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Abstract — Our goal is to compare different methods for estimating
the parameters of individual tree mortality models. We examine
general methods including maximum likelihood and weighted non-
linear regression, and a few specialized methods including Proc
LOGISTIC in SAS, and an implementation of the Walker-Duncan
algorithm. For fixed period lengths, almost all methods for fitting
the logistic mortality model should work. The LOGISTIC procedure
in SAS is quite robust and the easiest to use. For unequal period
lengths, either a weighted nonlinear least squares or a maximum
likelihood formulation is needed to specify the annualized logistic
mortality model: NLIN(wtLS) and NLIN(LOSS) in SAS. Of course,
other statistical packages that mimic these procedures should give
the same results.

Introduction ____________________
Mortality remains one of the least understood yet impor-

tant components of growth and yield estimation (Hamilton
1986). Great success in modeling mortality is rare, perhaps
because the focus is on modeling the occurrence of rare
events. Realistically, mortality modelers mostly hope to
capture the average rate of mortality and relate it to a few
reliable and measurable size or site characteristics (Keister
1972; Hamilton and Edwards 1976; Monserud 1976;
Hamilton 1994; Monserud and Sterba 1999).

A few preliminary observations provide some context,
several of which conspire to increase the difficulty of mortal-
ity modeling in forestry. First, mortality is a discrete, rare
event. A common rule of thumb for both temperate and
boreal forests is that roughly 0.5 to 1.5 percent of the trees
are expected to die in a given year (background mortality).
It therefore follows that a large sample is needed to observe
enough occurrences of mortality for modeling the process
adequately. Using this rule of thumb, we expect that a
sample of 10,000 trees/yr (or 2000 trees/5 yrs) would be
needed to observe approximately 50 to 150 deaths, which is
a relatively small sample of the event of interest. Second,
observations of the same individual tree at two points in
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time are necessary to observe the survival or mortality
status of a tree; this requires remeasured permanent plots.
Estimates of the date of death from temporary plots are
notoriously unreliable and should not be used. Third, we
usually do not know tree age, so we cannot use Survival
Analysis methods (Allison 1995) that have been successful
in medical research. Furthermore, remeasured tree sur-
vival data are usually both left and right censored (Allison
1995; Meeker 1998): we only know that some of the trees died
sometime during the sampling interval, and the others
failed to die. Fourth, it is not uncommon to have widely
varying period lengths, which precludes the proper use of
some estimation programs that assume equal period lengths,
such as Proc LOGISTIC in SAS (SAS Version 8.1 is a product
of the SAS Institute, Cary, NC 27513).

Simulator architecture determines how mortality must be
calculated and simulated. Mortality is discrete in a spatial
simulator such as TASS (Mitchell 1975) or FOREST (Ek and
Monserud 1974), with the tree either completely dead or
alive. This mortality process is stochastic. Furthermore, the
costs of misclassification are not equal in spatial models.
Misclassifying a live tree as dead can never be corrected, but
misclassifying a dead tree as live can be corrected in the
future. Mortality can be continuous in a nonspatial simula-
tor such as FVS (Stage 1973; Wykoff and others 1982;
Hamilton 1994; Teck and others 1997) or ORGANON (Hann
and others 1997), with the mortality rate smoothly reducing
the number of trees each sample tree represents. There-
fore, it is much easier to predict mortality rates over large
areas with nonspatial models.

Our goal here is to compare several methods for estimat-
ing the parameters of individual tree mortality models. Note
that our objective is not to find the best mortality model for
a given data set. We will examine several methods: maxi-
mum likelihood, weighted nonlinear regression, and a few
specialized programs (Proc LOGISTIC in SAS, and the
Walker-Duncan algorithm of Hamilton 1974). Our motiva-
tion is that all too often authors do not provide enough
details on methods to reproduce results. Although our imme-
diate context is modeling in the FVS environment, our
results apply to any other forest simulation system.

We have a few caveats. We will not address:

• Correlation of trees within a plot. They will have the
same stand density, and they could all be exposed to the
same unobserved mortality agent.

• Plot size effects on model parameters (see Stage and
Wykoff 1998).

• Simultaneous fitting of mortality and the growth equa-
tions (Hasenauer and others 1998; Cao 2000)
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The Algebra of Mortality

Because a tree can only die once, mortality is not a Markov
process. Survival is, however. This property requires that all
algebra be mediated in terms of survival, not mortality. The
probabilities of survival (Ps) and mortality (Pm) are con-
nected by the standard identity:

Survival = 1 – Mortality: Ps = 1 – Pm

We must use the compound interest formula to convert
survival to other period lengths:

1-year: Ps1
 = 1 –Pm1

n-year: Psn
 = Ps1

 Ps1
 Ps1

… Ps1
= (Ps1 )

n = (1 – Pm1 )
n

(The Markov property)

