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Abstract Indices that rate the vulnerability of species to climate change in a given area

are increasingly used to inform conservation and climate change adaptation strategies.

These species vulnerability indices (SVI) are not commonly associated with landscape

features that may affect local-scale vulnerability. To do so would increase their utility by

allowing managers to examine how the distributions of vulnerable species coincide with

environmental features such as topography and land use, and to detect landscape-scale

patterns of vulnerability across species. In this study we evaluated 15 animal species that

had been scored with the USDA-Forest Service Rocky Mountain Research Station’s sys-

tem for assessing vulnerability of species to climate change. We applied the vulnerability

scores to each species’ respective habitat models in order to visualize the spatial patterns of

cross-species vulnerability across the biologically diverse Coronado national forest, and to

identify the considerations of spatially referencing such indices. Across the study extent,

cross-species vulnerability was higher in higher-elevation woodlands and lower in desert

scrub. The results of spatially referencing SVI scores may vary according to the species

examined, the area of interest, the selection of habitat models, and the method by which

cross-species vulnerability indices are created. We show that it is simple and constructive

to bring species vulnerability indices into geographic space: landscape-scale patterns of

vulnerability can be detected, and relevant ecological and socioeconomic contexts can be

taken into account, allowing for more robust conservation and management strategies.
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IPCC Intergovernmental program on climate change
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SVI Species vulnerability index

SWReGAP Southwest regional GAP analysis program

USA United States of America

USDA-FS United States Department of Agriculture-Forest Service

USFWS United States Fish and Wildlife Service

USGS United States Geological Survey

Introduction

Conservation and resource management agendas throughout the USA and the world are

increasingly focused on developing effective responses to the ecological consequences of

climate change (Hannah et al. 2002; Pressey et al. 2007; Salazar 2009). One of the effects

of climate change that is already occurring and projected to intensify is the reshuffling of

ecosystems and biodiversity patterns as plants and animals respond to changes in climatic

constraints (Parmesan 2006). Many tools have been developed to predict the effects of

projected climate change on plants and animals (Rowland et al. 2010; Thuiller et al. 2008);

two common strategies for understanding effects of climate change on biodiversity are the

assessment of sensitivity and exposure of one or more species to climate change-related

effects, and the prediction of changes in species’ distributions under changing climate.

Methods to predict species range changes, such as dynamic vegetation models, forest

gap models, and species distribution models, have strengths and weaknesses relating to the

management objectives, the spatial, temporal and biological scale of the evaluation, and

the data available (Thuiller et al. (2008) provides a thorough discussion of different

methods to predict species distributions under climate change). Regardless of the specific

method, spatial projections of changes in species’ distributions have many inherent

uncertainties related to the trajectory of future climate, the response of individual species,

and unforeseen interactions with other species and landscape features (Heikkinen et al.

2006; Williams and Jackson 2007).

A second strategy for understanding climate change effects on biodiversity is to assess

the sensitivity, adaptive capacity and possible exposure, which together define vulnera-

bility, of individual species to the potential effects of climate change (Williams et al.

2008). Species vulnerability indices (SVIs) have been developed by governmental and

nongovernmental agencies, including NatureServe (Young et al. 2009) and the USDA-FS

(Bagne et al. 2011), that leverage information about aspects of ecology that are believed to

be predictive of species’ sensitivity, adaptive capacity and exposure to climate change.

These tools are used to make rapid assessments about species vulnerability to projected

climate change. SVIs are typically made up of sets of questions regarding species’
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tolerances and life history traits, and their outputs are relative numerical scores of vul-

nerability given a specified geographic boundary (e.g. a management area, or the species’

known range). Although SVI scores are generated based on analysis of vulnerability at a

given location, the results of such analyses do not provide information about correlations

between scores and landscape features that may be associated with high vulnerability, such

as land use or topography.

