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Abstract—The Prognosis large-tree basal area increment model is
being adapted to include soil parent material (lithology) as a new
predictor variable. In this paper, the critical issue of how to aggre-
gate diverse geologic units into a set that is meaningful for growth
model prediction is examined. We fit the model in a pilot study to
compare subjective (concept-based) and objective (data-based) ap-
proaches to aggregation. When compared using Akaike’s Informa-
tion Criterion, the best models were those using data-based ap-
proaches. Concept-based approaches produced groupings that are
least useful for modelling, and data-based approaches produced
groupings that were least meaningful biologically and geologically.
Poor data distribution and a narrow data set are likely causes of the
discouraging result.

Soil properties have an important and well-recognized
influence on tree and forest dynamics. Soils are reservoirs of
both water and the mineral nutrients that are required by
plants. The properties of soil are substantially defined by the
properties of the parent material – usually bedrock – from
which soils are derived. Over the past decade a number of
studies have revealed empirical evidence of a cause/effect
relationship between soil parent rock, soil properties, and
forest dynamics. The Intermountain Forest Tree Nutrition
Cooperative (IFTNC) has identified a number of interac-
tions between fertilizer type, soil parent rock, forest growth,
and mortality using an extensive set of forest fertilization
trials (for example, Hayek and others 1999; Garrison and
Moore 1998; Mika and Moore 1990). Soil parent rock has also
been related to mortality and basal area increment (Shen
and others 2001, 2000) in models closely related to those
used in the Prognosis Model (Wykoff and others 1982). These
studies suggest inclusion of soil parent rock may be a useful
operational revision to Prognosis.

Lithology is the branch of geology concerned with the
study of the properties of rock. This paper presents an
overview of issues involved in using the lithology of soil
parent rock as a predictor, and a pilot study that involved
incorporating lithology into the Prognosis large-tree basal
area increment model.
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Link Between Lithology and Tree
Growth ________________________

Five factors define soil attributes: time, climate, biota,
topography, and parent material (see for example Buol and
others 1989). Parent material is important because the
mineralogy of parent rock defines the potential supply of
most mineral nutrients used by plants, with nitrogen being
the most notable of several exceptions (Garrison and Moore
1998). The physical properties of parent material are also
important because they define rock weatherability. In turn,
weatherability affects the rate of nutrient release as well as
physical properties of soil particles that affect nutrient and
moisture holding capacity.

Classification systems are used to categorize the expected
particle size and nutrient status of a soil derived from a given
parent material. Results for a relatively simple classifica-
tion developed by the Intermountain Forest Tree Nutrition
Cooperative (IFTNC) are presented in table 1. Though
granites have moderate mineral nutrient contents, they
weather to sandy soils, which have poor moisture and
nutrient holding capacity, and thus produce soils of medium
to low fertility. In contrast, basalts weather to soils that are
richer in clay minerals and produce soils with high nutrient
holding capacity (Buol and others 1989). Metamorphosed
sedimentary rocks (metasediments) weather to soils with
low nutrient holding capacity and low nutrient content,
producing soils of generally poor fertility (Garrison and
Moore 1998). Thus, soil parent material may be a useful
general predictor of the inherent fertility of soils.

Unfortunately, precisely identifying soil parent material
at a given location is problematic. Parent material may be
field sampled, but this is inefficient at operational scales and
is perhaps impossible where soils are developed from com-
plex mixtures of parent material, such as glacial till, fluvial
deposits, or loess. Imputing parent material using geologic
maps of bedrock lithology is a practical solution, though
again, where soils are not developed in situ but rather from
transported materials, underlying bedrock is obviously not
representative of soil parent material. For these and other
reasons, the use of bedrock lithology map data is not straight-
forward.

Using Lithology _________________
Technical difficulties complicate geological mapping. For

example, vegetation, water, surficial deposits, and soil de-
velopment complicate the identification of underlying lithol-
ogy. Surficial deposits, such as loess, glacial till, or alluvium,
may be deep, making identification of underlying rock diffi-
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cult. In some situations, bedrock lithology maps show surficial
deposits themselves as the lithologic unit. Objective and
absolute standards for classification are difficult even when
bedrock is visible, because the composition, age, and process
of formation of rocks may be extremely variable.