1-year:  Pm1
 = 1 – Psn

1/n = 1 – (1 – Pmn )
1/n

Statistical Considerations

The modeling of tree mortality requires fundamentally
different statistical methods than those used for most of the
other components of forest growth models. This is because
the dependent variable is dichotomous rather than continu-
ous: 0 or 1 (live or dead). It then follows that the variance is
Binomial and is not constant: Var = P(1–P) = PmPs. Maxi-
mum Likelihood (ML) methods are the proper estimation
procedure. The likelihood of a sample of observations is the
joint probability of that sample (Mendenhall and Shaeffer
1973). The ML estimation problem is to find the values of the
unknown parameters that maximize this likelihood, which
is a product of individual probabilities. The log of this
product is used instead because it is a monotonically in-
creasing function of the Likelihood and is much easier to
differentiate and maximize (Mendenhall and Shaeffer 1973).
Although seemingly complicated, ML estimates are quite
intuitive. They have the desirable properties of consistency,
asymptotic unbiasedness, and efficiency. The independence
of the observations is an underlying assumption, which is
violated if there are correlations between trees on the same
permanent plot, resulting in the underestimation of confi-
dence intervals for parameters. We do not examine the
independence assumption.

A seminal paper by Grizzle and others (1969) demon-
strated that Weighted Least Squares (with the weight ∝1/var)
could be an equally appropriate estimation method for
categorical data analysis (Agresti 1990). The method is
widely available and is asymptotically equivalent to maxi-
mum likelihood (Agresti 1990). Fisher’s Discriminant Analy-
sis also works but quickly becomes unwieldy as the problem
becomes increasingly multivariate.

To model the probability of mortality (or survival), all that
is needed is a flexible function bounded by 0 and 1. The
Logistic equation is most often used, although any sigmoid
or cumulative distribution function would work. The logistic
for the probability of survival (Ps) is:

Ps =
  

1
1

1

1 0 1 1 2 2+
=

+′ + + +e eb X b b x b x K

where X is a vector of independent variables, and b'X is a
linear combination of the n parameters bi and the xi indepen-
dent variables. Invoking the identity Ps = 1 – Pm and some

algebraic manipulation leaves us with the closely related
logistic form for the probability of mortality (Pm):

Pm = e
e

b X

b X

′

′+1

The inverse transform has a long history (McCullagh and
Nelder 1983):

log(Pm/(1–Pm)) = b'X

It is recognizable as the “logit” or the “log odds ratio.” This
equation provides the link between the unconstrained func-
tion b'X and the logistic probability prediction, which is
bounded by [0,1].

In the foregoing, Pm and Ps are interchangeable. The
function to model Pm could be used equally well to model Ps;
the only difference is that the signs in the coefficient vector
b would be reversed. This amounts to switching the 0-1
coding on the dependent variable.

We always want to know how good the model is. Usual
measures of residual variation (R2) are useless for dichoto-
mous variables. It does not matter how close a predictor is to
0 or 1 as long as it can accurately estimate expectations. We
will simply use the sum of the log likelihoods, with the
standard factor of –2 that results from maximizing the
logarithmic linearization; we will label this –2LL. A closely
related statistic for model comparison is Akaike’s Informa-
tion Criterion (AIC). It penalizes –2LL by the number of
parameters in the model (Chatfield 1996). The Chi-square
statistic is also appropriate, with the calculation based on
dividing important predictor variables into classes. Hosmer
and Lemeshow (2000) discuss these and other statistics.

Methods _______________________
We concentrate on a comparison of several methods for

estimating parameters with a fixed logistic model. Five
fitting techniques are described:

1. Logit Model for Proportions { REG }   — This model, also
referred to as the linear logistic model, is ascribed to several
authors in the 1940s and 1950s (McCullagh and Nelder
1983). It requires that the data be grouped into classes of X
values. Within each class, the predictions are identical for all
observations. The observed proportion in each class should
be between zero and one, and the expected numbers of events
and nonevents in each class should be at least five. The
procedure is to transform the independent variable by com-
puting its logit and then regressing that transformation
against X.

2. Least squares { NLIN (LS) } — Unweighted least
squares minimizes the sums of squared errors, where the
error is calculated as ε = Y – Pm, where Y equals one for
mortality and zero otherwise, and Pm is the predicted prob-
ability of mortality. Because of the logistic link function, Pm
is not a linear function of the parameters. Therefore, nonlin-
ear regression is needed.

3. Walker-Duncan {RISK } — The Walker-Duncan algo-
rithm (Walker and Duncan 1967) is a sequential approach to
weighted least squares that was developed in an era of
limited computer resources. It is claimed to be asymptoti-
cally equivalent to the maximum likelihood fit of the logistic
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model. This routine was coded by Hamilton (1974) in the
RISK program and extended to deal with variable period-
length data.

4. Weighted Least Squares {NLIN (wtLS), LOGISTIC } —
Weighted least squares minimizes the weighted sums of
error squared, using weights that are inversely proportional
to the estimated variance: Var = P(1-P). McCullaugh and
Nelder (1983) show that the minimization of this weighted
sums of squares produces the maximum likelihood solution.
That proof assumes that the link function is linear in the
parameters, which is not true for the variable length period
regressions to be discussed later. Nonetheless, in every test
regression that we have examined, the weighted least squares
method does produce the ML solution, a result supported
by Agresti (1990). The weighting is iterative because the
weights depend on the parameter vector b, which is being
estimated. The iterative weighting can prevent some fitting
techniques from fully converging. A conservative strategy is
to hold the weights constant while iterating toward a least
squares solution, then resetting the weights and proceeding
to further rounds of minimization. Most LOGISTIC pro-
grams use iteratively reweighed least squares to obtain the
ML solution.