Applying SVIs to geographic space can provide two key pieces of information that

would increase the utility of the scores. First, bringing SVI scores into geographic space

allows researchers and managers to explicitly account for the ecological and socioeco-

nomic contexts, such as land use history and ownership boundaries, that complicate the

ability of species to respond to changes in their environment. The second benefit to

bringing SVIs into geographic space is that the vulnerability scores of all species can be

visualized relative to each species’ known distributions, so that larger landscape-scale

patterns of vulnerability can be detected. This could include the estimation of what we

refer to here as ‘‘landscape vulnerability’’, based on combining the vulnerability patterns of

the assessed species. Thus ‘‘spatializing’’ SVI scores is a sensible next step for this tool’s

use. Toward this end, our goal was to demonstrate the utility of bringing SVI scores into

space. First, we applied SVI scores from a pilot version of the system for assessing

vulnerability of species to climate change (SAVS), developed by the USDA-FS (Bagne

et al. 2011; Coe et al. 2011) to spatially explicit habitat models, and examined the spatial

patterns of the spatialized SVI. Then we created a cross-species vulnerability map, and,

using this map, examined the spatial patterns of the vulnerability of all species assessed

with respect to other environmental attributes. As a final step, we identified important

considerations for placing SVI scores in geographic context, to further assist managers in

prioritizing strategies for managing species.

Methods

Study site

We focused our study on the southwestern USA’s Coronado national forest (‘‘Coronado’’),

which comprises 12 isolated, mountainous ecological management areas (EMAs) in

southeastern Arizona and southwestern New Mexico (Fig. 1). Spanning the boundaries

connecting the Rocky Mountains, the Sierra Madre, and the Sonoran and Chihuahuan

desert biomes, and reaching from 1038 to 2831 m in elevation, the Coronado’s ‘‘sky

island’’ mountain ranges number among the most biologically diverse landscapes in the

world (Marshall 1957; Myers et al. 2000). Climate change adaptation planning is critical to

managing this landscape as it is projected to become both warmer and drier with climate

change, exacerbating many issues in what is already a water-limited region (IPCC 2007;

Seager et al. 2007).

Species data

We analyzed a subset of mammal, bird, reptile and amphibian species identified by

biologists from the Coronado as being of management concern—either listed with the

USFWS (as Threatened, Endangered, Candidate, Of Concern or Under Review), or with

the USDA-FS (as Management Indicator Species, Species of Interest or Sensitive) (Coe

et al. 2011). Each species was scored for its vulnerability to climate change by biologists at
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the USDA-FS’ Rocky Mountain Research Station, as part of a separate study (Coe et al.

2011), using a pilot version of their SAVS assessment tool (Bagne et al. 2011). The SAVS

tool is a questionnaire with multiple-choice responses, each of which is associated with a

point value. Those points are then used to calculate vulnerability scores. The USDA-FS

researchers examined published literature detailing species’ ecology, expected habitat

changes, and output from a vegetation model that predicts potential future locations of

suitable climate to support dominant vegetation communities, to answer the questions and

thus estimate the relative vulnerability of a species to climate change within the Coronado

national forest (Coe et al. 2011). SAVS output is an overall numerical vulnerability score

ranging from -20 to ?20. It also provides four categorical scores that represent species’

sensitivity and exposure to climate change in the categories of habitat, physiology, phe-

nology and biotic interactions (Fig. 2). Each categorical score is calculated from a unique

subset and number of the total questions and then scaled to a common range of -5 to ?5.

Notably, categorized scores do not sum to the overall score range, which is based on all 25

questions. Further, a highly vulnerable or resilient score in one category does not in and of

itself determine overall vulnerability. Rather, an overall vulnerability score is a function of

the total number of questions found to relate to a vulnerability trait and not simply the sum

(a) (b)

(c)

Fig. 1 a The study site was the Coronado national forest, located in southeastern Arizona and southwestern
New Mexico. b The Coronado encompasses over 10 separate mountain ranges across multiple land cover
types. c These ecosystem patterns are largely the result of elevation-driven climate gradients
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of its vulnerability in one or more categories. Finally, this tool is intended for use with

multiple species and provides a measure of relative vulnerability, enabling managers to

prioritize conservation practices among the many species of management concern.

