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 5.  Sample size 

   

 
 
One of the most common objectives of bed-material sampling is the characterization of 
the distribution of particle sizes present in a given stream channel.  The ideal way to 
describe the particle-size distribution of a streambed would be to count and measure every 
particle within the reach.  This is essentially impossible, and therefore one must rely on 
taking samples of the bed material and use the sample results to estimate the general 
characteristics of the sampling area. 
 
The question is, how many particles or how much sediment should be sampled?  The 
answer is a compromise between sampling precision and sampling effort.  As the number 
of particles collected increases, the precision with which the bed material can be described 
increases as well.  The precision obtained in the sample must be sufficient to measure the 
effects being investigated by the project goals (e.g., Is there a significant increase or 
decrease in streambed fines?  Has the armor layer changed, etc.?).  If the sampling 
program is not sufficient to meet these goals, the validity of the field results must be called 
into question.  As the sample sizes collected increase, the costs and effort associated with 
the field work also increase and will eventually become prohibitively large.  Another 
factor to consider is that the increased precision obtained by collecting ever larger sample 
sizes does not follow a linear relationship.  The benefit obtained from collecting an 
additional 10 particles is much greater when the existing sample size is 20 as opposed to 
when the sample size is 200.  
 
The characteristics of the bed material being sampled is also an important factor in 
determining sample size.  When there is little variability in the material, i.e., when the bed 
is well sorted , smaller samples will suffice to precisely describe the bed.  With greater 
variability, i.e., poorer sorting, the sample sizes must be increased to obtain the same 
precision.  Similarly, a smaller sample size suffices if the bed is homogeneous, which 
means that the particle-size distribution is more or less the same throughout the sampling 
area. 
 
Because sample size determines both the cost and the benefits of field measurements, 
careful attention should be paid to this aspect before going out into the field.  The 
minimum sample size necessary to ensure a specific sampling precision should be 
calculated beforehand and then be evaluated for cost requirements.  However, in order to 
estimate the minimum sample size for some preset precision, one must have at least an 
approximate estimation of the bed-material standard deviation or sorting – which in itself 
requires sampling.  This circularity may be resolved by performing a pilot data-collection 
study or through estimation based on experience with streams that have bed-material 
characteristics similar to the stream being studied. 
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Various methods for computing a relationship between sample size and precision for bed-
material samples are described in the literature.  The methods fall into three groups: 
 
• Empirical recommendations, 
• Computations based on an assumed normal distribution, and 
• Computations that do not assume any underlying distribution type. 
 
Older literature on sediment sampling often has empirical recommendations of sample 
size that are based on the Dmax particle size and developed for particular bed-material 
properties.  These recommendations usually do not assign a certain level of precision to a 
certain sample size and are not generally applicable.  More recent literature bases sample-
size computation on an assumed normal distribution of the bed-material particle size.  
These procedures are generally applicable if the assumptions of a normal distribution 
holds, but the descriptions can be highly technical and difficult to understand without 
background knowledge of statistics.  Other sample-size recommendations do not assume 
an underlying distribution type and are generally applicable.  This document compiles a 
variety of sample-size computations, explains their application, and compares the results.  
This chapter provides the user with background information that assists in selecting a 
sample-size procedure suitable for a specific study objective. 
 
Methods used to compute minimum sample size are different for number-based sampling 
(Section 4.11 and 4.1.2), areal sampling (Section 4.1.3), and volume-based sampling 
(Section 4.2).  For this reason, sample-size computations are discussed separately for each 
sampling method. 
 
 

5.1  Factors affecting sample size 

The computation of sample size is affected by a variety of factors which include: 
 
• Assumptions made about the underlying distribution type of the bed-material particle-

size (approximately normal, log-normal, or no assumptions are made regarding the 
distribution type (Section 2.1.4.3)) and these assumptions determine which statistics 
need to be used; 

 
• Bed-material characteristics: 

- standard deviation s of the particle-size distribution (typically estimated by the 
Inman sorting coefficient sI or by the moment method sfrq), 

 - heterogeneity of bed material within the reach (variability among samples), 
-  limited parent population size (N) in relation to sample size (n) in a small sampling  

area;  
 
• Acceptable error of measurements which may relate to:  

- absolute, percentage, or standard error,  
- particle sizes in φ or mm units, 
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- the distribution mean or any percentiles (e.g., D5, D50, or D95), and  
- be affected by the number of operators involved; 

 
• Acceptable chance that the computed result is wrong 

- expressed by a predetermined confidence level α; 
 
• Bias (systematic deviation of sampling results from population characteristics) due to: 

- unrepresentative particle selection (operator bias),  
- unrepresentative sampling from heterogeneous deposits (sampling bias), 
- unrepresentative presence of particles from the largest size class (statistical bias).  