Geologic maps, and specifically maps of bedrock lithology,
can be based on different classification schemes that reflect
the biases of the mapping geologist or differences in empha-
sis that relate to intended use of the resulting data. For
example, rocks may be classified based on their geochemis-
try, their petrography, resistance to weathering, or on the
process that formed the rock; the latter are the familiar
“igneous,” “sedimentary,” and “metamorphic” processes.
Thus, geologists commonly provide detailed descriptions
that include various degrees of all these characteristics. The
objective, perspective, and bias of the mapmaker are not
necessarily clear but have a significant impact on the maps
produced.

Systems of classification that are meaningful to geologists
are likely suboptimal for modelling forest growth. Interpret-
ing and redefining a geological system to make it useful is
challenging for geologists, who are unfamiliar with the
language and science of forest growth, and conversely for
modellers and physiologists who are unfamiliar with the
language and science of geology. For example, how is a
“metamorphosed, siliciclastic sedimentary rock” related to
potassium available to trees at a given forest plot? Descrip-
tive geological classifications need to be reduced to a set of
lithologic classes that are simple enough that they can be
understood and analysed by modellers but retain as much
information as possible so the effect of the information can
be explored. Merging geology and forestry is a challenge in
interdisciplinary science.

Research on the effects of lithology on forest dynamics has
employed inconsistent approaches, as little precedent ex-
ists. Results have nonetheless demonstrated clear and sta-
tistically significant influences of parent material on forest
dynamics that appear to be the consequence of nutrient

Table 1—Expected soil nutrient status with respect to characteristics of different parent rock
types and subclasses common to the Inland Empire.  After Garrison and Moore
(1998).  Used with permission.

Potassium Expected soil Expected soil
Lithology status particle size nutrient status

Igneous
  Plutonic (granites) medium coarse – sandy medium to low
  Volcanic (basalts) good fine – clayey high
Metamorphic
  Schists medium fine – silty medium to low
  Gneisses poor coarse – sandy medium to low
  Metasediments poor variable low
Mixed
  Glacial till medium variable variable
  Loess medium to poor fine – silty medium to high
Sedimentary
  Shales medium to poor fine – clayey medium to low
  Sandstones medium to poor variable variable
  Carbonates poor variable poor

supply (for example Shen and others 2000; Garrison and
Moore 1998; Hamilton 1998). These results were achieved
using relatively simple systems of lithologic classification,
suggesting that further study may reveal opportunities for
improvement. Possibilities may be to reduce:

1. Inconsistency – geologic units were aggregated into
types sometimes defined by parent material attributes, and
sometimes by soil properties (for example Hamilton 1998).

2. Generality – two to five qualitative classes were used to
define lithology (for example Shen and others 2000) or soil
nutrient status (for example Garrison and Moore 1998).

3. Uncertainty – hypotheses about causal factors may be
tested by examination against a more extensive data set.

A greater understanding of functional relationships be-
tween stand dynamics and lithology would guide efficient
classification schemes, bolster the credibility of model prod-
ucts, and guide extrapolation to conditions outside of the
range of the data used in model development (for example
Hamilton 1990) by increasing biological and physical cred-
ibility (Rykiel 1996).

Why Not Use Soils? _____________
Soil properties associated with lithology would ideally be

obtained directly from soil maps. Unfortunately, high-qual-
ity soils data for Northern Rocky Mountain forestlands are
inconsistently available. The Natural Resources Conserva-
tion Service Soil Survey Geographic Database (SSURGO) at
present covers little of the National Forest area in northern
Idaho and north-western Montana. Because most data suit-
able for fitting Prognosis growth equations in the Northern
Rocky Mountains are obtained from National Forests, using
SSURGO data would be impossible. Using soil maps would
also involve many of the same difficulties that apply to
lithology, including the need to aggregate to a manageable
set of classes and the possibility that a classification scheme
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Then remaining classes were grouped with the most similar
founding members, based on minimizing the increase in
residual sums of squares.