To examine the spatial patterns of vulnerable species, we used the USGS’ SWReGAP

range models, which incorporate known species’ occurrence data and correlated envi-

ronmental factors to map ‘‘potential or probable habitat’’, as a raster image with 30 m

spatial resolution (Boykin et al. 2007; SWReGAP 2011). These potential habitat models

estimate presence based on the resources and conditions present in areas where a species

persists and reproduces or otherwise occurs, and rely on available literature and species

occurrence data to generate a spatial representation of habitat within the species known

range. These models were subjected to expert review, based on the habitat relationships,

the range extent and qualification, and the spatial depiction of the predicted habitat (i.e. the

model). These reviews may be found online (SWReGAP 2011). For this project, we

analyzed a subset of 15 species from the larger project (Coe et al. 2011) that had

SWReGAP habitat models.

We assigned each species’ SAVS vulnerability score to each pixel of potential habitat,

with non-potential habitat assigned a value of 0. This provided us with a spatial pattern of

vulnerability scores (referred to here as SAVS maps). To demonstrate the utility of a cross-

species vulnerability index, we overlaid the score-coded habitat maps of the 15 species,

summed the vulnerability scores in each pixel, and divided the value by number of species

potentially present, to create a mean vulnerability score, what we refer to here as a ‘‘cross-

species vulnerability index’’ (CSVI). We interpreted a mean species vulnerability score to

represent a prioritization of the landscape for land managers, if all species were managed
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Fig. 2 a Species vulnerability
scores and b the sub-scores for
the 15 species examined suggest
a wide range of vulnerability
across the species of concern in
the Coronado. The overall scores
are calculated using all questions
in the species vulnerability
assessment. The sub-scores are
calculated using subsets of
questions, and scaled to a
maximum value of 5 within each
category; that results in the
categorical scores not being a
sum of the overall score
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similarly. We determined that use of the median score or the mode score would lead to

masking outliers, which we felt were important to account for in this index. Importantly,

the species in this study are not all managed similarly, and we address the implications in

our discussion below. The individual species SAVS maps and the CSVI map were used as

our response variables in subsequent comparisons to environmental variables.

Environmental data

Examining the vulnerability of a species in the context of land use, land cover and other

environmental factors is useful for planning climate change adaptation because a species’

vulnerability may be exacerbated or ameliorated based on landscape features within its

habitat. We considered six environmental explanatory variables that could potentially

affect species adaptation to climate change: elevation, land cover, percent vegetation

cover, distance to perennial water sources, distance to roads, trails or recreation sites, and

land stewardship category (Table 1; Ernst et al. 2007; LANDFIRE 2008; Lowry et al.

2007; USDA-FS 2009; USGS 2006). We used elevation as a proxy for climatic variables

such as temperature and precipitation, because the mountain ranges in the Coronado NF

have elevation-based climatic gradients that drive the arrangement of ecosystems along

their slopes, with temperature decreasing and precipitation increasing with greater eleva-

tion (Davison et al. 2010; Marshall 1957). We used the vector data defining the roads, trails

and water sources within the Coronado (USDA-FS 2009) to create raster layers quantifying

the nearest distance to perennial streams, lakes or reservoirs, and the nearest distance to

roads, trails or recreation sites, per 30-m pixel. Both these rasters showed a left-skewed

distribution of values so we used the natural log of these data in analysis, to meet the

assumption of normality. We used the SWReGAP land stewardship dataset to account for

existing mandates to manage for biodiversity (Ernst et al. 2007). The values range from

category 1, meaning the land is mandated for biodiversity management and allowance for

natural disturbances, to category 4, meaning that no known mandate for biodiversity

management exists. We converted the stewardship data set from a vector format to a raster

format to match the other data sets, at 30 m spatial resolution, based on a ‘‘majority rule’’

for each pixel.

