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Scheduling Removals for Fuels Management

John Hof1 and Philip Omi2

Abstract—We explore management science options for scheduling the placement
of fuels reductions. First, we look at approaches for creating and maintaining a pre-
specified set of forest conditions that are deemed desirable from a fuels management
perspective. This approach is difficult because the pre-specified forest is hard to
determine and because it is an any-aged forest management problem that is intrinsi-
cally nonlinear. Second, we look at capturing the spatial relationships suggested by
fire behavior in long-term fuels management. This approach is difficult because fire
origins and behavior can be quite random and unpredictable. It is necessary to ac-
cept a particular fire event (analogous to the 500-year flood in flood-control planning)
as the target for fuels management. Overall, we conclude that long-term fuels man-
agement presents a formidable problem for management scientists. Numerically
intense stochastic programming methods, such as Monte Carlo repetitions with a fire
simulator, may be the most promising approach.

Background

The use of mathematical models for managing fires has a rich and varied
history in North America. Martell (1982) traces the application of op-

erations research methods in forest fire studies back to the early 1960s. The
earliest potential applications of operations research techniques to wildland
fire management were mentioned by Shephard and Jewell (1961). Follow-up
work by Parks and Jewell (1962) generated considerable interest by examin-
ing the use of differential equations and calculus to identify the optimal
suppression force for a forest fire. Swersey (1963) and McMasters (1966)
extended Parks and Jewell’s work by focusing on the optimal mix of different
suppression units and the effects of labor constraints on resource allocation rules.

Growing familiarity with optimization techniques spawned additional fire
management applications, notably analyses of detection options (Kourtz and
O’Regan 1971) and airtanker retardant delivery systems (Simard 1979,
Greulich and O’Regan 1982). Fire suppression has continued to receive con-
siderable interest through the use of optimal control theory (Parlar and Vickson
1982), nonlinear programming (Aneja and Parlar 1984), and catastrophe theory
(Hesseln et al. 1998). In addition to optimization, simulation modeling has
provided useful insights for evaluating management alternatives, especially in
an uncertain decision environment (Ramachandran 1988, Fried and Gilless 1988,
Mees and Strauss 1992, Mees et al. 1993, Gilless and Fried 1999). Other simula-
tion work oriented towards allocating management resources in fire containment
efforts includes Mees (1985), Anderson (1989), and Fried and Fried (1996).

Boychuk and Martell (1988) used Markov chains to analyze seasonal hiring
requirements. Martell et al. (1989) modeled seasonal variation in the occur-
rence of human-caused forest fires. Mills and Bratten (1982) described the
use of an economic efficiency system for minimizing the “cost plus net value
change” of various fire management alternatives. And, a number of expert
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systems have also been developed for wildfire containment applications, such
as Kourtz (1987), Saveland et al. (1988), Fried and Gilless (1989), Stock et
al. (1996), and Hirsch et al. (1998).

Introduction

Recent interest in fire and fuel management is particularly motivated by the
high fuel levels in many forested areas, especially in ecosystems with short fire
return intervals and where fire was excluded during the 20th century (Arno
and Brown 1991, Covington and Moore 1994). These fuel conditions create
a need for the long-term reduction of fuel loads. This management problem
will require new and spatially explicit management science methods expanded
to landscape scales. Most approaches in the current literature boil down to a
greedy algorithm selecting areas according to some ranking of risk or effec-
tiveness (e.g., Chew et al. in press, Omi et al. 1981). In this paper, we will
explore a few options for attacking this problem that are a bit richer in either
dynamic or spatial relationships, and point out the significant difficulties along
the way. First, we will look at approaches for creating and maintaining a pre-
specified set of forest conditions that are deemed desirable from a fuels
management perspective. Second, we will look at capturing the spatial rela-
tionships suggested by a fire event targeted for long term fuels management.

Creating and Maintaining a Desired Forest

A number of authors have suggested that fire and fuels conditions in pon-
derosa pine and mixed conifer forests would be improved by creating a forest
with densities and age structures that emulate historical conditions or natural
processes (e.g., Brown et al. 1999, Keifer et al. 2000). A forest’s fuel profile is
quite complex, but let us assume that a pre-specified density and age structure
can be defined that is “desirable” from a fuels management perspective. Sched-
uling the removals (through controlled burning, mechanical removals,
commercial timber harvests, and other methods) to create and maintain such
a forest presents the forest management scientist with a formidable problem
in and of itself. Let us begin with the traditional timber harvest scheduling
models that focused on removals to optimize some measure of present net
worth.