Data and Methodology ___________

Forest Plots

Data from the USDA Forest Service Region 1 permanent
plot program were available at the time of the pilot study.
This program is a network of plot clusters installed in
treated stands across National Forests in Region 1, which
includes central and northern Idaho as well as Montana
portions of the overall study area. Plot establishment
began in the early 1980s, with a target measurement cycle
of 5 years; thus, up to three remeasurements were available
on some plots. Measurements in a given stand comprise
three or more plot clusters installed in treated areas, paired
with a single control cluster in an untreated area. Three
measurement plots are included in each cluster. Region 1 is
in the process of cleaning and certifying the permanent plot
database, and clean data were only available for the Idaho
Panhandle and Flathead National Forests, which restricted
the geographic extent of the exercise. Only data for the four
species most abundant in the database were used in the
analysis: Douglas-fir (Pseudotsuga menziesii), grand fir (Abies
grandis), western larch (Larix occidentalis), and lodgepole
pine (Pinus contorta).

Lithology

The USGS preliminary lithology map covered the north-
ern Idaho portions of the Bonners Ferry, Sandpoint,
Coeur d’Alene, St. Maries, Thompson Falls, and Wallace
1-by-2 degree quadrangles. The total coverage was ap-
proximately 60 percent of the entire study area. Litho-
logic diversity within the map was extensive, including
784 unique lithologic units and nearly 37,000 individual
polygons. Permanent plot locations were intersected with
the USGS digital lithology map to impute lithology at
plot locations.

Model

The Prognosis large tree basal area model formulation
described by Wykoff (1990, 1986) was the base model used in
the analysis. This model already uses the Wykoff t-test
matrix algorithm to aggregate habitat type and location
effects on the model intercept and as interactions with some
predictors. Because the objectives of this study were to
explore aggregation techniques themselves and reveal pat-
terns in the dataset related to lithology, a modified version
of the model was specified to focus on these questions. This
version, in which mean annual precipitation was substi-
tuted for habitat and location, was used principally in the
analysis. The Wykoff (1990) formulation was subsequently
fit, applying aggregation techniques to lithology only, to
examine whether using the modified version affected the
results. In the modified model, mean annual precipitation is
a continuous variable and was imputed at each plot from 2
km digital precipitation grids. Precipitation and lithology

deemed optimal for soil scientists is substantially subopti-
mal for modelling tree growth. Indeed, studies of the rela-
tionship between soils and forest productivity are not rare in
the literature, and despite extensive analytical effort gener-
ally produce weak or poorly generalizable results (see
Monserud and others 1990 or Kayahara 1989 for an exten-
sive review).

Pilot Study _____________________
The objectives were to fit the Prognosis large tree basal

area increment model, using lithology as a new predictor,
and explore ways to aggregate the large set of lithology units
present in the preliminary map into a smaller set that would
be appropriate for applying the model in management. We
hypothesized that aggregation would improve model fit and
reveal patterns in the data that were geologically and
biologically meaningful. This hypothesis was tested in two
ways. Aggregated units were compared for consistency across
species and against a priori hierarchies of geologic similarity
suggested by first principles expectation of soil properties.
Final models fit using different aggregation methodologies
were also tested for quality of fit using Akaike Information
Criterion (AIC), which is a model-independent metric of
quality fit. This exercise used a digital lithology map gener-
ated by the U.S. Geological Survey (USGS), which was
merged with the database of forest plots.