Table 1 Sources and details of environmental data we used as explanatory variables in our statistical
analyses

Variable Source Creation
date

Original spatial
resolution

Data type Reference

Elevation USGS national
elevation dataset

2000 30 m Continuous USGS
(2006)

Land cover SWReGAP 2001 30 m Categorical Lowry et al.
(2007)

Percent vegetation cover LANDFIRE 2000 30 m Continuous LANDFIRE
(2008)

Distance to perennial
water

USDA-FS 2010 (vector) Continuous USDA-FS
(2009)

Distance to roads, trails
and recreation sites

USDA-FS 2010 (vector) Continuous USDA-FS
(2009)

Land stewardship SWReGAP 2009 (vector) Categorical Ernst et al.
(2007)
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Data analysis and visualization

We first gathered the mean or the modal values for continuous or categorical environ-

mental variables, respectively, within each species’ potential habitat, across EMAs. Then

we ran ANOVA or regression analyses to evaluate relationships between SAVS scores and

these aggregated environmental variables. Likely due in part to small sample size (n = 15

species), relationships between SAVS scores and any of the environmental variables were

not significant, and we did not include the results of these analyses in this paper. We then

analyzed the CSVI with respect to the six environmental variables. Because we were

analyzing spatial patterns across large swaths of land divided into 30-m pixels, our sample

size across the study site was over 7 million. Additionally, spatial autocorrelation can

affect the Type I error rate, although the effect is negligible in analyses with a large sample

size (in this study, n = 7,490,500; Beale et al. 2010). Nonetheless, to reduce the effects of

spatial autocorrelation and oversampling, we selected a random 1% of pixels for analysis

(n = 74,905), which leads to an average of 3,000 m between sample units. We also did not

include in the ANOVA and Tukey–Kramer statistical tests pixels within this subset that

were in land cover types with a sample size of less than n = 30. We conducted step-wise

multiple regression analysis to examine the relative power of the environmental variables

to explain patterns of CSVI, across the study site. We used minimum Bailey’s information

criterion as the requirement for adding variables to the forward-stepping model, and used

Adjusted R2 as the measure of explanatory power. We then analyzed the effects of land

cover on CSVI, using ANOVA and Tukey–Kramer statistical tests to compare the rela-

tionships to CSVI among land cover types. We undertook these analyses in MATLAB,

ArcGIS, and JMP (ESRI 2010; MathWorks 2010; SAS 2010).

Results

Spatial patterns of individual species vulnerability

Overall SAVS vulnerability scores ranged from 1.3 to 9.9 among the 15 species, with an

average of 5.97 (Fig. 2; Table 2). Habitat-based vulnerability ranged from 0.9 to 4.0

(mean = 2.68), physiological vulnerability ranged from -0.7 to 2.9 (mean = 0.85),

phenological vulnerability ranged from -3.8 to 5.0 (mean = 1.03), and vulnerability due

to biotic interactions ranged from 0.0 to 1.0 (mean = 0.13). Based on the SWReGAP

habitat models, the 15 species assessed were mainly associated with mid-elevation habitat

types, with a mean elevation of 1697.6 m, and majority land cover most often being

Madrean oak encinal (Table 2). The majority SWReGAP stewardship category of habitat

for all but two species was of multiple and extractive uses (category 3); Accipiter gentilis
and Empidonax fulvifrons pygmaeus habitats were primarily associated with stewardship

category 2, wherein biodiversity is explicitly managed and natural disturbances are sup-

pressed. Average suitable habitat was 594.6 m mean distance from roads, trails or recre-

ation sites, ranging from 78.7 to 693.4 among species. Mean distance to perennial water

sources averaged 1676.9 m among species, with a range of 754.8 to 2505.8 m. Potential

habitat of Coccyzus americanus occidentalis was closest to water sources, and to trails,

roads or recreation sites. A. gentilis and E. fulvifrons pygmaeus had habitat farthest away

from water sources (2259.9 and 2505.8 m mean distance, respectively).
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Spatial patterns of the CSVI