Traditional Timber Harvest Scheduling Models

Traditional approaches to even-aged timber harvest (and other removals)
scheduling are summarized in Johnson and Scheurman (1977). Using the
“Model I” as the most typical formulation, the approach defines discrete time
periods and limits to the age of harvest, so as to create a finite number of
scheduling options on specified units of land. Assuming that the objective
function is discounted net revenue maximization, the problem is typically for-
mulated as:
Maximize:
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Subject to:
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Where:

Indexes
t indexes time periods
i indexes analysis areas
j indexes management regimes
p = number of time periods in the planning horizon
m = number of analysis areas
ni= number of harvesting regimes for analysis area i

Variables
tH = total harvest in the time period t
ijX = number of acres in analysis area i allocated to management regime j

Parameters
Ai= number of acres in analysis area i
Vijt= the yield volume per acre in analysis area i, in harvesting regime j, and in

time period t
Tt= the time (in years) at the midpoint of time period t
r = the discount rate
R = the nominal revenue per unit of volume harvested
L = the nominal cost per unit of volume harvested
ijtC = the nominal per-acre cost in time period t for analysis area i and harvest

regime j

Notice that discrete removal regimes with a limited number of manage-
ment actions are defined with discrete time periods, and yields are approximated
accordingly. It should also be noted that this approach is quite conducive to
constraints such as nondeclining yield, formulated as:

H H t = pt t£ +1 1,..., -1

If we were to try to use this approach to create and maintain the desired
forest for fuels management purposes, we would probably start by defining
our land units at a fairly fine scale (so that they are relatively spatially explicit).
Then, state variables ( iktS ) would be defined that track the number of trees in
different age classes (k ) in each land unit (i ), and each time period (t ). If
each management regime (Xij ) were defined such that specific-aged trees are
removed, then the state variables could be defined as some function of the
management regimes:

S f X i, j,k,tikt ij= ( ) "
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and the state variables could be used in objective functions or constraints to
optimize the creation and maintenance of the desired forest from a fuel man-
agement perspective.

The primary problem with this approach is that there is an extremely large
number of management regimes implied. For each land unit, a nearly infinite
number of different options would be possible in terms of the number of
different trees in different age classes harvested in different time periods. In
order to even approach an optimal conversion and maintenance of the desired
age structure over all the land units, the choice variables would have to in-
clude a reasonable representation of all options available. This problem arises
because the Model I formulation presented above is an even-aged manage-
ment model, and the problem of creating a forest with a particular
location-specific age distribution is really an “any-aged management” prob-
lem.

An Any-Aged Management Approach

The early studies that formulated optimization models for uneven-aged
management (e.g., Adams and Ek 1974) assumed a steady state solution and
viewed the stand-level uneven-aged management problem as one of deter-
mining the optimal diameter class distribution, the optimal species mix, the
optimal cutting cycle length, and also an optimal conversion strategy for stands
not initially in the desired steady state (Hann and Bare 1979, Gove and
Fairweather 1992). The steady state assumptions make the problem more
tractable, with choice variables (based on diameter classes) and a cutting cycle
that apply across the stand.

The less restrictive approach in Haight et al. (1985) is probably more con-
ducive to fuels management, because it does not necessarily need to be used in
the context of a steady state solution (see also, Buorngiorno and Michie 1980).
Haight (1987) and Haight and Monserud (1990) subsequently coined the
term “any-aged management” which we use here as the underlying basis for
fuels management. The problem with the model in Haight et al. is that only
relatively small problems can be solved (as it is nonlinear). For this apparent
reason, Haight et al. only apply their model to a single stand. What is needed
for fuels management is a formulation that can handle many diverse (and spa-
tially explicit) stands and be solvable with large problems covering large areas
of land.

