Rocky Mountain Research Station Publications

RMRS Online Publication - Journal Articles, External Publications, and Special Reports
A bioclimatic approach to predict global regions with suitable climate space for Puccina psidii


Hanna, J. W.; Graca, R. N.; Kim, M. -S.; Ross-Davis, A. L.; Hauff, R. D.; Uchida, J. W.; Kadooka, C. Y.; Rayamajhi, M. B.; Arguedas Gamboa, M.; Lodge, D. J.; Medel-Ortiz, R. Medel; Lopez Ramirez, A.; Cannon, P. G.; Alfenas, A. C.; Klopfenstein, N. B. 2012. A bioclimatic approach to predict global regions with suitable climate space for Puccina psidii. In: Zeglen, S.; Palacios, P., comps. Proceedings of 59th Annual Western International Forest Disease Work Conference; 2011 October 11-14; Leavenworth, WA. Portland, OR: U.S. Department of Agriculture, Forest Service, Forest Health Protection, Region 5. p. 131-136.

Puccinia psidii, the cause of eucalypt-guava-'ohi'a-myrtle rust, can infect diverse plants within the Myrtaceae, and this rust pathogen has the potential to threaten numerous forest ecosystems worldwide. Known occurrence records from Brazil, Uruguay, Paraguay, Costa Rica, USA (Hawaii, Florida, and Puerto Rico), and Japan were used to develop bioclimatic models for predicting suitable climate spaces of this rust on a global scale. Four separate models were developed to predict current distribution of suitable climate space for P. psidii: (1) sample points based on all rust occurrence points in our dataset (All model), (2) sample points based on our dataset for occurrences of the rust on guava (Psidium guajava) from South America only (Guava model), (3) sample points based on our data set for occurrences of the rust on eucalypt (Eucalyptus spp.) from South America only (Eucalypt model), and (4) sample points based on our dataset for occurrences of the rust from multiple hosts in Hawaii only (Hawaii model). The "All model" was also projected for the 2050s (based on years 2040-2069) using the A1B SRES (Special Report on Emission Scenarios) scenario and CCCMA-CGCM 3.1 (Canadian Centre for Climate Modeling and Analysis - third generation coupled global climate model). These models can help determine points of origin, evaluate potential pathways of spread, predict areas at risk for P. psidii introduction, and predict potential future risks for new introductions of P. psidii under climate-change scenarios.

Keywords: Puccinia psidii, rust pathogen, climate change


About PDFs: For best results, do not open the PDF in your Web browser. Right-click on the PDF link to download the PDF file directly to your computer. Click here for more PDF help.


Download Article
http://www.fs.fed.us/rm/pubs_other/rmrs_2012_hanna_j001.pdf

PDF File Size: 605 K


Title: RMRS Other Publications: A bioclimatic approach to predict global regions with suitable climate space for Puccina psidii
Electronic Publish Date: November 9, 2012
Last Update:
November 9, 2012

RMRS Publications | Order a publication | Contact Us