Across the Coronado, cross-species vulnerability to climate change ranged from 2.5 to 9.0

(mean = 5.78). Visual examination showed the CSVI to be higher with higher elevations

(seen qualitatively in Fig. 3), where lower temperatures and greater precipitation is found

(Davison et al. 2010). Stepwise multiple linear regression showed land cover to explain

nearly 80% of the variation in CSVI (Adjusted R2 = 0.7900 when all land cover types

were included in the model; P \ 0.0001). Analysis by ANOVA confirmed that variation in

CSVI was significantly related to land cover (F = 11287.63, Adusted R2 = 0.7904,

P \ 0.0001, n = 74,905). Elevation explained an additional 2% of variation (Adjusted

R2 = 0.8136 when land cover and elevation were included in the model; P \ 0.0001) and

EMA explained less than 1% of variation (Adjusted R2 = 0.8188 when land cover, ele-

vation and EMA were included in the model; P \ 0.0001). The rest of the seven

explanatory variables provided less than .05% explanatory power.

Tukey–Kramer comparison of CSVI by land cover type grouped CSVI into 10 levels

based on CSVI (q = 3.59 at a = 0.05, n = 74,869) (Fig. 4). Five land cover types were

significantly associated with the highest CSVI: Chihuahuan succulent desert scrub,

Mogollon chaparral, North American warm desert bedrock cliff and outcrop, Colorado

plateau mixed bedrock canyon and tableland, and Rocky Mountain aspen forest and

woodland. Sonoran paloverde-mixed cacti desert scrub and North American warm desert

volcanic rockland were significantly associated with the lowest CSVI.

Discussion

Species vulnerability indices are one of the many tools used by researchers and land

managers to understand potential climate change effects on species. Place-based but not

spatially explicit, SVI can provide greater insights into climate change management of

landscapes if they are brought into geographic space. Our study finds that, for the 15

species examined across the Coronado, higher vulnerability is associated with specific land

cover types, including rocky or barren land cover, woodlands, and riparian areas (Fig. 4).

(a) (b)

Fig. 3 a The cross-species vulnerability index (CSVI). This index shows strong patterns with relation to
elevation, both within and across EMAs (refer to Fig. 1 for elevation profile). b Landscape-scale examination
of these patterns in the context of land use features can inform management decisions within each EMA
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Considerations for creating a climate change vulnerability index across species

Examining the habitat of a single vulnerable species in the context of land use, land cover

and other environmental factors is useful for planning climate change adaptation for that

one species, because a species’ vulnerability may be exacerbated or ameliorated based on

landscape features within its habitat. To leverage SVI further, a CSVI can aid managers in

identifying areas that have a consistently high vulnerability score across a suite of species.

In our analysis we identified four factors to consider when bringing SVIs into geographic

space and comparing them against environmental parameters. The choice of species,

management area, habitat model, and cross-species index algorithm all affect the results

and interpretation of cross-species vulnerability across a landscape.

Species assessed

In creating a geographically explicit vulnerability index that aggregates the scores of

individual species with the intent of examining landscape-scale vulnerability patterns,

careful consideration should be given to how many species are included, where the species