 
 
Assumptions made about the underlying distribution type 
Assumptions made regarding the population distribution type of the bed material sampled 
determine the kind of statistics used for sample-size computations.  Traditionally, it is 
assumed that unimodal, log-transformed bed-material particle-size distributions derived 
from a sufficiently large sample size approach a normal distribution in φ-units.  Assuming 
an approximately normal distribution has the advantage that commonly available sample-
size statistics can be used which are based on normal distributions (Section 5.2.2).  Bed-
material samples, however, rarely have a true normal or Gaussian distribution (Kothyari 
1995).  The user needs to evaluate whether the goodness-of-fit to a Gaussian distribution 
is close enough to warrant the assumption of approximate normality (Section 2.1.4.3).  
Church et al. (1987) and Rice and Church (1996b) cautioned that true Gaussian 
distributions for log-transformed particle-size distributions are unlikely for gravel-bed 
streams.  The user could either use an empirical approach to determine a “sufficient” 
sample size, or use a bootstrap (resampling) approach (Section 5.2.3.4) that provides a 
relation between sample size and error.  Sample size – error relations computed from a 
bootstrap approach are independent of an underlying distribution type and may differ 
substantially from similar relations computed using Gaussian-based statistics. 
 
 
Bed-material characteristics 
For a specified accuracy and precision, sample size n should increase as the variability of 
the parent population increases, i.e., as the sorting of the bed material becomes poorer or 
the standard deviation becomes larger.  If the bed-material composition is spatially 
heterogeneous and varies markedly between different locations of the sampling reach, 
samples collected from the reaches are likely to be highly variable as well.  The large 
standard deviation between individual samples necessitates collecting a large number of 
samples for a desired accuracy and precision.  Small mountain streams with large particles 
might have only a limited number of particles available for sampling.  In this situation, the 
population size N is limited in relation to sample size n.  This limitation takes a statistical 
effect as N becomes less than about 100 times the necessary number of particles n and 
causes a decrease in the sample size necessary for a specific precision.  Bed-material 
characteristics further affect the relationship between sample size and accuracy when 
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operators tend to favor mid-size particles while neglecting fines and large cobbles in 
poorly sorted bed material.  
 
 
Accuracy and precision 
Usually when samples are taken, the user wants to know the accuracy and precision of a 
sample.  Accuracy refers the size of the deviations from the true value.  The accuracy of 
bed-material sampling may never be known because the true distribution of bed-material 
particles in the reach could only be determined by collecting every particle in the reach.  
Using the example of target practice (Fig. 5.1), with the target being the representative 
description of the particle-size distribution of a deposit, accuracy is the closeness of the 
shots to the target center (Fig. 5.1 d).  Precision refers to the size of deviations from the 
mean value obtained by repeated applications of the sampling procedure, i.e., the ability to 
repeatedly hit the same area (hopefully the center) of the target (Fig. 5.1c and d).   
 
 
 
 
 
 
 
 
 
 
 
 
 
   High bias + low precision = low accuracy    Low bias + low precision = low accuracy 
 
 
 
 
 
 
 
 
 
 
 
 
 
    High bias + high precision = low accuracy  Low bias + high precision = high accuracy 
 
 
Fig. 5.1:  Patterns of shots at a target.  (Redrawn from Gilbert (1987), by permission of John Wiley and 
Sons, Ltd.). 

a. b. 

c. d. 
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Precision describes how dispersed or tightly bunched the shots are (Fig. 5.1 a and b) and 
indicates the inter-sample variability (i.e., standard deviation between samples).  Precision 
is used to quantify how many repeated samples are needed to arrive at a stable sampling 
result.  Accuracy and precision are interrelated.  Samples of low precision also have a low 
accuracy (Fig. 5.1 a and b).  Samples of high precision are not necessarily accurate if all 
samples are off set from the true result by some constant amount, i.e., by bias.  Precise 
samples can only be accurate in the absence of bias (Fig. 5.1 d).     
 
 
Bias 
Bias is the systematic deviation of a sampling result from the true population characteristics 
(Fig. 5.1 a and c).  Bias can stem from a variety of sources.  Operator bias results when the 
operator selects mid-sized, “handy” particles and excludes “inconveniently” small, or large 
particles, or particles form poorly accessible streambed locations.  Operator bias can be 
ameliorated by training and using an appropriate sampling methodology (Sections 4.1.1.3 – 
4.1.1.6, 5.2.2.8), but since it cannot be eliminated, operator bias increases with the number 
of operators and with sample size.  Statistical bias is caused by sampling too few particles 
from the largest size class and is ameliorated by a large sample size (Sections 5.4.1.1, 
5.4.1.3, 5.4.1.4).  Sampling bias means to sample particle distributions not representative of 
the parent distribution in the reach and may result from sampling spatially heterogeneous 
beds in an unrepresentative way.  This can be avoided by using spatially segregated 
sampling schemes (Sections 6.3 and 6.5). 
 