5. Maximum Likelihood { NLIN (LOSS) } — Maximum
likelihood solutions can be derived directly by iterating the
model parameters until the likelihood is maximized, or
equivalently until the negative log likelihood is minimized.
This is done by writing the LL function shown in the
appendix and incorporating that computation into an
optimizer. The SAS procedure NLIN and equivalent proce-
dures in other statistical packages can perform the optimi-
zation. In NLIN, the keyword _LOSS_ defines the objective
criteria.

The above programs are all procedures within SAS, except
for RISK, which was developed by Hamilton (1974). We use
the notation “LS” to indicate the least squares objective
function normally employed in nonlinear regression. The
notation “LOSS” indicates where we employ an explicitly
defined loss function.

Data Sets

Four data sets are used to illustrate various regression
methods. The data sets are referred to as data A, B, C, and
D; they are summarized or listed in their entirety in tables
1 through 4, respectively. Data sets A and B offer simple
examples suitable for event estimation (tables 1 and 2);
period length is not involved. Data set C is real data
(64,121 observations) from young unthinned plantations of
Douglas-fir in coastal Washington, Oregon, and British
Columbia (summary in table 3). The growth rates in those
data are from regressions of change in DBH versus initial
DBH fit to the data one plot and one growth period at a time.
Growth periods are from 1 to 4 years. Data set D is a
simulated data set, which also has variable period lengths
(table 4). It consists of four 0.5 acre plots, each with 10
arbitrary selected tree sizes, arbitrary frequencies, and
arbitrary growth rates. The mortality was simulated for all
trees in all years using the ML regression fit to data set C.
Because data set D was selected to have high densities and

Table 1—Data set A - categorized data
distributed as an example for
the RISK program.

Y X1 X2

0 1 2
1 2 1
1 1 2
1 2 2
0 1 2
0 1 1
0 2 1
0 2 1
1 2 2
1 2 2
1 2 2
1 2 1
1 1 2
0 2 1
1 1 1
1 2 2
1 2 2
1 1 2
1 2 1
1 1 2
1 1 2
1 2 2
1 1 1
0 2 2
0 2 2
1 2 1
1 1 1
0 1 1
1 1 2
0 1 1
1 1 2
0 2 1
1 1 1
1 1 2
0 2 2
0 1 1
0 2 1
1 1 1
1 2 1
1 1 1

An alternative formulation of the same
data set shows N observation on each
line, with NY1 of them indicating an
event (Y=1):

X1 X2 N NY1

1 1 10 6
1 2 10 8
2 1 10 5
2 2 10 7

long periods, the predicted mortality rates are high, allowing
us to better see the differences due to the various fitting
methods. As with data set C, the growth rates are best
thought of as having been predicted by a diameter growth
function.
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Results ________________________

Fitting with Fixed Period Length

The examples presented use techniques that are suitable
for predicting mortality in a period of fixed length, where all
of the data are from remeasurement periods of that same
length. In these circumstances, the length of the period does
not enter into the prediction process.

Data set A is used to illustrate the fitting of a simple
logistic regression. Code for three methods is shown in the
appendix. Coefficients and -2 LL’s are in table 5; predictions
for all X values are in table 6. RISK, REG, and LOGISTIC
solutions all have nearly identical likelihoods, even though
there are minor differences in the coefficients. RISK predicts
there will be 25.90 events, whereas the other methods have
prediction closer to the observed 26 events; this offers a hint
that the RISK solution may not be the true maximum
likelihood solution. The results from RISK may vary a bit if
the order of observations is changed. The conclusion is that
for classed data, with event (or nonevent) expectations as
low as 2, all of the fitting methods produce results that are
statistically indistinguishable from one another.

Table 2—Data set B. A simple data set
illustrating low-probability events.
The data set is shown in its
classed formulation.  It could also
be shown as 100 observations,
with 11 observations having Y = 1
and 89 observations having Y =
0. All models using these data
use the expanded form (100 ob-
servations) unless stated other-
wise.

X1 N NY1

0.0 10 3
0.1 10 1
0.2 10 2
0.3 10 1
0.4 10 1
0.5 10 2
0.6 10 0
0.7 10 0
0.9 10 1
1.0 10 0

Table 3—Summary of data set C, remeasurement data from fixed-area
plots in young Douglas-fir plantations. The data set contains
64,121 observations.