The Haight et al. (1985) and Buongiorno and Michie (1980) models de-
fine choice variables that directly relate to the trees removed, rather than the
area treated as in the traditional timber harvest scheduling models described
above. The Haight et al. model is nonlinear because the periodic ingrowth
and mortality of trees in each age class are nonlinear functions of the number
of trees in (potentially) all the age classes. One approach to the large-scale
fuels management problem might be to relax this assumption enough to for-
mulate a linear program with many stands. At this point, let us abandon the
economic objective function in favor of one that directly optimizes the cre-
ation and maintenance of the desired forest. A possible formulation along
these lines might look like:

Minimize:
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Where:
Indexes

t indexes time periods (there are p of them)
i indexes analysis areas (there are m of them)
k indexes age groups (there are q of them)
Note: t and k are defined with the same time step.

Variables
Xikt= the number of trees harvested in time period t, in area i, and in age class k
Sikt= the number of trees in time period t, in area i, and in age class k
Ait= the number of trees artificially planted in area i in time period t

Parameters
rik= the natural regeneration rate for age class k in area i

Uik = the targeted number of trees in age class k in area i

Sik = the initial number of trees in age class k in area i
Mik= the mortality rate for age class k in area i

Equation (1) minimizes the sum of all deviations from the desired forest,
over all land units, age classes, and time periods. Equations (2) and (3) define
the lambda variables as the absolute value of the deviation of the state vari-
ables from the desired forest variables. Equation (4) calculates the state variables
for the first time period as the initial conditions less any removals (as choice
variables) that take place at the beginning of the first time period. It is as-
sumed here that all removals happen at the beginning of each time period.
Removals are also accounted for in equations (6) and (7). Equations (5)-(7)
track the trees in each land unit as they move through the age classes from
time period to time period. Note that the time periods and the age classes
need to be defined with consistent time steps. Equation (5) applies to age
class 1, equation (7) applies to the oldest age class, and equation 6 applies to
all age classes in between. Natural regeneration is accounted for as a param-
eter and artificial planting is accounted for as a choice variable in equation (5).
Mortality is accounted for as a parameter in equations (6) and (7).

Clearly, the weakness of this formulation (in terms of creating a given age
structure) is the heroic assumption that mortality and regeneration in each
age class and each area are linear functions of the number of trees in that age
class and that area, such that M and r are fixed constants. Mortality and regen-
eration have always been problematic in timber harvest scheduling models
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because they are affected by so many factors and because they are subject to
significant randomness. The impact of these simplifying assumptions would
vary from case to case, but it is not hard to imagine situations where they
would yield significantly incorrect results. As a simple example, imagine a case
where very high densities of young seedlings already crowd the under-story,
but equation (5) would continue to add regeneration at the same rate as if
there were no seedlings at all.

An alternative approach that might be preferable in some cases would be to
make mortality and/or regeneration a linear function of the number of trees
in multiple (perhaps all) age classes (see Buorngiorno and Michie 1980). The
r and M parameters would then apply to the total number of trees in multiple
age classes, possibly the entire area. This would still, however, be a simplistic,
linear characterization of very complex processes.

The analyst might be able to repeatedly solve the model, adjusting the r
and M parameters over the planning horizon to closer match the state of the
forest in solution (in each time period). Whether such an iterative approach
would converge on a stable solution or not would, again, be expected to vary
from case to case. It does help that the purpose of the model is to come as
close as possible to a pre-specified forest. Still, if the initial state is much differ-
ent from the desired state (which we would expect when the initial fuels
condition is highly undesirable), then the forest mortality and regeneration
rates for the desired state would not be very accurate during the conversion
period. The fact of the matter is that the any-aged forest management prob-
lem is much more difficult from an optimization modeling standpoint than
the even-aged problem, which means that no totally satisfactory large-scale
approach is available at this time to optimally create and maintain a pre-speci-
fied forest structure that is not even-aged.

Before concluding our discussion on creating and maintaining a desired
forest, we should reiterate that an “optimal” fuel condition would be much
more complicated to determine than the age-structure problem discussed here.
The fuel profile would be influenced by harvest practices, such as slash re-
moval standards, as well as many forest dynamics not captured in the simple
designation of an age structure. Further, judicious fuel management may in-
volve much more than tree removals. For example, a manager may wish to
leave trees behind for a shaded fuelbreak that requires needle-fall for periodic
maintenance prescribed burns. The problem is dauntingly complex, and we
have yet to discuss the topic of the next section—spatial relationships.