 

5.2  Pebble counts: number-based sample-size recommendations 

5.2.1  General form of number-based sample-size equations 

For approximately Gaussian shaped particle-size distributions that are not very skewed, 
mean and median are similar.  In this case, a one-step procedure can be applied to estimate 
the sample size necessary to obtain a desired precision of the sample mean particle size φm 
or Dm.  The general form of a sample-size equation is:  

 
n = 



t ⋅ σ

e

2

                          (5.1) 

 
n is the sample size, i.e., the number of particles to be sampled, t is a statistical numerical 
value, σ is the population standard deviation, and e is the acceptable error around the 
mean.  These terms will be described in more detail. 
 
 
Standard deviation 
The population standard deviation σ describes how wide the range of values is within the 
population, specifically the range of values comprised within the central 68% of all data 
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(Section 2.1.5.4).  However, the population standard deviation is rarely known, and must 
therefore be substituted by an estimate of standard deviation that is derived from the 
sample.  σ may be estimated from the sample standard deviation s ≡ s2, where s2 is the 
sample variance.   The sample standard deviation s is computed from the absolute or 
percent frequencies of the particle number frequency-distribution  
 
 

  s = s2 =  
1

n-1 ∑
i=1

k

 ni (φci - φm)2                     (see Eq. 2.56) 

 
 
where n is the total number of particles (or 100 %), k is the number of size classes, ni is 
the number of particles per size class (or the percentage), φci is the center of class in φ-
units of the ith size class, and φm is the arithmetic mean particle size in φ-units.  This 
computation of standard deviation is also called the “second moment” method.  The 
expression becomes complicated for grouped data such as particle-size distributions (see 
Eq. 2.58) and is therefore commonly substituted by the Inman sorting coefficient sI that 
describes the range of particle sizes contained within the central 68% of all data (Eq. 2.46, 
Section 2.1.5.4). 
 
 

  sI  =  
|φ84 - φ16|

2                        (see Eq. 2.46) 

 
 
Numerical values of standard deviation and the Inman sorting coefficient are identical for 
true Gaussian distributions, but deviate somewhat if the particle-size distribution is not 
exactly normal (see Table 2.14). 
 
The sample standard deviation or the Inman sorting coefficient is usually not known 
before the sampling project starts, and need to be obtained from a pilot study.  A 
preliminary value of sample size is then computed for a preset precision using the 
estimated value of s or sI and a sample of the computed size is collected.  The standard 
deviation s or sI is computed for the collected sample, and sample size is recalculated.  If 
sample sizes based on the pilot study and on the actual sample are different, the process of 
computing and comparing sample-size requirements needs to be repeated until the 
difference in required and collected sample size is insignificant. 
 
 
Error 
The error around the mean can be expressed in absolute or in percentage terms.  The user 
may specify an acceptable error for the sample mean, e.g., ±0.15 φ around the mean in φ-
units (φm) or ±10% around the mean in mm (Dm), and compute the sample size necessary 
to attain this goal.  Similarly, the error associated with a given sample size may be 
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calculated by solving sample-size equations for the error e.  The inverse square relation 
between n and e is such that a fourfold increase in sample size reduces the error by half, 
whereas allowing for twice the error reduces the sample size by a factor of 4.  Other 
possibilities to express sampling errors include standard errors and errors around 
percentiles in terms of mm, φ, % or in terms of a percentile range (Section 5.2.3). 
 
 
Sample statistics 
The term t in Eq. 5.1 is a statistical numerical value known as Student’s t.  For bed-
material sampling studies, Student’s t is preferred over other statistics because the 
population σ is usually not known and approximated by s, the sample standard deviation.  
The t-variate cuts off (100 α/2)% of the upper tail of a t-distribution with n-1 degrees of 
freedom.  The numerical value of Student’s t depends on two parameters: confidence 
level: and sample size.  The confidence level α describes the certainty (or the percent of 
all cases) in which a specified precision will be obtained by sampling the required sample 
size.  A value typically chosen is α = 0.05 which pertains to a 95% confidence level which 
means that the particle size of interest will be within a predetermined limit in 95% of all 
cases.  Table 5.1 shows the relation between percent confidence, α-levels, and the 
resulting value for t1-α/2, n-1 for large n.  Note that for large n, values of t1-α/2, n-1 are 
identical 
 
 

Table 5.1:  Relation between precision (expressed in terms of confidence levels, or percent 
chance that error is exceeded), the corresponding α-levels, and values of t1-α/2 or Z1-α/2 for  
n → ∞. 
________________________________________________________________________________________________________________________ 
% confidence  % chance           α-level   Percentile of  Distance betw. median 
that error is  that error is        normal   and percentile in terms  
not exceeded  exceeded        distribution  of standard deviation 
   1-α (%)      α %       α       1-α/2    t1-α/2,

