Rocky Mountain Research Station Publications

RMRS Online Publication - Journal Articles, External Publications, and Special Reports
A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher


York, Patricia; Evangelista, Paul; Kumar, Sunil; Graham, James; Flather, Curtis; Stohlgren, Thomas. 2011. A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher. Frontiers of Earth Science. 5(2): 120-129.

Biologic control of the introduced and invasive, woody plant tamarisk (Tamarix spp, saltcedar) in south-western states is controversial because it affects habitat of the federally endangered South-western Willow Flycatcher (Empidonax traillii extimus). These songbirds sometimes nest in tamarisk where floodplain-level invasion replaces native habitats. Biologic control, with the saltcedar leaf beetle (Diorhabda elongate), began along the Virgin River, Utah, in 2006, enhancing the need for comprehensive understanding of the tamarisk-flycatcher relationship. We used maximum entropy (Maxent) modeling to separately quantify the current extent of dense tamarisk habitat (>50% cover) and the potential extent of habitat available for E. traillii extimus within the studied watersheds. We used transformations of 2008 Landsat Thematic Mapper images and a digital elevation model as environmental input variables. Maxent models performed well for the flycatcher and tamarisk with Area Under the ROC Curve (AUC) values of 0.960 and 0.982, respectively. Classification of thresholds and comparison of the two Maxent outputs indicated moderate spatial overlap between predicted suitable habitat for E. traillii extimus and predicted locations with dense tamarisk stands, where flycatcher habitat will potentially change flycatcher habitats. Dense tamarisk habitat comprised 500 km2 within the study area, of which 11.4% was also modeled as potential habitat for E. traillii extimus. Potential habitat modeled for the flycatcher constituted 190 km2, of which 30.7% also contained dense tamarisk habitat. Results showed that both native vegetation and dense tamarisk habitats exist in the study area and that most tamarisk infestations do not contain characteristics that satisfy the habitat requirements of E. traillii extimus. Based on this study, effective biologic control of Tamarix spp. may, in the short term, reduce suitable habitat available to E. traillii extimus, but also has the potential in the long term to increase suitable habitat if appropriate mixes of native woody vegetation replace tamarisk in biocontrol areas.

Keywords: niche modeling, species interactions, Tamarisk, South-western Willow Flycatcher, habitat overlap analysis


About PDFs: For best results, do not open the PDF in your Web browser. Right-click on the PDF link to download the PDF file directly to your computer. Click here for more PDF help.


Download Article
http://www.fs.fed.us/rm/pubs_other/rmrs_2011_york_p001.pdf

PDF File Size: 325 K


Title: RMRS Other Publications: A habitat overlap analysis derived from Maxent for Tamarisk and the South-western Willow Flycatcher
Electronic Publish Date: June 27, 2011
Last Update:
June 27, 2011

RMRS Publications | Order a publication | Contact Us