In light of current studies (for example, Gray and Hamann 2012; Zhu and others 2012) that show climate will change faster than plants can adapt or migrate naturally, it begs the question, “What does this mean for forestry, specifically forest and conservation nurseries?” Growing trees that just survive may become more important than promoting fast growth rates for superior genetics (Hebda 2008). In a recent survey of state and commercial nurseries in the US, most state nurseries have not explored how changes in climate will impact their abilities to select, produce, and provide trees that are suitable to projected climatic conditions (Tepe and Meretsky 2011).

Adaptive strategies such as assisted migration are an option for some tree populations. From a forestry perspective, we have been properly moving trees for a long time, by using seed transfer guidelines. Assisted migration takes this one step further; it is the movement of species and populations to facilitate natural range expansion in a direct management response to climate change (Vitt and others 2010). This does not necessarily mean moving plants far distances, but rather helping genotypes, seed sources, and tree populations move with suitable climatic conditions to avoid maladaptation (Williams and Dumroese 2013). We can avoid the inclination to use foreign plant materials just because they grow well (Hebda 2008), we are not at that point yet. Evaluating species that might naturally migrate is an option. For example, in Canada, Alberta anticipates that future climatic conditions might be suitable for growing ponderosa pine (Pinus ponderosa) and Douglas-fir (Pseudotsuga menziesii) that currently grow near the province but are now absent in the province (Pedlar and others 2011).

Movement of populations to sites that are climatically suitable for growth and productivity at some point in the future is a challenging component of assisted migration (Pedlar and others 2011; Potter and Hargrove 2012). For a species or population, this may entail moving seed across seed-zone boundaries or beyond transfer guidelines (Ledig and Kitzmiller 1992). Methods using transfer functions and provenance data have been developed to guide seed movement under climate change (for example, Beaulieu and Rainville 2005). Online tools are available to assist forest managers and researchers in making decisions about matching seedlots with outplanting sites and seed transfer. The Seedlot Selection Tool (Howe and others 2009) is a mapping tool that matches seedlots with outplanting sites based on current or future climates for tree species such as Douglas-fir and ponderosa pine and Seedwhere (McKenney and others 1999) can map out potential seed collection or outplanting sites based on climatic similarity of chosen sites to a region of interest. Preliminary work in Canada on most commercial tree species...
demonstrates that target migration distances would be short, occurring within current ranges (O’Neill and others 2008; Gray and others 2011). For some tree species, target migration distances are < 125 miles north or < 328 ft up in elevation during the next 20 to 50 y (Beaulieu and Rainville 2005; O’Neill and others 2008; Gray and Hamann 2012; Pedlar and others 2012).

Whilst having to fulfill client demands in current forestry plans and efforts, it will be difficult for nurseries to plan for future demands. With some collaboration, however, we can shift the focus to producing plant materials that grow and survive by modifying past and current projects and implementing studies and strategies. Many existing projects, such as provenance and common garden studies can be transformed with little modification to look at adaptation and response to climatic conditions (Matyas 1994). Information such as where the plant comes from, where it is planted on the site, and how it performs (growth, survival, reproduction, and so on) can guide nursery practices to increase the proportion of species that survive and grow well (McKay and others 2005; Millar and others 2007; Hebda 2008). Nurseries can work with geneticists to explore genotypes that may be resilient to temperature and moisture extremes. The target plant concept (Landis et al. 2010), culturing of stock types for specific outplanting goals and objectives, can be employed to identify and propagate plant materials from hot and dry extremes of a species range. Using disturbed areas as outplanting sites to test assisted migration is a perfect opportunity to also evaluate genotypes, seed mix diversity, and age classes (Spittlehouse and Stewart 2003; Millar and others 2007; Jones and Monaco 2009), although this may mean that nurseries carry tree species that may not be presently native to the outplanting site.

Assisted migration may not be appropriate for every species or population. Establishment of healthy stands is vital now to prepare forests before major changes occur. Further, there is little point in planting the standard species or stocks in regions highly sensitive to climate change (Hebda 2008). Reductions in fire frequency from 100 to 300 y to 30 y, for example, have the potential to quickly shift some forest systems to woodlands and grasslands (Westerling and others 2011), thereby negating the objective to plant trees and instead shifting the focus on other plant species to establish. By 2100, an estimated 55% of landscapes in western US may exhibit climates that are incompatible with vegetation ecosystems occurring there today (Rehfeldt and others 2006).

Because the frameworks and techniques for production and outplanting already exist, forest nurseries can work with researchers and practitioners to start the ball rolling and hopefully curtail significant social, economic, and ecological losses associated with impacts from a rapidly change climate. Changing policies will require collaboration and discussion of how predicted conditions will affect forests, how nurseries can plan for the future, and how clients can be encouraged to plant trees adapted to future conditions, such as warmer conditions and variable precipitation patterns (Tepe and Meretsky 2011). Fortunately, many state nurseries, especially in the eastern half of the US, already carry tree species and seed sources collected from sites further south (often beyond state borders) than the anticipated outplanting sites, suggesting that plant materials being planted now may be adapted to warmer conditions.

Whatever the chosen adaptive strategies, forest and conservation nurseries need to be included in the dialogue for climate change planning. The science and practice of growing trees and other native plants to sustain ecosystems will greatly benefit by increased collaboration between practitioners and researchers (McKay and others 2005). A challenge will be determining when demand for these climate-adapted/assisted migration candidates will occur (Hebda 2008), but nurseries and researchers can prepare for potential demand by broadening their capacity, increasing expertise, and experiment with different genotypes and seed sources.

References