 
n→∞, or Z1-α/2 

________________________________________________________________________________________________________________ 
    0          100     1.0     0.5      0.0 
 30     70     0.7     0.65     0.385 
 50     50     0.5     0.75     0.675 
 68.2    31.8    0.318    0.841     1.000 
 80     20     0.20    0.90     1.280 
 85     15     0.15    0.925     1.440 
 90     10     0.1     0.95     1.645 
 91       9     0.09    0.955     1.695 
 92       8     0.08    0.96     1.750 
 93       7     0.07    0.965     1.810 
 94       6     0.06    0.97     1.880 
 95       5     0.05    0.975     1.960 
 98       2     0.02    0.99     2.327 
 99       1     0.01    0.995     2.576 
 99.5      0.5    0.005    0.9975     2.810 
 99.9      0.1    0.001    0.9995     3.270 
 99.96      0.04    0.0004    0.9998     3.490 
 99.99      0.01    0.0001    0.99995    3.603 
__________________________________________________________________________________________________________________________ 
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to the values of Z1-α/2 which is the standard normal deviate that cuts off (100 α/2)% of the 
upper tail of a standard normal distribution.  Values of Z1-α/2 are used instead of t1-α/2, n-1 if 
the population standard deviation σ is known and n is larger than 100.   
 
For a specified confidence level, the relationship between t and sample size n is not linear.  
For sample size larger than 200, t takes a constant value of 1.96 for a 95% confidence 
level (for α = 0.05, t1-α/2, n-1 = t0.975, n-1 = 1.96).  But for small sample sizes, t changes 
significantly with sample size.  For a sample size of 5 which allows n-1 = 4 degrees of 
freedom, t0.975, n-1 = 2.776, and increases to 12.7 for a sample size of 2.  Table 5.2 provides 
t-values for various degrees of freedom which are equal to n-1, and a 95% confidence 
level for which t1-α/2 = t0.975.  Values for t for other confidence levels and samples sizes can 
be obtained from statistical tables available in standard statistics books (e.g., Gilbert 
1987). 
 
 
Table 5.2:  Values for Student’s t for various degrees of freedom (n-1) and a 95% confidence level (α = 
0.05) with t1-α/2 = t0.975 
________________________________________________________________________________________________________________ 
n-1  t1-α/2, n-1  n-1  t1-α/2, n-1  n-1  t1-α/2, n-1  n-1  t1-α/2, n-1  n-1  t1-α/2, n-1 
_____________________________________________________________________________________________________________________________________ 

  1     12.706   11  2.201   21  2.080   35  2.032    85   1.991 
  2  4.303   12  2.179   22  2.074   40  2.021    90   1.990 
  3  3.182   13  2.160   23  2.069   45  2.015    95   1.988 
  4  2.776   14  2.145   24  2.064   50  2.010      100   1.987 
  5  2.571   15  2.131   25  2.060   55  2.005      105   1.985 
 
  6  2.447   16  2.120   26  2.056   60  2.000      110   1.983 
  7  2.365   17  2.110   27  2.052   65  1.998      115   1.981 
  8  2.306   18  2.101   28  2.048   70  1.996      120   1.980 
  9  2.262   19  2.093   29  2.045   75  1.995      
10  2.226   20  2.086   30  2.042   80  1.993    ∞   1.96 
________________________________________________________________________________________________________________ 

 
 
Sample size  
The necessary sample size n may have to be computed iteratively if n is smaller than 
approximately 200 because the value of t depends on sample size (Table 5.2).  This is not 
a concern for pebble counts which comprise more than 200 particles.  However, when 
using the general sample-size equation Eq. 5.1 to compute the number of subsamples 
required for a specified precision (two-stage sampling, Section 5.2.3.1), n may be smaller 
than 10, and t varies pronouncedly with n when n is small (Table 5.1). 
 
The calculated sample size refers to the confidence level specified by the t value.  If a t-
value for a 95% confidence level is used, i.e., t1-α/2, n-1 = t0.975, n-1, a sample size is 
computed for which there is a 95% chance that the absolute difference (positive or 
negative) between the estimated sample mean and the true population mean is less than 
the specified acceptable error. 
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The computed sample size is usually rounded to the next higher integer value, because 
sample sizes are whole numbers, not decimals.  Either 7 or 8 samples are collected, but 
not 7.3.  It is left at the user’s discretion of whether a sample size of 13.1 is rounded to 13 
or 14.  Rounding is denoted by the symbol ≅  in this document. 
 
 
5.2.2  Prespecified error around the mean 

The variables in the right-hand term of the general sample-size equation (Eq. 5.1) can be 
slightly altered, so that Eq. 5.1 can be used to compute the sample size around the mean 
for a variety of different applications.  Sample errors around the mean may be specified as 
absolute error e±φm in φ-units, as percent error e%Dm around the mean in mm, and as 
percent error e%φm around the mean in φ-units (Sections 5.2.2.1 – 5.2.2.3).  The confidence 
level may be changed, and consequently the numerical value of t.  In all example 
computations provided in this section, sample sizes are computed for a 95% confidence 
level (α = 0.05), a value that is commonly selected.  However, some study objectives may 
specify a different confidence level.  A normal distribution of bed-material is assumed 
when using Eq. 5.1, but a slight variation of the error term makes it possible to use the 
equation for logarithmically distributed samples (Section 5.2.2.4).  Another assumption 
for Eq. 5.1 is an unlimited supply of particles to be sampled.  Again, a slight modification 
of Eq. 5.1 allows the user to compute sample size when the number of particles that may 
be sampled is limited, for example, in a small sampling area (Section 5.2.2.5).  All 
variations of Eq. 5.1 used in Section 5.2.2.1 to 5.2.2.5 are listed in Table 5.5 in Section 
5.2.2.6.  Example computations are performed with all equations introduced in Sections 
5.2.2.1 - 5.2.2.5 for the same particle-size distributions so that computed samples sizes 
may be compared (Section 5.2.2.6). 
 