Aggregation Methodologies_______
Developing objective criteria for aggregating across clas-

sification variables is not a new problem in forestry. Most
literature concerns growth modelling in tropical forests,
where an often-overwhelming number of tree species neces-
sitates the reduction into fewer groups for purely technical
reasons (for example, Alder and others 2000; Kohler and
Huth 1998; Leech and others 1991; Vanclay 1991). Aggrega-
tion methodologies generally follow one of two approaches:
subjective (concept-based) or objective (data-based). Con-
cept-based grouping may be either based entirely on
a priori beliefs about function or combined with statistical
techniques that suggest initial groupings (Alder and others
2000; Kohler and Huth 1998; Leech and others 1991). A
common theme to each of these three examples is that they
allow or require a predetermined number of classes to be set
as an initial step in the methodology.

Data-based grouping emphasizes the use of statistical
techniques to objectively elucidate structure in the classifi-
cation variable (for example, Vanclay 1991; Meldahl and
others 1985; Wykoff and others 1982). Wykoff and others
(1982) aggregated diverse ecosystem units into similar sets
based on “statistical similarity,” defined as groups where
none of the estimated coefficients that are grouped into a
class differs from any other at the 50 percent level of
significance. Wykoff’s technique attempts to aggregate only
intercept effects, fit uniquely by group, rather than the
entire model. Vanclay (1991) introduced arguably the most
objective methodology. Classes were sorted by decreasing
order of data set size, and whole model F-tests conducted
recursively sensu Leech and others (1991) to identify “found-
ing classes” that were statistically different from all others.
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were introduced simply as linear terms and not as interac-
tions with any other variables.

Aggregation Schemes

Six aggregation schemes were tested:

1. Null — the model is fit without separate intercepts,
effectively combining the effect of all lithology classes in the
intercept.

2. Full — the model is fit with separate intercepts for all
lithology classes.

3. Shen — set of five classes (granite, basalt, metasediment,
sediment, mixed) from Shen and others (2000).

4. IFTNC — the USGS classes are interpreted following
table 1 and placed into classes “good,” “medium,” and “poor.”

5. Wykoff and others (1982) t-test matrix.
6. Vanclay (1991) paired F-test method.

Schemes 1 through 4 were implemented by introducing a
class variable in standard linear regression functions in
S-Plus, Version 6. The effect is to estimate parallel functions
with separate intercepts for the class variables. The final
two schemes were implemented by writing S-Plus scripts
that coded their respective algorithms.

Results ________________________
Over 45,000 individual tree observations were available

for model fitting after processing to generate the variables
used in the model. However, since up to three successive
measurements were made in some cases, only 124 unique
stands were represented in the data (table 2). The sample of
stands was distributed unevenly across the 14 lithology
classes. In terms of the three broad geologic types: eight were
granitic (6 percent), 78 were metamorphic (63 percent), and
the remaining 38 were fluvial (31 percent). Nine of the 14

classes (64 percent) were represented by seven or fewer
stands; three classes were represented by a single stand. The
four species most prevalent in the data set were used for
analysis (table 2).

Of the six aggregation methods, all but the Vanclay and
Wykoff methods were completely determined a priori and
were by definition constant across species. The Shen and
IFTNC systems show some correspondence (table 3), mostly
because of their simplicity. For example, metasedimentary
types are all rated “poor” in the IFTNC system. However, the
data contained only two IFTNC types; no units classified as
“good” were present. The Wykoff approach, which tended to
produce groups with only two or rarely three members,
produced more classes than Vanclay method (tables 3, 4).
Aggregated groups of up to five members were produced
with the Vanclay method. Results from both the Wykoff and
Vanclay algorithms were inconsistent across species, espe-
cially in comparison to the other aggregation methods.
Consider the metasedimentary types, which are grouped
together in both the Shen and IFTNC systems. In the Wykoff
approach, none of the five metasedimentary types were
grouped for any species, with the exception of two classes
aggregated for grand fir. Results were only marginally more
consistent using the Vanclay method. The same two classes
were aggregated for grand fir, and three of five classes
aggregated for lodgepole pine. Otherwise, few patterns are
apparent. Notably, every set aggregated under the Wykoff
system was also aggregated under the Vanclay system with
one exception, though not vice versa.

