Rocky Mountain Research Station Publications

RMRS Online Publication - Journal Articles, External Publications, and Special Reports
Comparing five modelling techniques for predicting forest characteristics


Moisen, Gretchen G.; Frescino, Tracey S. 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling. 157: 209-225.

Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling techniques to determine which tools are best suited to mapping tasks given multiple objectives and logistical constraints. Consequently, five modelling techniques were compared for mapping forest characteristics in the Interior Western United States. The modelling techniques included linear models (LMs), generalized additive models (GAMs), classification and regression trees (CARTs), multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs). Models were built for two discrete and four continuous forest response variables using a variety of satellite-based predictor variables within each of five ecologically different regions. All techniques proved themselves workable in an automated environment. When their potential mapping ability was explored through simulations, tremendous advantages were seen in use of MARS and ANN for prediction over LMs, GAMs, and CART. However, much smaller differences were seen when using real data. In some instances, a simple linear approach worked virtually as well as the more complex models, while small gains were seen using more complex models in other instances. In real data runs, MARS and GAMS performed (marginally) best for prediction of forest characteristics.

Keywords: predictive mapping, forest inventory, classification tree, regression tree, mulivariate adaptive regression spline, MARS, artificial neural network


About PDFs: For best results, do not open the PDF in your Web browser. Right-click on the PDF link to download the PDF file directly to your computer. Click here for more PDF help.


Download Article
http://www.fs.fed.us/rm/pubs_other/rmrs_2002_moisen_g001.pdf

PDF File Size: 2.1 MB


Title: RMRS Other Publications: Comparing five modelling techniques for predicting forest characteristics
Electronic Publish Date: October 3, 2011
Last Update:
October 3, 2011

RMRS Publications | Order a publication | Contact Us