Variable Mean Minimum Maximum

DBH (in) 4 0 14
Height (ft) 22 2 74
BA (ft2/ac) 62 3 172
Age 14 5 22
Period length (years) 3.4 1 4
Mortality proportion 0.014

Data set B (table 2) is another simple data set. It is
included here to show some lower probability events, as are
typical in mortality data sets. Code is presented for four
regression procedures in the appendix. Unweighted least
squares is implemented with NLIN (LS); weighted least
squares is implemented by NLIN (wtLS) and LOGISTIC;
direct maximum likelihood is implemented with NLIN
(LOSS). In the NLIN(wtLS) code, note how the iterative
reweighting is implemented in two passes: first, an
unweighted regression returns preliminary estimates of
event probabilities; second, a weighted regression then uses
the earlier estimated probabilities in assigning weights. The
solutions are nearly identical for all methods (table 7). The
trivial differences in -2LL are due to incomplete convergence
for NLIN(LOSS) and to the fundamental consideration that
NLIN(LS) is not using the theoretically correct weighting.

Fitting with Variable Period Length

One complication in mortality modeling is unequal period
lengths. In the Algebra subsection, we saw how the com-
pound interest formula (Markov property) can bring mortal-
ity or survival rates for any period length to an annual basis.
It is important to have this flexibility to simulate any
reasonable period length. However, not all estimation proce-
dures allow for variable period lengths. The LOGISTIC
procedure in SAS is a case in point. Beyond the mechanical
difficulties of fitting, there may be serious differences be-
tween how the regression predictions are applied to the data
set, and how they will be made within a simulator.

Data set C has variable period lengths of 1 to 4 years
(table 3). An annual mortality model is fit for these data. The
independent variables generally take on values as assigned
at the start of the growth period. One variant on the regres-
sion process uses midpoint values for the independent vari-
ables, a technique that is useful for building annual simula-
tors from multiyear data (Hyink and other 1985). The linear
combination used in the Logit is:

b'X = b0 +b1DBH +b2BAL/BA + b3BA

where BA is the total basal area per acre, and BAL is the
basal area of larger trees. Although these variables were a
good set of predictors for this particular data set, they are not
a recommended set for other applications.

The procedures applied to data set C include RISK, LO-
GISTIC, and NLIN(LOSS). The latter procedure is run once
with start-of-period X values and once with midpoint values.
Results are in table 8. The results from NLIN(LOSS) are the
best (the lowest -2LL), and RISK is the poorest. Surprisingly,
the LOGISTIC results are almost the best, even though they
rely on a statistically incorrect model. In this application,
each period of YIP years is treated as YIP independent
observations, one of which may result in mortality. For
situations where mortality rates are very low (as in data set
C), the LOGISTIC procedure can produce good estimates of
parameters. However, all the fit statistics (including -2LL)
and confidence intervals returned by the LOGISTIC regres-
sion program are incorrect. The NLIN (LOSS) regression
using midpoint values is significantly poorer than those
using start-of-period values. The use of midpoint values was
expected to be an improvement; the lack of improvement
might indicate a deficiency in our choice of independent
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Table 4—Data set D. Simulated data set based on models from data set C.

PLOT SIZE YIP DBH DBHRATE NTREES GROUP BAL BA TPA NSURV BA_FINAL TPAFINAL

1 0.5 8 2.8 0.80 40 1 1.710 17.191 800 37 220.410 688
1 0.5 8 2.6 0.78 40 2 4.896 17.191 800 35 220.410 688
1 0.5 8 2.4 0.76 40 3 7.627 17.191 800 35 220.410 688
1 0.5 8 2.2 0.74 40 4 9.940 17.191 800 36 220.410 688
1 0.5 8 2.0 0.72 40 5 11.868 17.191 800 36 220.410 688
1 0.5 8 1.8 0.70 40 6 13.448 17.191 800 33 220.410 688
1 0.5 8 1.6 0.68 40 7 14.713 17.191 800 37 220.410 688
1 0.5 8 1.4 0.64 40 8 15.699 17.191 800 35 220.410 688
1 0.5 8 1.2 0.62 40 9 16.441 17.191 800 31 220.410 688
1 0.5 8 1.0 0.60 40 10 16.973 17.191 800 29 220.410 688
2 0.5 12 2.8 0.80 40 1 1.710 17.191 800 34 296.201 456
2 0.5 12 2.6 0.78 40 2 4.896 17.191 800 29 296.201 456
2 0.5 12 2.4 0.76 40 3 7.627 17.191 800 27 296.201 456
2 0.5 12 2.2 0.74 40 4 9.940 17.191 800 31 296.201 456
2 0.5 12 2.0 0.72 40 5 11.868 17.191 800 30 296.201 456
2 0.5 12 1.8 0.70 40 6 13.448 17.191 800 26 296.201 456
2 0.5 12 1.6 0.68 40 7 14.713 17.191 800 22 296.201 456
2 0.5 12 1.4 0.64 40 8 15.699 17.191 800 12 296.201 456
2 0.5 12 1.2 0.62 40 9 16.441 17.191 800 8 296.201 456
2 0.5 12 1.0 0.60 40 10 16.973 17.191 800 9 296.201 456
3 0.5 8 7.8 0.50 30 1 9.955 156.883 600 24 283.609 434
3 0.5 8 7.6 0.50 30 2 29.361 156.883 600 24 283.609 434
3 0.5 8 7.4 0.50 30 3 47.772 156.883 600 20 283.609 434
3 0.5 8 7.2 0.50 30 4 65.214 156.883 600 22 283.609 434
3 0.5 8 7.0 0.50 30 5 81.714 156.883 600 23 283.609 434
3 0.5 8 6.8 0.50 30 6 97.298 156.883 600 22 283.609 434
3 0.5 8 6.6 0.50 30 7 111.991 156.883 600 24 283.609 434
3 0.5 8 6.4 0.50 30 8 125.821 156.883 600 17 283.609 434
3 0.5 8 6.2 0.50 30 9 138.813 156.883 600 21 283.609 434
3 0.5 8 6.0 0.50 30 10 150.993 156.883 600 20 283.609 434
4 0.5 12 7.8 0.50 30 1 9.955 156.883 600 20 326.410 356
4 0.5 12 7.6 0.50 30 2 29.361 156.883 600 23 326.410 356
4 0.5 12 7.4 0.50 30 3 47.772 156.883 600 15 326.410 356
4 0.5 12 7.2 0.50 30 4 65.214 156.883 600 20 326.410 356
4 0.5 12 7.0 0.50 30 5 81.714 156.883 600 18 326.410 356
4 0.5 12 6.8 0.50 30 6 97.298 156.883 600 18 326.410 356
4 0.5 12 6.6 0.50 30 7 111.991 156.883 600 17 326.410 356
4 0.5 12 6.4 0.50 30 8 125.821 156.883 600 16 326.410 356
4 0.5 12 6.2 0.50 30 9 138.813 156.883 600 14 326.410 356
4 0.5 12 6.0 0.50 30 10 150.993 156.883 600 17 326.410 356