Comparing models by AIC showed that generally a greater
the number of classes resulted in a better fit (table 5). Only
a minor improvement resulted from using any of the aggre-
gation schemes compared to using all classes. The lowest
AIC, and therefore presumably best model, was that devel-
oped with the Vanclay approach for Douglas-fir and grand
fir, and the Wykoff approach for lodgepole pine and western
larch.

Table 2—Summary of parent material classes from USGS lithology map by stand and tree species in the fitting data.

Domlith No. No. trees
USGS mapped dominant lithology code stands DF1 GF L LP

glacial sediments2 glac1 7 325 84 923 1531
glaciofluvial glac2 21 436 10 1588 4104
granitoid gran2 6 365 231 180 497
granodiorite gran3 2 329 0 46 7
meta-claystone meta1 1 28 4 22 2
metamorphosed siliciclastic sedimentary rocks meta11 14 772 695 470 180
meta-mudrock or “shale” (>50% silt and clay) meta3 17 1146 599 687 1125
metamorphosed carbonate/siliciclastic sedimentary meta7 4 191 24 396 150
metamorphosed siliciclastic/carbonate sedimentary meta8 29 2774 1703 963 1144
mixed metamorphic/igneous plutonic mixe3 1 12 0 286 181
natural unconsolidated sediments natu 14 857 545 1328 130
older alluvium olde 1 14 237 0 0
semi-pelitic rocks semi 3 83 116 41 43
unconsolidated sediments unco 4 22 164 0 518

totals 124 7354 4412 6930 9612

1 DF = Douglas-fir; GF = grand fir; L = western larch; LP = lodgepole pine.
2 Though the class “glacial sediments” and some others here are strictly geomorphologic and not lithologic descriptors, they are the descriptive terms assigned to the

bedrock lithology polygon by the USGS and are used accordingly.
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Table 5—Akaike Information Criterion values, by species, for
models fit using different aggregation methodologies.

Model DF1 GF L LP

base 16320.1 10039.4 15505.8 22101.4
all 15934.1 9759.7 15084.2 21437.0
Shen 16076.1 9977.7 15378.7 21767.6
IFTNC 16143.4 9975.9 15407.8 21871.0
Vanclay 15920.5 9751.8 15094.8 21431.1
Wykoff 15924.7 9752.4 15082.2 21427.7

1DF = Douglas-fir; GF = grand fir; L = western larch; LP = lodgepole pine.

Table 3—Results of aggregating classes using the Shen, IFTNC and
Wykoff methods.  Units with the same name or number are
grouped together.

Domlith
code Shen IFTNC DF1 GF L LP

glac1 mixed medium 1 1 1 1
glac2 mixed medium 2 2 2 2
gran2 granite medium 3 3 3 3
gran3 granite medium 4 1 4
meta1 metased poor 1 4 4 5
meta11 metased poor 5 5 5 6
meta3 metased poor 2 5 6 3
meta7 metased poor 6 3 7 2
meta8 metased poor 7 6 8 7
mixe3 granite medium 8 9 5
natu mixed medium 9 7 10 3
olde mixed medium 6 8
semi metased poor 4 8 11 8
unco mixed medium 6 5 4

1DF = Douglas-fir; GF = grand fir; L = western larch; LP = lodgepole pine.

Table 4—Results of aggregating classes using the Shen, IFTNC, and
Vanclay methods.  Units with the same name or number are
grouped together.

Domlith
code Shen IFTNC DF1 GF L LP

glac1 mixed medium 3 5 1 1
glac2 mixed medium 1 4 1 1
gran2 granite medium 2 3 5 3
gran3 granite medium 2 3 4
meta1 metased poor 3 5 5 3
meta11 metased poor 2 2 1 3
meta3 metased poor 1 2 3 3
meta7 metased poor 4 3 5 1
meta8 metased poor 1 1 2 2
mixe3 granite medium 3 4 3
natu mixed medium 1 3 1 3
olde mixed medium 4 4
semi metased poor 2 4 5 2
unco mixed medium 4 2 4

1DF = Douglas-fir; GF = grand fir; L = western larch; LP = lodgepole pine.