 
5.2.2.1  Absolute error around the mean in φ-units 

The sample size for a specified absolute error around the mean particle size of a sample in 
terms of φ-units (e.g., e±φm = ±0.2 φ-units) is computed from: 
 
 

  n = 




t1-α/2;n-1

e±φm
 ·  sI

2

                    (5.2) 

 
 
n is the sample size for which there is a small (e.g., 5%) chance only (α = 0.05) that the 
absolute difference (positive or negative) between the estimated sample mean and the true 
population mean is larger than or equal to the acceptable absolute error e±φm. 
 
 

Example 5.1:  
Given is the particle-size distribution from Table 2.3 and Fig. 2.12 
in Section 2.1.4.1:  
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D84 = 104  mm   φ84 = -6.70    sI = |φ84 - φ16|/2 = 1.94  
D50 =   32  mm   φ50 = -5.00     
D16 =    7   mm   φ16 = -2.82  
Dm  = 27.2 mm   φm  = -4.76   
 
If the user has no idea about the approximate value of n, the t-
value for an indefinitely large sample size n → ∞ is used in a first 
trial.  For α = 0.05, t0.975, n-1  = 1.96, and sample size n for an 
acceptable absolute error e = ±0.2 φ-units becomes: 
 

  n = 



1.96

0.2   ·  1.94
2

 = 361.5 ≅  362. 

 
If the acceptable error is increased to e±φm = ±0.5 φ, n becomes 57.8, 
rounded up to 58.  In this case, a t-value of 1.96 would not be 
appropriate and computations need to be repeated with a t-value for 
n-1 = 57, which is close to 2.00 (Table 5.2).  Using t0.975, n-1  = 2.00, 
n = 60.2, and is rounded to 61.  This computed n is almost similar to 
the n for which the t-value was selected.  Usually, about three 
iterations are required to reach this convergence. 

 
Eq. 5.2 indicates that a pebble count in a poorly sorted streambed (sI  ≈ 2) requires almost 
400 particles for a 95% certainty that the mean of the sample is by no more than ±0.2 φ- 
units different from the population mean.  An error of ±0.2 φ means that in 95% of all 
samples, the sampled mean can be expected to be within the range of -4.56 to -4.96 φ  
(i.e., between 23.6 and 31.1 mm) of the true mean of -4.76 φ ( i.e., 27.2 mm).  
 
Fig. 5.2 shows relations between sample size and the absolute error e±φm in φ units around 
the mean using t-statistics and a 95% confidence level for samples with various sorting 
coefficients.  These curves may be used to estimate the number of particles required for a 
desired precision in pebble counts in streams with different sorting coefficients.  Sample 
size in Fig. 5.2 was calculated iteratively to account for the variation of t1-α/2, n-1 = t0.975, n-1 
with n. 
 
5.2.2.2  Percent error around the mean in mm 

Eq. 5.2 can be adjusted to apply to particle sizes in mm (ISO 1992).  In this case, sorting is 
expressed as the logarithmic geometric standard deviation sg;sq (see Eq. 2.54, Sect. 
2.1.5.4), and the error is expressed in terms of the log of the percentage error around the 
Dm in mm added to 1. 
 
 

  n = 



t1-α/2;n-1

log (1+e%Dm) ·  sg;sq

2

                 (5.3) 
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Fig. 5.2:  Relation between sample size n and absolute error e±φm around the mean in φ-units based on 
Student’s t-values for approximately normal distributed bed material for various sorting coefficients, and α 
=0.05.  Sample size n was computed iteratively to adjust for the variability of t0.975, n-1 with sample size. 
 
 

Example 5.2:  
A pilot study estimates D84 = 104 mm, and D16 = 7 mm.  The 
logarithmic geometric standard deviation (Sect. 2.1.5.4) is 
sg;sq = 0.5 log (D84/D16) = 0.586. 
 
