Rocky Mountain Research Station Publications

RMRS Online Publication - Journal Articles, External Publications, and Special Reports
Factors affecting sustained smouldering in organic soils from pocasin and pond pine woodland wetlands


Reardon, James; Hungerford, Roger; Ryan, Kevin. 2007. Factors affecting sustained smouldering in organic soils from pocasin and pond pine woodland wetlands. International Journal of Wildland Fire. 16: 107-118.

The smouldering combustion of peat and muck soil plays an important role in the creation and maintenance of wetland communities. This experimental study was conducted to improve our understanding of how moisture and mineral content constrain smouldering in organic soil. Laboratory burning was conducted with root mat and muck soil samples from pocosin and pond pine woodland wetlands common on the North Carolina coastal plain. The results of laboratory and prescribed burning were compared. Laboratory results showed that moisture and mineral content influenced sustained smouldering in root mat soils. Predictions based on logistic regression analysis show that root mat soils with an average mineral content of 4.5% had an estimated 50% probability of sustained smouldering at a moisture content of 93%, whereas at moisture contents above 145% the estimated probability was less than 10%. The odds that root mat soil will sustain smouldering decrease by 19.3% for each 5% increase in moisture content. Root mat soils with an average mineral content of 5.5% and a moisture content of 93% had an estimated 61% probability of sustained smouldering. The odds that root mat soil will sustain smouldering combustion increased by 155.9% with each 1% increase in mineral content. Root mat and muck soils differ in physical and chemical characteristics expected to influence smouldering behaviour. The formation of muck soil has led to increases in density, smaller soil particle size, changes in water holding characteristics and increases in waxes, resins and bituminous compounds. Muck soil smouldered at higher moisture contents than root mat soil. Muck soil at a moisture content of 201% had an estimated 50% probability of sustained smouldering, whereas at moisture contents above 260% the estimated probability was less than 10%. The odds that muck soil will sustain smouldering combustion decrease by 17.2% with each 5% increase in moisture content. Ground fire in the prescribed burns stopped its vertical spread in organic soils at moisture contents consistent with logistic regression predictions developed from our laboratory results.

Keywords: smouldering combustion, organic soils, woodland wetlands, moisture and mineral content, prescribed burning


About PDFs: For best results, do not open the PDF in your Web browser. Right-click on the PDF link to download the PDF file directly to your computer. Click here for more PDF help.


Download Article
http://www.fs.fed.us/rm/pubs_other/rmrs_2007_readon_j001.pdf

PDF File Size: 1.4 MB


Title: RMRS Other Publications: Factors affecting sustained smouldering in organic soils from pocasin and pond pine woodland wetlands
Electronic Publish Date: July 5, 2007
Last Update:
July 5, 2007

RMRS Publications | Order a publication | Contact Us