Variables for data set D
Plot An arbitrarily assigned plot number
Size Plot size in acres
YIP Years in the period
DBH Initial diameter (inches)
DBHRATE DBH growth rate (in/yr)
NTREES Initial number of trees of this size.
GROUP Sequence number assigned to a group of trees of same size.
BAL Initial basal area of larger trees (including half of current group)
BA Initial basal area (sq. ft/ac)
TPA Initial trees per acre
NSURV Number of surviving trees at end of growth period
BA_FINAL Final basal area for the plot (sq. ft/ac)
TPAFINAL Final trees per acre.

Table 5—Regression results, data set A.

Regression b0 b1 b2 –2LL

LOGISTIC –.011508 –.462517 .908641 49.558
REG –.002985 –.47223 .91406 49.558
RISK .0530757 –.494347 .889641 49.562
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Table 6—Predictions from three methods for the probability of an event using data set A.

X1 X2 N NY1/N P (RISK) P (LOGISTIC) P (REG)

1 1 10 .6 .61025 .60698 .60798
1 2 10 .8 .79216 .79302 .79461
2 1 10 .5 .48851 .49302 .49166
2 2 10 .7 .69924 .70698 .70696
Wt’d Sum 40 26 25.90 26.00 26.01

Table7—Regression results, data set B.

Regression b0 b1 –2LL

LOGISTIC –1.1115 –2.6602 64.3675
NLIN(LS) –1.1219 –2.6270 64.3682
NLIN(wtLS) –1.1120 –2.6586 64.3675
NLIN (LOSS) –1.1219 –2.6270 64.3682

Table 8—Regression results, data set C.

Regression b0 b1 b2 b3 –2LL

LOGISTIC1 –3.2956 –.9826 –1.5666 0.0410 8049
NLIN(LOSS) –3.4217 –1.0068 –1.38 0.0425 8047
NLIN(LOSS) – Midpoint –2.3943 –1.1032 –2.3609 0.0423 8068
RISK –3.1513 –.90577 –1.6717 0.0391 8096

1The regression reports –2LL as 10363, based on an inflated number of observations.

variables. The RISK procedure shows the poorest -2LL
value, possibly indicative of convergence problems.

Data set D is an artificial data set of four plots, each with
10 tree sizes. Four variations of the same model are exam-
ined: a Compound survival model, a Midpoint model, an
Interpolated model, and a Simulation model. The differ-
ences between the models arise from different assumptions
for calculating the same X variables. The Compound model
uses the initial values of X’s for each survival prediction, so
a compound interest formula for survival is appropriate. The
Midpoint model uses the average of starting and ending
values for the independent variables and applies the same
compound survival formula as for the previous method. The
Interpolated model uses different X values for each year in
the growth period; these are from linear interpolation. For
both the midpoint and interpolated models, BAL/BA is not
updated from the start of the period because doing so would
require information on tree mortality. The Simulation model
uses different X values for each year; these are iteratively
recomputed based on predicted survival (for example, the
computation of each year’s BAL is dependent on the pre-
dicted mortality in earlier years). The NLIN (LOSS) proce-
dure is used for fitting in all four cases. The Midpoint model,
the Interpolated Model, and the Simulation model all take
advantage of knowing something about DBH growth rates
or end-of-period values. If the DBH growth rates are in fact

predictions from a growth model, their use does not invali-
date the independence of the X values. The use of the end-of-
period basal area by the Midpoint and Interpolated models
is a not a statistically valid procedure, but may still produce
good results (Hyink and others 1985).