Spatial Relationships—Optimization With a
Target Fire

The previous approach is spatially explicit in that choice variables are de-
fined with sufficient spatial detail to emulate historical conditions across the
landscape, but no spatial relationships (such as juxtaposition, proximity, frag-
mentation, or edge relationships) are really included. The obvious source of
spatial relationships for fuels management is the spatial nature of fire itself.
That is, the spatial layout of fuels and the spatial relationships between fuel
loads in different areas are important because they can affect fire behavior. For
example, a large conflagration involving vertically contiguous fuels at the head
of a fire front can increase the probability of that fire moving to the crowns.
Stand replacement usually results if wind, moisture, and fire intensity are con-
ducive to sustaining such a crown-fire event. In order for an optimization
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model to account for these spatial relationships, however, a particular fire event
needs to be accepted as the “target” of our fuels management efforts. Other-
wise, it is uncertain where the fire of concern starts and what it does from
there. If it is truly random where a fire of concern might start and how it
might behave, then fuels management may be a spatial problem only in the
sense that there might be general spatial guidelines for the desired fuel struc-
ture that we wish to obtain (which could be included with the approach
discussed in the previous section). If, on the other hand, a particular fire can be
accepted as a target for fuels management, then the placement of fuels manage-
ment effort might be optimized to account for the implied spatial relationships.

Even if we assume that we can define a particular target fire to guide our
fuels management efforts, it is still not completely clear what our specific ob-
jective should be. Traditionally, fire managers have focused on fire suppression
strategies that emphasize direct control of the fire or containment of its pe-
rimeter within pre-determined or natural barriers. When confronted with fires
that exceeded control or containment capabilities of available suppression re-
sources, the fall-back position has called for the protection of valued resources
(i.e., homes, communities, or other human developments). This approach is
also relevant when it is decided to let a fire burn so as to restore natural fire
processes or as a part of fuels reduction efforts. Recent policy changes
(Zimmerman and Bunnell 1998) call for an expansion of strategies for man-
aging fires, especially at the landscape scale. As Finney (2001:219-220) states,
“Two basic strategies for landscape-level fuel management are to contain fires
and to modify fire behavior...a spatial arrangement of treatments that prima-
rily modifies fire behavior would involve area-based or dispersed patterns. For
fire modification, it is clear that the greatest reduction in fire size and severity
occurs when fuel treatment units limit fire spread in the heading direction.”
One option between letting a fire burn unhindered and attempting suppres-
sion is thus to slow its spread across the landscape, relative to any valued
resources that it threatens. This is a fundamentally different objective than the
traditional approaches, and its practical application would depend on accep-
tance by the fire management community.

Let us assume that there are distinct areas of concern (such as towns, sum-
mer homes, campgrounds, ski areas, and so forth), and that a fire management
objective is to delay ignition of those “protection areas” in the target fire
event as long as possible. The advantages of such a delay would include: (1)
maximizing the chances that other suppression efforts or independent factors
such as weather changes might cause the fire to subside before the protection
areas are impacted; and (2) maximizing the time available for building fire line
around the protection areas, for modifying fuels to reduce a fire’s severity near
the protection areas, or for evacuation of the protection areas.

If the objective of long-term fuels management is to mitigate the effects of
a particular target fire, with known origin(s) and spread behavior, then one
approach (from Hof et al. 2000) could be as follows. To begin, the landscape
would be defined with a grid of cells to capture spatial location. The manage-
ment variables would be defined as application of fuels reduction efforts in
each cell (such as prescribed burning, mechanical removals, and so forth) and
these efforts would be scheduled over a fairly long period of time because only
so much fuels reduction can be accomplished in a given year (or season).
Thus, discrete time periods of, say, one to ten years would be defined and
indexed with t. The trajectory of each cell’s fuel load over time, and its re-
sponse to fuels management, would have to be tracked as well. Such a model
might be formulated as:
Maximize:  l (8)

Scheduling Removals for Fuels Management Hof and Omi



374 USDA Forest Service Proceedings RMRS-P-29.  2003.
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Where:

Indexes
i indexes cell rows, as does h
j indexes cell columns, as does k
k indexes management prescriptions (there are Kij of them for cell ij )