The absolute error of ±0.2 φ  in Eq. 5.2 corresponds approximately 
to a ±13.9 % error around the Dm of 27.2 mm (see below) which 
was chosen as the tolerable error.  In log units, an error of ±13.9 % 
is expressed as log (1+0.139).  n is computed by solving the 
equation: 
 

  n = 



1.96

log 1.139 ·  0.586
2

 = 415.7 ≅  416 

 
 
Comparison of absolute error in φφφφ and percent error in mm  
Sample-size computations in φ units and in the corresponding units of mm are not truly 
equivalent, because an error that is symmetrical around a mean in φ units is not 
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symmetrical around the mean in mm, and vice versa.  For example, an absolute error of 
±0.2 φ units around a mean particle size of φm = -5.0 φ encompasses the range of -4.8 to -
5.2 φ .  The equivalent range in mm is 27.9 to 36.8.  The percent difference between 27.9 
mm and the mean particles size Dm of 32 mm is (27.9 - 32) ·  100/32 = -12.8%, whereas 
the percent difference between 36.8 mm and the Dm of 32 mm is (37.7 - 32) ·  100/32 
=15.0%.  This asymmetry may be negligible for relatively small errors, but becomes quite 
pronounced as the absolute error in φ increases.  An error of ±1.0 φ around a φm of -5.0 φ 
(=percentage error of 20%) encompasses the size range of -4 to -6 φ that is equivalent to 
the range of 16 to 64 mm, and describes an error of -50 to +100% around the Dm of 32 
mm (see Fig. 5.9 in Section 5.2.3.4). 
 
 
5.2.2.3  Percent error around the mean in φ-units  

The percent error e%φm around the mean in φ-units is the absolute error divided by the 
mean and computed from e%φm = e±φm/φm.  Sample size for a percent error e%φm with a 5% 
chance (α =0.05) that the difference between sample φm and population mean φm is 
smaller than the prespecified percent error may be computed from  
 
 

  n = 




t1-α/2;n-1

e%φm
 ·  

sI

φm

2

 =  




t1-α/2;n-1

e%φm
 ·  CV

2

             (5.4) 

 
 
Note that sample standard deviation (or sediment sorting) is divided by φm as well.  s/φm 
defines the coefficient of variation CV, also termed the relative standard deviation.  Using 
the Inman sorting coefficient sI to describe the standard deviation s, CV may be computed 
from:  
 

  CV  =  
s

φm
  =  

|φ84 - φ16|
2

 φm
  =  

|φ84 - φ16|
2φm

              (5.4a) 

 
 

Estimates of φ84, φ50, and φ16 may be obtained from a pilot study of a 100-particle pebble 
count.  Table 5.3 presents coefficients of variation (CV) for bed material of different 
sorting coefficients and different mean particle sizes.  
 

Example 5.3: 
From Example 5.1, sI is taken as 1.94, and sample φm is -4.76 φ.  
An absolute error of ±0.2 φ-units (Example 5.1) becomes a percent 
error e%φm = ±0.2/-4.76 = 0.042 or 4.2%.  n is computed from: 
 

  n = 



1.96

0.042  ·  
1.94
-4.76

2

 = (46.67 ·  0.408)2  = 361.7 ≅  362 
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The sample size calculated by Eq. 5.4 is equal to the sample size 
calculated by Eq. 5.2. 
 
 

Table 5.3:  Values of CV for poorly sorted bed material with various  
sorting coefficients and various mean particle sizes 
____________________________________________________________________________ 

  Dm     φm          Sorting coefficient sI    
 (mm)    (φ-units)     1.0    1.5    2.0  
______________________________________________________________________________________ 

   16   -4.0     0.25   0.38   0.50 
   22.6   -4.5     0.22   0.33   0.44 
   32   -5.0     0.20   0.30   0.40 
   45   -5.5     0.18   0.27   0.36 
   64   -6.0     0.17   0.25   0.33 
____________________________________________________________________________ 

 
 
5.2.2.4  Percent error in φ and mm for approximate lognormal distributions 

Although particle-size distributions in φ units tend to roughly approach normal 
distributions, it is conceivable that a particular particle-size distribution might obtain a 
better fit to a log-normal distribution than a normal distribution.  In this case, Eq. 5.5 may 
be used to estimate the sample size for a prespecified percent error around the mean 
(Gilbert 1987). 
 
 

  n = 
t2

1-α/2;n-1 ·  sI
2

 ln (e%φm+1)
                        (5.5) 

 
 

Example 5.4: 
In accordance to Example 5.3, an absolute error of ±0.2 φ-units 
around the mean of -4.76 φ becomes a percent error of 0.042 or 4.2 
%.  Sample size is computed from: 
  

  n = 
1.962 ·  1.942

 ln (0.042+1)   =  
3.84 ·  3.76

0.041   =  351.4 ≅  352    

            
 
A similar form of Equation 5.5 may be applied if particle sizes in mm units approached a 
lognormal distribution.  The graphic geometric standard deviation sg;sq = (D84/D16)

0.5 is 
used in this case and has the value of 3.85 for D84 = 104, and D16 = 7 mm (Eq. 2.54 in 
Section 2.1.5.4).  A percentage error of 0.042 (4.2%) in terms of φ-units (see above) is 
approximately similar to a percent error of 13.9% in mm-units for the particle-size 
distribution in the example. 
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   n = 
t2