Similar results are produced when the Wykoff (1990) base
model is used instead of the modified model, which substi-
tutes precipitation for habitat type and location. Overall,
when the Wykoff (1990) base model is used, AIC values are
1 to 3 percent lower than under the modified model, but the
relative ranking of aggregation methodologies is nearly
identical. In either case, within and across species few
patterns are apparent in the grouping of lithology classes by
the Vanclay or Wykoff methods, and little correspondence is
found between the final result for both methods using either
base model.

Discussion _____________________
Data-based and concept-based approaches to aggregating

classification variables have different strengths. Objective
statistical techniques may reduce the potential for bias as
well help elucidate the correct interpretation of the func-
tional relationship between class variables and the modelled
system. This is most useful when little is known about the
relationship in advance. Yet when knowledge about function
is available, schemes that incorporate knowledge may be
superior to statistical techniques that produce some hierar-
chies that are an artifact of random data patterns (Vanclay
1991).

Our goal was to test the hypothesis that biologically
meaningful patterns could be discerned. The results are not
encouraging. This is principally because data-based tech-
niques have suggested groupings that are not biologically
sensible, and because groupings that are biologically or
geologically sensible were not useful in modelling. If lithol-
ogy is in fact not related to tree growth, or our interpretation
of what is biologically sensible is inappropriate, this result
is not surprising. Nonetheless, the analysis was limited by
a data set that may not contain a sufficient breadth of
information to discern meaningful relationships. A larger
data set would include more lithologic diversity, and inde-
pendent data would permit a more extensive evaluation.

Data structure is a better explanation for the results than
causal links between lithology groupings and tree growth for
this data set. Any signs of model improvement through the
addition of lithology may be due more to overfitting than a
true increase in explanatory power. This is evidenced by the
chaotic aggregation results from the data-based techniques,
which are at odds with even the simplest conceptual expec-
tations, and inconsistent results across species, aggregation
method, and underlying base model formulation. Lithology
may be acting as a proxy for unmeasured site values, given
the poor data distribution across lithology classes, in some
cases with a class represented by a single site. Again,
model development and testing using a broader data set is
necessary.

The results do offer some insights into the tradeoffs
between aggregation methodologies. The Wykoff and Vanclay
data-based techniques were able to identify similar data
patterns, albeit only within single species. AIC comparisons
suggest that the two techniques produce models of similar
quality. However, the Wykoff technique allows for the final
decision to aggregate to be made subjectively, which may be
desirable especially where some a priori knowledge is avail-
able to guide modelling. Vanclay’s technique, which was
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initially proposed for modelling of tropical species, would
have an advantage where the number of groups was over-
whelming or where little information is available in advance
that could guide subjective decisionmaking.

A key objective of the pilot study was to produce some
results that could guide and refine future work, and to this
end the study has been useful. Clearly a broader data set
with more lithologic diversity is needed. Lithologic units
were also simplistic; greater diversity should include de-
scriptions and information that are useful for linking lithol-
ogy conceptually to soil properties and tree growth.

Acknowledgments ______________
This research was supported in part by a research joint

venture agreement (USDA FS RMRS-99541-RJVA) between
the USDA Forest Service Rocky Mountain Research Station
and the University of Idaho Forest Biometrics Laboratory.
We thank Nick Crookston, Bob Havis, Dennis Ferguson, and
Bill Wykoff, all of the USDA Forest Service, for helpful
review and comments. Our special thanks go to Bill Wykoff
for his patient, durable support of Prognosis work at the
Forest Biometrics Lab.

References _____________________
Alder, D., F. Oavika, M. Sanchez, J. N. M. Silva and H. L. Wright.

2000. A method for calibrating growth models for tropical moist
forest with minimal data. Submitted to For. Ecol. Mgmt (July
2001 - in review).

Buol, S. W., F. D. Hole and R. J. McCracken. 1989. Soil genesis and
classification, 3rd edition. Iowa State University Press, Ames.

