the constant marginal price function (4.31) with respect to the
powerplant release T, yields the economic benefit from the operation of a single powerplant
during time period i :

(4.32)

As indicated earlier, the storage at the beginning of period i depends on the history of
inflows and outflows from the reservoir up to that period (equation 4.8). Substituting (4.8) into
(4.32), the total benefit accruing from hydropower generation with variable-head and constant
price is obtained:

(4.33a)

Equation (4.33a) can be written in a more compact form by expressing it in terms of the
average reservoir storage during the time interval i,

(4.33b)
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Figure  4.12  Constant
irrigation demand.

Once again, and as explained for equation (4.9), the explicit modeling of reservoir evaporation
modifies equation (4.33b) to yield the alternative expression (4.33c). The calculation of the
parameter is introduced in Chapter 5, equation (5.31)

(4.33c)

Fixed-Head Powerplant

The hydropower benefit function (4.33) can be simplified for a run-of-river powerplant for which
the energy rate function reduces to a single value because of the fixed energy head acting on the
hydraulic turbines. Using the simplified forms of  erf and b, equations (4.10) and (4.31)
respectively, the economic benefit from the operation of a fixed-head powerplant with constant
energy prices during time interval i results:

(4.34)

After considering all potential controlled and uncontrolled flow
variables entering the powerplant, (4.34) is rewritten in its expanded form as:

(4.35)

Irrigation Demand Area

Given a constant price per million cubic meters
of water used in irrigation, the irrigation benefit
function is as expressed in (4.36) and illustrated
by the demand curve in figure 4.12: 

(4.36)

The integration of (4.36) yields the total benefit
from the IRR demand area (i.e., the total
willingness to pay for irrigation water in the
demand area):
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                             (4.37)

Solving the integral in (4.37), the IRR benefit function for a single time interval i is obtained
(equation 4.38a), and in its expanded form (equation 4.38b):

(4.38a)

(4.38b)

Municipal and Industrial Demand Area

Given a constant price per million cubic meters of M&I water, the M&I demand function reduces
to equation (4.39):

(4.39)

The integration of the demand curve yields the total benefits stemming from the municipal and
industrial water use:

(4.40)

Solving the integral in (4.40), the M&I benefit function for a single time interval i is obtained
(4.41a), and in its expanded form (4.41b):

(4.41a)

(4.41b)

Instream Recreation Area

Given a constant price per million cubic meters of instream recreation water, the IRA demand
function reduces to equation (4.42):

(4.42)
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The integration of the demand with respect to the instream flow yields the total  benefits derived
from the IRA river reach:

(4.43)

Solving the integral in (4.43), the IRA benefit function for a single time interval i is obtained
(equation 4.44a), and in its expanded form (equation 4.44b):

(4.44a)

(4.44b)
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