1-α/2;n-1 ·  sg;sq
2

 ln (e%Dm+1)                       (5.6) 

 
 
Example 5.5: 
 

  n = 
1.962 ·  3.852

 ln (0.139+1)   =  
3.84 ·  14.83

0.129   =  438.9 ≅  439   

  
 
 
5.2.2.5  Limited number of particles available for sampling (N ≠ ∞)  

When sampling small geomorphological units (e.g., bars and riffles), or sedimentary units 
(areas of homogeneous bed-material composition) there may be a shortage of particles that 
can be sampled.  The number of particles present on the particular geomorphological or 
sedimentary unit (the population size N) might not be much larger, or even smaller than 
the sample size n computed with Eqs. 5.2 - 5.6.  In this case, sample size n needs to be 
adjusted for limited population size N.  This is accomplished by dividing the equation for 
unlimited sample size by 1 + the quotient of the original sample-size equation and 
population size N.  Equations that include a term for limited population size N provide 
virtually the same results as equations for unlimited N, if N exceeds n by a factor of 1000 
or more.  If N = 100 n, n is reduced by less than 1% compared to the n computed without 
adjustment for N, and if N = 10 n, n reduces by 10%.  Thus, as N decreases, sample size n 
also decreases. 
 
 
Absolute error around mean in φφφφ-units 
For a prespecified absolute error e±φm in φ-units, and a limited number of particles N in the 
target population available for sampling, n is computed from (Gilbert 1987)  
 

  n = 




t1-α/2;n-1

e±φm
 ·  sI

2

 1 +










t1-α/2;n-1

e±φm
 ·  sI

2

/N
                 (5.7) 

 
 

Example 5.6: 
A grid count is done on a small bar with an area Ab = 2 m ⋅ 2.6 m  
= 5.2 m2.  Almost all surface particles are within the size range of 
35 - 45 mm.  If the mean particle b-axis size is 45 mm, and 
particles are mostly ellipsoid (a-axis = 1.5 b-axis) and flat lying, 
the area covered by one particle Ap can be approximated by Ap= π 
(0.045/2 ·  0.068/2) = 0.0024 m2.  Thus, the number of surface 
particles on this bar is estimated to be N = Ab/Ap = 2164. 
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      n = 




1.96

0.2  ·  1.94
2

 1 +









1.96

 0.2  · 1.94
2

/2164
  = 

361
1+(361/2164)  = 309.4 ≅  310    

 
Equation 5.2 (for unlimited population size) produced a sample 
size of 362.  Because of the limited number of particles in the 
population, Eq. 5.7 calculates a lower sample size of n = 310.  The 
effect of population size N on sample size becomes negligible as N 
exceeds 100 n (ca. 50,000), and n increases to 359.  For the 
example above, this occurs as the sampling area reaches 119 m2 
(Table 5.4). 

 
 

Table 5.4:  Example of change in sample size n with a change in population size N. 
___________________________________________________________________________________________ 

       N     Sampling Area (m2) Side length for square (m)     n 
____________________________________________________________________________________________________________ 

      100     0.24       0.5        78 
        500     1.2        1.1      210 
     1,000     2.4        1.5      265 
         5,000        12        3.5      337 
       10,000        24        5      349 
       50,000      119           11      359 
     100,000      238           15      360 
     500,000    1190           35      361 
___________________________________________________________________________________________ 

 
 
Percentage error around the mean in mm  
If the adjustment for limited population size is applied to Eq. 5.3, the sample size required 
for a specified percentage error around the Dm (in mm) is computed from: 
 
 

  n =  




t1-α/2;n-1 ·  sgl

log (1+e%Dm)

2

1 + 



t1-α/2;n-1 ·  sgl

log (1+e%Dm)

2

 /N
                     (5.8) 

 
 
 
Percent error around the mean in φφφφ-units 
Similar to Eq. 5.4, sample size for a specified percent error around the mean in a limited 
population size and an approximately normal distribution of particle sizes in φ-units is 
estimated from: 
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  n = 




t1-α/2;n-1

e%φm
 ·  

s
φm

2

 1 +










t1-α/2;n-1

e%φm
 ·  

s
 φm

2

/N
                    (5.9) 

 
 
Percent error around the mean in φφφφ-units, approximate lognormal distribution assumed 
Parallel to Eq. 5.5, sample size for a specified percent error around the mean of an 
approximately lognormal distribution of particle sizes in φ-units and a limited population 
size is obtained from: 
 
 

  n = 
t2

1-α/2;n-1 ·  s2

 [ln (e%φm+1)] + 



 t2

1-α/2;n-1 ·  s2 
N

              (5.10) 

 
 
Percent error around the mean in mm, approximate lognormal distribution assumed 
As in Eq. 5.6, sample size for a specified percent error around the mean of an 
approximately lognormal distribution of particle sizes in mm and a limited population size 
is obtained from: 
 