The Compound survival model for data set D uses the
same code as given in the appendix under the heading: “C -
NLIN(LOSS)”. This is a reasonable approach for data where
the period lengths are similar. With period lengths in the
data of 8 and 12 years, this model could reasonably be
applied to a 10-year period. The Midpoint model uses the
same code as indicated for “C - NLIN (LOSS), Midpoint X
values.” The Interpolated X model uses linear interpolation
code shown in the appendix. Code for the Simulation model
is specific to this problem and relies upon a particular data
structure (see appendix).

Results of fitting data set D are in table 9, where two
values are shown for -2LL, the “fit” value as reported by the
regression program and the “true” value that would be
obtained within the context of an annual simulation. The
Compound model would not be applied within an annual
simulation, nor can it be evaluated for the 10-year steps
where it is likely to be applied. Thus, its true -2LL is
unknown. The best fit is expected to be from the Simulation
model. Here the mortality predictions within the regression
are identical to those made within the simulator, and a
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Table 9—Regression results, data set D. The NLIN (LOSS) procedure is used for fitting in all four cases.
Two values of –2LL are shown: those from the fitting routine, and the “true” –2LL values that
would be obtained by using the coefficient solutions in an annual growth simulation.

Model b0 b1 b2 b3 –2LL (fit) –2LL(true)

Compound1 0.1956 –1.6602 –2.1140 .058730 1606
Midpoint2 –2.5369 –1.4604 –2.3461 .063074 1550 1596
Interpolated X3 –4.9798 –.9577 –1.4003 .04970 1538 1544
Simulation4 –2.9387 –1.0529 –1.7037 .0437 1538 1538

1Predicted annual survival rate is compounded for YIP years; X’s are initial values. Suitable for 10-yr step.
2Annual model relying on midpoint X values. Reported –2LL =1550
3Annual model relying on annually interpolated X values.
4Annual model, with iteratively simulated annual X variables.

maximum likelihood solution is chosen; we do not address
any interaction with maximum density constraints that
FVS may employ. The Interpolated X method has a -2LL
value that is almost as good; the Midpoint model is consid-
erably poorer. A partial explanation for the interpolated X
method being so good, is that a linear DBH growth model is
assumed; a nonlinear model would not interpolate as well.
Another result, not shown in the table, is the total number
of mortality trees that would be predicted by an annual
simulation. The observed mortality was 433 trees. The
predicted mortality for the Midpoint, Interpolated X, and
Simulation model fits were 518, 474, and 459, respectively.
There is a tendency to overpredict mortality. Normally that
might be indicative of model misspecification. Here there is
the additional possibility that the simulation that created
the data set was somehow defective.

Summary ______________________
Fitting a fixed-period length mortality model is straight-

forward. The model should directly predict the probability of
survival (or mortality) for the entire period, without any
requirement to compound the survival rate. Any of the
methods presented here should be adequate for this task,
with the exception that the Logit model for proportions
should not be used unless the data are easily summarized
into cells with a constant mortality rate. We offer this Logit
model for proportions for historical completeness, not as a
viable general alternative. The LOGISTIC regression proce-
dure is the most robust. It is the easiest to apply, should not
have convergence problems for typical data sets, and should
normally be the preferred methodology. Each tree is one
observation, and weighting is not used. Weighted least
squares, NLIN(wtLS), should also be problem-free but is a
bit more work. NLIN(LOSS) is the maximum likelihood
option. It should provide good solutions, although conver-
gence may slow as the number of parameters increases.
RISK is a product of its time: a clever approximation to
maximum likelihood when mainframe computer resources
were limited. A FORTRAN compiler is required if model
transformations cannot be done beforehand in an external
data structure. Finally, a fixed-length survival model can be
formulated as a direct prediction, as we have done here, or
it could be formulated as a compound annual survival model

for a fixed-length application. The appropriate methodology
for fitting the latter formulation would be the same as for a
variable-period length model, using initial X values.

For variable-length periods, the first decision is whether
the model will be used in an annual simulation or in a
simulation with a fixed step size of greater than 1 year. For
the fixed step size, the data should be limited to growth
periods of approximately that duration. The appropriate
regression model is the Compound model in table 9, or the
equivalent NLIN(LOSS) regression in table 8. For an annual
simulation model, the best fit is assured with the Simulation
model in table 9. In a real fitting exercise, the assumed DBH
growth rates would be replaced by predicted growth rates
(Cao 2000). As alternatives to a full Simulation model,
reasonable approximations may be achieved with Interpo-
lated X’s or Midpoint X’s. It is impossible to know in advance
whether one of these approximate methods will be adequate.
Due to the difficulty in programming the full simulation
method, the use of midpoint X’s may be the preferred method
for model screening, and the use of interpolated X’s may be
adequate for final fitting. If the Midpoint or Interpolated X
model is used, the Simulation model should be used to verify
that the total predicted mortality is close to the observed
total. This verification may be part of the validation of a
completed growth simulator. Regardless of the formulation
of the X’s, the actual fitting method should be either NLIN
(wtLS) or NLIN(LOSS).