Land Cover
1.  N. American Warm Desert Volcanic Rockland
2.  Sonoran Paloverde-Mixed Cacti Desert Scrub
3.  Apacherian-Chihuahuan Mesquite Upland Scrub
4.  Sonoran Mid-Elevation Desert Scrub
5.  N. American Warm Desert Wash
6.  Chihuahuan Creosotebush, Mixed Desert and Thorn Scrub
7.  Chihuahuan Sandy Plains Semi-Desert Grassland
8.  Apacherian-Chihuahuan Piedmont Semi-Desert Grassland and Steppe
9.  N. American Warm Desert Riparian Mesquite Bosque
10. Madrean Encinal
11. N. American Warm Desert Riparian Woodland and Shrubland
12. Madrean Pinyon-Juniper Woodland
13. Rocky Mountain Ponderosa Pine Woodland
14. Madrean Upper Montane Conifer-Oak Forest and Woodland
15. Madrean Pine-Oak Forest and Woodland
16. N. American Warm Desert Lower Montane Riparian Woodland
17. Madrean Juniper Savanna
18. N. American Warm Desert Bedrock Cliff and Outcrop
19. Mogollon Chaparral
20. Rocky Mountain Aspen Forest and Woodland
21. Chihuahuan Succulent Desert Scrub
22. Colorado Plateau Mixed Bedrock Canyon and Tableland

C
S

V
I

3

4

5

6

7

8

1 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 222

mean
lower 95% CI

upper 95% CI

 n
137
576
6518
71
44
2666
42
10,334
233
19,204
30
14,197
2990
1178
6267
177
182
2070
6908
256
172
617

Level
A
A
B
B
C
C
C,D
D
E
F
F, G
G
G
H
H
H
I
J
J
J
J
J

Mean
3.62
3.63
3.84
3.94
5.06
5.15
5.20
5.34
5.61
5.84
5.99
6.10
6.12
6.32
6.36
6.38
6.63
6.78
6.79
6.79
6.80
6.80

Std 
Dev
0.203
0.205
0.827
0.398
0.329
0.242
0.000
0.350
0.857
0.348
0.092
0.435
0.175
0.420
0.302
0.353
0.229
0.151
0.140
0.076
0.063
0.085

SEM
0.017
0.009
0.010
0.047
0.050
0.005
0.000
0.003
0.056
0.003
0.017
0.004
0.003
0.012
0.004
0.027
0.017
0.003
0.002
0.005
0.005
0.003

Lower 
95% CI
3.58
3.61
3.82
3.84
4.96
5.14
5.20
5.33
5.50
5.83
5.96
6.09
6.12
6.29
6.35
6.32
6.60
6.77
6.78
6.78
6.79
6.80

Upper 
95% CI
3.65
3.64
3.86
4.03
5.16
5.16
5.20
5.34
5.72
5.84
6.03
6.11
6.13
6.34
6.37
6.43
6.66
6.79
6.79
6.80
6.80
6.81

3

Fig. 4 Variation explained in the CSVI by land cover (ANOVA: F = 11287.63, adusted R2 = 0.7904,
P \ 0.0001, n = 74,905) suggests that there are significant differences in CSVI among land cover types,
including higher CSVI in woodlands and lower CSVI in desert scrub lands (Tukey–Kramer: q = 3.59 at
a = 0.05). SEM standard error of the mean
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are found within the study extent, and their reasons for evaluation. In our study, 15 species

were examined spatially. Because of the steep, climatically driven biological gradients that

the Coronado comprises, the biodiversity in this forest is very high (Marshall 1957). Given

that we select a certain quantity of species that together span all of the ecosystems across

the study extent, species habitats will likely overlap less in these steep gradients than if we

were to analyze the same quantity of species in a site with fewer ecosystems. This is a

mixed blessing; we get to examine species vulnerability across many ecosystems, but we

require analysis of a higher amount of species in order to gain a robust measure of cross-

species vulnerability. Across our study site, the mean potential presence of species was

four species per 30-m pixel, with the highest mean potential species presence in the

Chiricahua EMA (5.4 species potentially present on average) and the lowest mean potential

species presence in the Santa Teresa EMA (2.6) (Fig. 5). The habitat models of Rana
chiricahuensis, R. catesbeiana, C. americanus occidentalis and E. fulvifrons pygmaeus
showed little potential presence in the Coronado. Many of the species examined in our

study were present in one half of the region, e.g. the eastern (e.g. Idionycteris phyllotis)

western (e.g. Peromyscus merriami) or southern (e.g. Trogon elegans) ranges, consequent

to the intersection of major biomes in this area (Marshall 1957). Additionally, habitat

models for 10 of the 15 species analyzed had mean potential presence between 1,400 and