Garrison, M. T. and J. A. Moore. 1998. Nutrient management: a
summary and review. Int. For. Tree Nut. Coop. Sup. Rep. 98-5.
Univ. Idaho, Moscow.

Garrison-Johnston, M. T. and J. A. Moore. 2001. North Idaho
nutrition guidelines by rock type: Version 1.0. Int. For. Tree Nut.
Coop., Univ. Idaho, Moscow.

Garrison-Johnston, M. T., J. A. Moore and G. J. Niehoff. 2001.
Douglas-fir outbreaks are associated with certain rock types in
the inland Northwestern United States. Int. For. Tree Nut. Coop.
draft manuscript, July 20, 2001. Univ. Idaho, Moscow.

Hamilton, D. 1990. Extending the range of applicability of an
individual tree mortality model Can. J. For. Res. 20: 1212-1218.

Hamilton, D. 1998. Prognosis (FVS) yield simulations using new
individual tree mortality prediction models that include geologic
classification variables. Presentation Int. For. Tree Nut. Coop.
1998 Ann. Meet.

Hayek, J. C., J. A. Moore and J. M. Mandzak. 1999. Multi-nutrient
fertilizer response differs by rock type in central Idaho forests.
Int. For. Tree Nut. Coop. Sup. Rep. No. 4. Univ. Idaho, Moscow.

Kayahara, G. 1989. The relationship of forest site factors and
derived site units to forest productivity: a literature review with
commentary. B.C. Min. For. Cont. Rep., Vancouver, B.C.

Kohler, P., and A. Huth. 1998. The effects of tree species grouping
in tropical rainforest modelling: simulations with the individual-
based model FORMIND. Ecol. Model. 109: 301-321.

Leech, J. W., R. L. Correll and A. K. Myint. 1991. Use of principal-
coordinate analysis to assist in aggregating species for volume-
table construction. For. Ecol. Mgmt. 40: 279-288.

Meldahl, R. S., M. Eriksson and C. E. Thomas. 1985. A method for
grouping species – forest type combinations for the development
of growth models for mixed species stands. In: Proceedings of the
3rd Biennial Southern Silvicultural Research Conference, 7-8
Nov. 1984, Atlanta, GA. Edited by E. Shoulders. USDA For. Serv.
Gen. Tech. Rep. SO-54. pp. 422-428.

Mika, P. G. and J. A. Moore. 1990. Foliar potassium status explains
Douglas-fir response to nitrogen fertilization in the Inland North-
west, USA. Water, Air and Soil Poll. 54: 477-491.

Monserud, R. A., U. Moody and D. W. Breuer. 1990. A soil-site study
for inland Douglas-fir. Can. J. For. Res. 20: 686-695.

Rykiel, E. J. Jr. 1996. Testing ecological models: the meaning of
validation. Ecol. Model. 90: 229-244.

Shen, G., J. A. Moore and C. R. Hatch. 2001. The effect of nitrogen
fertilization, rock type, and habitat type on individual tree mor-
tality. For. Sci. 47: 203-213.

Shen, G., J. A. Moore and C. R. Hatch. 2000. The effect of habitat
type and rock type on individual tree basal area growth response
to nitrogen fertilization. Can. J. For. Res. 30: 613-623.

Vanclay, J. K. 1991. Aggregating tree species to develop diameter
increment equations for tropical rainforests. For. Ecol. Mgmt. 42:
143-168.

Wykoff, W. R. 1990. A basal increment model for individual conifers
in the Northern Rocky mountains. For. Sci. 36: 1077-1104.

Wykoff, W. R. 1986. Supplement to the user’s guide for the stand
prognosis model: Version 5.0. USDA For. Serv. Gen. Tech. Rep.
INT-218.

Wykoff, W. R., N. L. Crookston and A. R. Stage. 1982. User’s guide
to the Stand Prognosis Model. USDA For. Serv. Gen. Tech. Rep.
INT-133.