Variables
Tijt = the time that the target fire front ignites cell ij, if it occurs in time period t
Tijt= the time that the target fire front leaves cell ij, if it occurs in time period t
Thkt= the time that the target fire front leaves cell hk (and potentially ignites

cell ij ) if it occurs in time period t
Fijt= the fuel available for combustion in cell ij and in time period t
Xijk= the proportion of cell ij allocated to management prescription k
fij =an empirical function that relates available fuels in cell ij to the duration of

time between entry and exit of the fire front

Parameters
a,b = the row and column of the fire origin cell
m,n = the row and column of the protected area cell

 Wij   = the set of row and column indexes for cells that can potentially ignite
cell ij. Note: this would typically be some subset of the cells adjacent to
cell ij and would be determined primarily by a combination of wind con-
ditions during the target fire and topography.

Bijkt = the available fuel in time period t, in cell ij, that results if management
prescription k is applied

Dijkt = a dummy parameter that is equal to one if management prescription k
applies fuels reduction in time period t, in cell ij, and is zero otherwise

Xt  = the total number of cells that can be treated with fuels reduction in time
period t
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The objective function (8) together with the inequalities in (9) maximize
the minimum ignition time of the protection cell mn across time periods (the
target fire might occur in any time period). Other objective functions that
aggregate time periods would also be possible. Equation (10) sets the ignition
time of the origin cell to zero. Equation (11) relates the ignition times of each
cell to the times that the fire front leaves the cells which can potentially ignite
it. The multiple inequalities in (11) cause each cell to be ignited by the first
potentially igniting cell that the fire front departs from. Equation (12) relates
the duration of time that it takes the fire front to move through each cell to
the available fuel in that cell, given existing weather and topography. In prac-
tice, the spread rate functions (f) would be estimated with fire prediction models
or empirical data. Linear approximation of this f function is discussed in Hof
et al. (2000). Constraints (10) - (12) account for a potential target fire in each
time period. Constraint (13) applies the management variables (that include
scheduling) to determine the changing available fuel load in each cell ij over
time. Constraint (14) restricts the sum of the management prescription vari-
ables to be less than or equal to one for each cell, and constraint (15) limits
the amount of fuels management treatment that can be applied in each time
period. It may be desirable to replace (16) with binary integer constraints on
all Xijk, to force either complete treatment or no treatment of each cell in any
given time period. As the formulation stands, it is assumed that the Bijkt pa-
rameter is applicable to fractional values of Xijk. Extension of this approach to
multiple protection areas is straightforward (see Hof et al. 2000).

This model, again, is based on using a target fire to guide long term fuels
management. The approach is similar to the use of particular storm events
(such as a 500-year flood) to guide watershed and flood control planning.
Presupposing highly random fire behavior conditions such as wind speed and
direction or location of lightning strikes, however, may be far less certain than
the path of water flow on a landscape. If a different fire event eventually oc-
curs, the fuels management strategy based on the target fire may or may not
be desirable. At any rate, the model is readily solvable if the f functions are
linear, because it is then a linear program with continuous variables.

Conclusion

Overall, long term fuels management presents a formidable problem for
management scientists. Treating the problem as one of creating and maintain-
ing a particular forest (which is believed to be desirable from a fuels perspective
either because of historical conditions or some other criterion) assumes that a
desirable fuel profile can be obtained by creating and maintaining a particular
forest density and age structure. The resulting forest removals problem is dif-
ficult because it is an any-aged forest management problem that is intrinsically
nonlinear. The assumptions necessary to make such a problem linear are rather
heroic. Treating the problem so as to account for the spatial nature of fire
itself is difficult because fire origins and behavior can be quite random and
unpredictable. It is necessary to accept a particular fire event as the target for
fuels management. An approach that focuses on spatial fuel pattern, per se,
might show promise, but guidelines for desirable patterns are not apparent.
Monte Carlo approaches that simulate many fires might show promise in ac-
counting for the uncertainty of fire origin and behavior, but heuristics for
finding near-optimal solutions have yet to be developed and the basic com-
puting time necessary to adequately simulate an adequate number of fires may
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be prohibitive. Clearly, much additional work is needed on all aspects of the
spatial and dynamic management of fuels at the landscape scale.
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