1,800 m (Table 1). Accordingly, areas of the study extent that had potential presence of

species C7 were concentrated in elevations between 1,370 and 2,224 m, whereas the

higher-elevation tips and the lower-elevation rings of each EMA tended to have B3 species

potentially present (Fig. 5). As a result of the diversity of species ranges, the CSVI was

often based on six or fewer scores—particularly at the lowest and highest elevations of the

study extent—leading to potential bias, e.g. where one species VI score was substantially

greater or less than the other few in the same pixel. For example, the low CSVI scores at

the bottom of the Santa Catalina and Tumacacori EMAs is driven largely by the potential

presence of P. merriami (the low CSVI can be seen in Fig. 4a). Analysis of more species,

especially those with habitats in the lower and higher elevations of these gradients, as

habitat models become available for those species of concern in the Coronado, will reduce

Number of species potentially present
0
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Fig. 5 Number of species
potentially present in the
Coronado was calculated based
on overlaying habitat models.
The highest potential species
presence in this study falls at
mid-elevations, whereas the
lower elevations and higher
elevations tend to have fewer
species potentially present
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this type of bias and make the CSVI an even stronger tool for understanding landscape-

scale species vulnerability patterns.

There can also be issues of interpretation that develop when species that managers

want to conserve are included in the same analysis as species that managers would like

to eliminate from the lands they manage. In this assessment, R. chiricahuensis and

R. catesbeiana were broadly sympatric; in addition, the former, a federally listed endan-

gered species, was found to be extremely vulnerable to climate change and the latter, an

invasive non-native species, was found to be relatively invulnerable (Table 2). The use of

the CSVI to make decisions on landscape-scale conservation or management actions is in

this instance complicated by the overlap in the habitats that contain species that managers

want to manage very differently. A next step for CSVI maps might be to develop separate

CSVI for species that are grouped based on how managers may wish to manage them, e.g.

different guilds, species that are also threatened by non-climate factors, or invasive non-

native species.

Management area of interest

The spatial scale of the CSVI, in consideration of the species ranges and environmental

features in and around the study extent, may affect the applicability of a CSVI. In our study

area, the habitat models of all 15 species show potential presence both inside and outside of

the management boundaries, and animal movement is a key issue that is affected by

climate change (Thuiller et al. 2008). For example, in the Huachuca EMA the eastern-most

edge of the Huachuca Mountains are partially owned by the Department of Defense. The

CSVI was highest in this area of the Huachuca EMA (Fig. 4); collaborative management

might be necessary for adaptation of the vulnerable species in that area. Inclusion of a

spatial buffer around study sites in both calculating the SVI and analyzing the cross-species

vulnerability patterns might be useful for making decisions about how, and with whom, to

collaborate in managing climate-change-vulnerable species.

Habitat models used

The age and quality of the data used to generate species’ habitat models and the constraints

of the modeling algorithm can introduce biases when these habitat models are incorporated

into a cross-species vulnerability measure. For example, the SWReGAP potential habitat

models do not provide information on the probability of species occurrence. A probabilistic

model would have allowed for a weighting based on the probability of occurrence of each

vulnerable species, and would reduce bias in the analysis that is due to mis-estimation of

species occurrence, i.e. errors of both commission and omission. For example, in our study,

the CSVI on the eastern side of the Santa Rita EMA is noticeably lower than at similar

elevation but different aspects along the mountain range (Fig. 3a). In this EMA the CSVI is

strongly related to the presence of T. elegans, with a score of 9.9, the highest score of

the species assessed. According to the SWReGAP model there is no potential habitat for

T. elegans down the eastern slope of the Santa Rita Mountains. However, based on the

SWReGAP model’s description of the species’ habitat, riparian areas supporting Platanus
wrightii, a tree preferred by T. elegans, are located along the east side of the range that is

shown not to support T. elegans (Boykin et al. 2007). This apparent contradiction is due to

the first constraint of the SWReGAP habitat-modeling algorithm: USGS hydrologic unit

code boundaries in which an individual was known to have occurred (Boykin et al. 2007).