In the foregoing, NLIN(wtLS) and NLIN(LOSS) are pre-
sented as having similar capabilities; in general, they both
produce the ML solution. For the SAS system, NLIN(wtLS)
seems to have better convergence properties than the
NLIN(LOSS). For other statistical packages, this observa-
tion may not hold.
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Appendix ________________________________________________________

B - NLIN(LOSS)

PROC NLIN ;
   PARMS B0 = -.5 B1 = -2 ;
   LOGIT = B0 + B1 * X1;
   Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
   IF Y = 1 then N2LLIKE = -2*LOG(Yhat);
                 else N2LLIKE = -2*LOG(1-Yhat);
_LOSS_ = N2LLIKE;
MODEL Y = YHAT;
OUTPUT OUT=Filename P = PredY;

C - LOGISTIC

PROC LOGISTIC ORDER=INTERNAL ;
   MODEL MORT/YIP = DBH BAL_BA BA ;
note: YIP = years in period.

MORT=1 if tree dies, else 0.
BAL_BA = BAL / BA

C - NLIN(LOSS).

PROC NLIN METHOD=DUD MAXITER=130;
   PARMS
      B0 = -3 B1 = -1 B2 = -1 B3 =0.05 ;

   LOGIT = B0 + B1 *DBH + B2 * BAL_BA + B3*BA;
   P_annual = exp(LOGIT) / (1 + exp(LOGIT) );
   P_surv = ( 1 - P_annual)**YIP;
   P_mort = 1 - P_surv ;
   IF MORT = 1 then N2LLIKE = -2*log(P_mort);
                         else N2LLIKE =-2*log(1 - P_mort) ;
   _LOSS_ = N2LLIKE;
   MODEL MORT = P_mort;
   OUTPUT OUT=OUTF P=Pmort;

The above does not converge satisfactorily. It was followed up by
several regressions with B1 fixed at various values, including B1 = -
1.38, and improved initial guesses for the other parameters.

note: YIP = years in period.
MORT=1 if tree dies, else 0.
BAL_BA = BAL / BA

C - NLIN (LOSS), Midpoint X values.

Same as the above code, but preceded by a data step redefining the
independent variables:

BAL_BA unchanged
F = (YIP/2 -0.5)/YIP ;
BA = BA + F*(BAfinal - BA) ;
DBH = DBH + F * (DBHgrown - DBH)

where BAfinal is the basal area at the end of the period, and DBHgrown

is from a by-plot regression of ending DBH (for the surviving trees)
versus the initial DBH.

C - RISK

RISK with SMC data for DF
1. 1. 4. 64121. 15. 0. 0.
0. 999999. 5. 20.

8
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

(8F9.5)
   A0BAL/B BA DBH MORT 1 1 step

1 2 3 4 5 6 7 8

Note: This is the control file that was actually used. The resultant
coefficients are in a different order than is shown in our results
(Table 8).

Code for selected regression examples, by data set (A, B, C, D).

A - LOGISTIC
Proc LOGISTIC for data set A (40 observations)
PROC LOGISTIC ORDER=INTERNAL DESCENDING;
   MODEL Y = X1 X2 ;

A - REG

Logit Model for proportions, using classed formulation of data set A

Data Step
   P = NY1 / N ;
   LOGITY = LOG(P/(1-P)) ;

PROC REG;
MODEL LOGITY = X1 X2;
WEIGHT N ;

A - RISK

Control lines for running data set A (40 records) with the RISK program.

TEST PROBLEM 1
1 1 3 40 8

9999 3 5.0
4

00000
(4F2.0)
  PROB XONE XTWO
000010000200003

B- LOGISTIC

PROC LOGISTIC ORDER=INTERNAL DESCENDING;
   MODEL Y= X1;
   OUTPUT OUT=fileout P = PRED;

PROC TABULATE;
   CLASS X1;
   VAR Y PRED;
   TABLE X1 ALL, SUM*( Y PRED);

B - LOGISTIC (for classed data set of 11 records)

PROC LOGISTIC;
   MODEL NY1 / N = X1;

B - NLIN (LS)

PROC NLIN ;
   PARMS B0 = -.5 B1 = -2 ;
   LOGIT = B0 + B1 * X1;
   Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
   MODEL Y = YHAT;

B- NLIN (wtLS)

PROC NLIN ;
   PARMS B0 = -.5 B1 = -2 ;
   LOGIT = B0 + B1 * X1;
   Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
   MODEL Y = YHAT;
   OUTPUT OUT=File2 P=Pred1 ;

PROC NLIN data=File2;
   PARMS B0 = -.5 B1 = -2 ;
   LOGIT = B0 + B1 * X1;
   Yhat = EXP(LOGIT) / (1 + exp(LOGIT)) ;
   VAR = Pred1 * (1-PRED1);
   _WEIGHT_ = 1/VAR ;
   MODEL Y = YHAT;
   OUTPUT OUT=File3 P=Pred2 ;

And optionally, one more iteration
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D - Interpolated X.

