Rocky Mountain Research Station Publications

RMRS Online Publication - Journal Articles, External Publications, and Special Reports
Belowground carbon cycling in a humid tropical forest decreases with fertilization


Giardina, C.; Binkley, D.; Ryan, M.; Fownes, J. 2004. Belowground carbon cycling in a humid tropical forest decreases with fertilization. In Oecologia 139: 545-550. Published online: 8 April 2004. Springer-Verlag 2004.

Only a small fraction of the carbon (C) allocated belowground by trees is retained by soils in long-lived, decay-resistant forms, yet because of the large magnitude of terrestrial primary productivity, even small changes in C allocation or retention can alter terrestrial C storage. The humid tropics exert a disproportionately large influence over terrestrial C storage, but C allocation and belowground retention in these ecosystems remain poorly quantified. Using mass balance and 13C isotope methods, we examined the effects of afforestation and fertilization, two land-use changes of large-scale importance, on belowground C cycling at a humid tropical site in Hawaii. Here we report that in unfertilized plots, 80% of the C allocated belowground by trees to roots and mycorrhizae was returned to the atmosphere within 1 year; 9% of the belowground C flux was retained in coarse roots and 11% was retained as new soil C. The gains in new soil C were offset entirely by losses of old soil C. Further, while fertilization early in stand development increased C storage in the litter layer and in coarse roots, it reduced by 22% the flux of C moving through roots and mycorrhizae into mineral soils. Because soil C formation rates related strongly to rhizosphere C flux, fertilization may reduce an already limited capacity of these forests to sequester decay-resistant soil C.

Keywords: Ecosystem carbon cycling, Hawaii, rhizosphere respiration, soil surface CO2 efflux, soil carbon formation.


About PDFs: For best results, do not open the PDF in your Web browser. Right-click on the PDF link to download the PDF file directly to your computer. Click here for more PDF help.


Download Article
http://www.fs.fed.us/rm/pubs_other/rmrs_2004_giardina_c001.pdf

PDF File Size: 350 K


Title: RMRS Other Publications: Belowground carbon cycling in a humid tropical forest decreases with fertilization
Electronic Publish Date: April 7, 2006
Last Update:
April 7, 2006

RMRS Publications | Order a publication | Contact Us