These coarse boundaries constrained T. elegans’ habitat model boundaries, even though
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description of the bird’s potential habitat suggests otherwise, as does outside evidence of

T. elegans presence (provided by the Arizona Game and Fish Department’s HDMS), found

outside those hydrologic units (HDMS 2009). More precise habitat models could lessen

these effects; additionally, with a greater number of species evaluated across the study site,

these biases might be reduced so that a more robust understanding of landscape-scale

cross-species vulnerability could be attained.

Cross-species index creation

We created our CSVI by adding all of the SVI scores together and dividing that sum by the

amount of species potentially present, per pixel. This averaging method leads to a CSVI

that is specific to the species evaluated and the study site examined. Averaging might be

the most useful when assessing a suite of species that have generally overlapping habitats

and that are under a similar management strategy (e.g. desire is to increase population

levels). An interpolation-based calculation, where a cross-species vulnerability score is

estimated between the boundaries of the habitat models, would be a valuable next step for

instances where we want to estimate ‘‘landscape vulnerability’’, i.e. the potential vulner-

ability of species other than those assessed. Alternatively, weighting the SVI scores based

on the ‘‘value’’ of each species to the management objectives might be useful; weights

might, for example, relate to each species’ vulnerability to other factors (e.g. habitat

fragmentation).

Beyond the four factors we’ve identified as important to consider when creating a cross-

species index measuring vulnerability to climate change, assumptions and statistical issues

including data quality, age, and correlation within and among data sets should be taken into

consideration and explicitly acknowledged for the uncertainty that they likely bring to the

results. In our study we used interpolated data sets for land cover, percent vegetation cover,

and elevation. Each of these has inherent uncertainty in the predictions of its values

(LANDFIRE 2008; Lowry et al. 2007; USGS 2006). Additionally, collinearity among the

explanatory variables may confound the apparent relationships between each and the

CSVI. In our study, vegetation type and elevation were highly correlated (R2 = 0.6112),

which was to be expected as elevation drives climate, and climate in turn affects vegetation

type. A rule of thumb for using collinear explanatory variables is that they are correlated at

less than R = 0.8, or R2 B 0.64 (Farrar and Glauber 1967), and users should always

interpret with prudence analyses of variables that known to be collinear.

Conclusions

Our study demonstrates a method for bringing indices measuring species vulnerability to

climate change into geographic space, where the context of land use, land cover and other

environmental factors can be more explicitly considered in species-specific plans for

adaptation to the effects of climate change. Across the Coronado national forest, the

species assessed showed patterns of climate change vulnerability related to specific land

cover types, and along the elevation gradients. Particularly in light of the mountainous

terrain of the Coronado national forest, prudent management of higher-elevation species is

critical, because they may have to contend with both climate change effects and decreasing

habitat area as they are forced up the slopes. Future work in spatializing SVI would include

evaluation of the vulnerability to climate change of other species in this study site, in order

to increase the robustness of the resulting CSVI. Additionally, examination of other
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management areas and gradients might be useful in providing insight into larger-scale

patterns of species vulnerability to climate change. Creation of separate CSVIs for species

associated with different types of concerns, e.g. threatened and endangered species,

invasive non-native species, and/or economically valuable or intensively managed species,

may serve to refine management approaches. Implemented with consideration for the

purpose, data sets, and spatial and temporal context relevant to the study, the methodology

demonstrated here can bring to light potential management strategies to promote species-

scale and landscape-scale adaptation to climate change.
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