Data Step
   BAL_BA=BAL/BA;

   DO I=1 to NSURV;
   MORT=0;
   OUTPUT;
   END;

   NDEAD = NTREES-NSURV;
   if NDEAD> 0 then DO I=1 to NDEAD;

MORT=1;
OUTPUT;
END;

PROC NLIN METHOD=DUD ;
   PARMS B0 =-3 B1=-1 B2 =-1 B3=.04;

PER_SURV = 1.0 ;
Label PER_SURV=’Pr{Surv for Period}’;

   DO I = 1 to YIP;
      BAi = BA + (I-1)/YIP * (BA_FINAL-BA);
      DBHi = DBH + (I-1) * DBHRATE ;
      F = B0 + B2* BAL_BA + B3*BAi + B1*DBHi;
      P_mort = exp(F) / (1 + exp(F) );
      P_surv = ( 1 - P_mort);
      PER_SURV = PER_SURV * P_SURV;
   END;

PER_MORT = 1.0-PER_SURV;
IF MORT = 1 then N2LLIKE = -2*log(PER_mort);

else N2LLIKE =-2*log(PER_SURV) ;

_LOSS_ = N2LLIKE;
MODEL MORT = PER_mort;
OUTPUT OUT=OUTF P=Pmort;

D - simulation model

* Collapse to one record per plot;
DATA A;
   SET [original data]; by PLOT;
   ARRAY VDBH{10} DBH1-DBH10 ;
   ARRAY VRATE{10} RATE1-RATE10;
   ARRAY VN{10} N1-N10;
   ARRAY VTPA{10} TPA1-TPA10;
   ARRAY VNSURV{10} NSURV1-NSURV10;
   ARRAY VBAL{10} BAL1-BAL10;

     VDBH{GROUP} = DBH;
     VRATE{GROUP} = DBHRATE;
     VN{GROUP} = NTREES;
     VTPA{GROUP} = NTREES/SIZE ;
     VNSURV{GROUP} = NSURV;
     VBAL{GROUP} = BAL ;

   DEATHS = (TPA-TPAFINAL)*SIZE;

   if LAST.PLOT then output;

   RETAIN DBH1-DBH10
RATE1-RATE10
N1-N10
TPA1-TPA10
NSURV1-NSURV10
BAL1-BAL10 ;

KEEP PLOT SIZE YIP TPA BA DEATHS
DBH1-DBH10
RATE1-RATE10
N1-N10
TPA1-TPA10
NSURV1-NSURV10
BAL1-BAL10;

PROC NLIN METHOD=DUD ;
   PARMS B0 =-3 B1=-1 B2 =-1 B3=.04;

ARRAY VDBH{10} DBH1-DBH10;
ARRAY VRATE{10} RATE1-RATE10;
ARRAY VN{10} N1-N10;
ARRAY VTPA{10} TPA1-TPA10;
ARRAY VNSURV{10} NSURV1-NSURV10;
ARRAY VBAL{10} BAL1-BAL10;
ARRAY GDBH{10} GDBH1-GDBH10;
ARRAY GTPA{10} GTPA1-GTPA10;
ARRAY GBAL{10} GBAL1-GBAL10;

   * START-UP before growth;
   DO I=1 to 10;

GDBH{I}=VDBH{I};
GTPA{I}=VTPA{I};
GBAL{I}=VBAL{I};

   END;
   GBA = BA;

DO IYEAR = 1 to YIP;

BASUM=0;
DO I = 1 to 10;
   F = B0 + B2* GBAL{I}/GBA + B3*GBA + B1*GDBH{I};
   P_mort = exp(F) / (1 + exp(F) );
   P_surv = ( 1 - P_mort);
   GTPA{I} = GTPA{I} * P_SURV;
   GDBH{I} = GDBH{I} + VRATE{I};
   BAgroup = GTPA{I} * 0.005454154 *GDBH{I}*GDBH{I};
   GBAL{I} = BASUM + BAGROUP/2;
   BAsum = BAsum + BAgroup ;
END;
   GBA= BAsum;
END;

* Evaluate all the losses;
   N2LLIKE=0;
   PRDeaths = 0;
   DO I = 1 to 10;
   PR_SURV = GTPA{I}/VTPA{I} ;
   PR_MORT = 1-PR_SURV;
   PrDEATHS = PRDEATHS + VN{I} * PR_MORT;

   CNT_DEAD = VN{I} - VNSURV{I};
   CNT_LIVE = VNSURV{I};

   THISLOSS = CNT_DEAD * ( - 2*log(PR_MORT))
+CNT_LIVE * (- 2* log(PR_SURV)) ;

   N2LLIKE = N2LLIKE + THISLOSS;
   END;
   _LOSS_ = N2LLIKE;
   MODEL DEATHS = PRDEATHS;
   ID GTPA1-GTPA10;
   OUTPUT OUT=OUTF P=Pred;
PROC PRINT;