 

  n = 
t2

1-α/2;n-1 ·  s2

 [ln (e%Dm+1)] + 



 t2

1-α/2;n-1 ·  sg;sq
2 

N

                (5.11) 

 
 
5.2.2.6  Comparison between sample-size equations for errors around the mean 

Equations introduced in this section are summarized in Table 5.5.  When applied to the 
same particle-size distribution, all equations compute sample sizes between 352 to 439 for 
an absolute error around the mean of ±0.2 φ, which is equivalent to a 4.2 % error (around 
the mean in φ), and approximately equal to an error of ±13.9 % around the mean in mm.  
To compare the results of the five equations (5.2 to 5.6) over a wide range of errors, 
sample sizes were computed for errors between ±0.1 and 1.0 φ, and plotted in Fig. 5.3.  
Eqs. 5.2 (e±φm) and 5.3 (e%φm) yield identical relations between sample size and error, 
while sample size computed for a corresponding percent error in mm units, (e%Dm) (Eq. 
5.3) is slightly higher.  The sample size – error relations have a somewhat different shape 
if the particle-size distribution is assumed to approach a lognormal distribution instead of 
a normal one. 
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Table  5.5:  Variations of the standard sample-size equation for computing absolute or percent errors around 
the mean particle-size in mm (Dm) or φ-units (φm) for approximately normal and lognormal distributions, and 
for unlimited and limited population particle numbers.  Numbers in parentheses refer to equation numbers in 
the document. 
________________________________________________________________________________________________________________________________________________ 
Particle Particle-size  Error around  Unlimited        Limited  
size   distribution  the mean   population Size      population Size 
units  type         (N > 100 n)       (N < 100 n) 
_____________________________________________________________________________________________________________________________________ 

 

   φ   
approx.
lognormal   absolute   



t  ·   sI

e±φm

2
  (eq. 5.2)         





t

e±φm
 ·  sI

2

 1 + 









t

e±φm
 ·  sI

2

/N
    (eq. 5.7) 

 

  mm  
approx.
lognormal   percent    



t  ·   sg;sq

log (1+e%Dm)

2
 (eq. 5.3)       





t  ·   sg;sq

log (1+e%Dm)

2

1 + 



t  ·   sg;sq

log (1+e%Dm)

2
 /N

   (eq. 5.8) 

 

   φ   
approx.
normal     percent       



t  ·   sI

e%φm ·  φm

2
   (eq. 5.4)         





t

e%φm
 ·  

sI

φm

2

 1 + 









t

 e%φm
 ·

sI

 φm

2

/N
    (eq. 5.9) 

 

   φ   
approx.
lognormal   percent       

t2  ·   sI
2

ln (1+e%φm)
    (eq. 5.5)       

t2 ·  sI
2

 ln (1+e%φm) + 



 t2 ·  sI

2 
N

   (eq. 5.10) 

 
 

  mm  
approx.
lognormal   percent        

t2  ·   sg;sq
2

ln (1+e%Dm)  (eq. 5.6)   
t2 ·  sg;sq

2

 ln (1+e%Dm) + 



 t2 ·  sg;sq

2 
N

   (eq. 5.11) 

________________________________________________________________________ 
t = values for Student’s t statistic, = t1-α/2; n-1; sI = Inman’s sorting coefficient; sg,sq = geometric standard 
deviation, square-root approach; e±φm = absolute error around the mean particle-size computed in φ-units. e%Dm 
= percent error around the mean particle-size; e%φm = percent error around the mean particle-size computed in 
φ-units. 
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Fig. 5.3:  Relation between sample size and error around the mean computed for the example particle-size 
distribution (D50 = 32 mm, s = 1.94; Table 2.3, Fig, 2.12) with five sample-size equations (Eq. 5.2 – 5.6).  
Equation numbers are indicated in brackets.  The x-axis scale “Absolute error around the mean in φ-units” 
refers to Eqs. 5.2 and 5.4.  The x-axis scale “Percent error around the mean in φ-units” refers to Eq. 5.5, 
whereas the x-axis scale “Average percent error around the mean in mm-units” refers to Eqs. 5.3 and 5.6.   
   
 

5.2.2.7  Effect of bed-material sorting and error on sample size 

The effects of bed-material sorting and acceptable error on sample-size requirements are 
quite pronounced (Fig. 5.2).  Bed-material sorting typically ranges between 0.5 (well 
sorted lowland gravel-bed rivers) and 2.5 (poorly sorted headwater streams).  Acceptable 
errors typically range between 5 and 50%.  The numerical value for Student’s t varies by 
no more than 1% for sample sizes larger 25.  Assume that a well sorted (sI = 0.5) lowland 
stream requires a sample size of 25 particles for an acceptable error around the mean.  
Sample size for the same mean particle size and the same acceptable error increases by a 
factor of 4 to 100 particles in a moderate to poorly sorted streambed (sI = 1), and again by 
a factor of 4 to 400 particles in a poorly to very poorly sorted (sI = 2) mountain gravel-bed 
stream.  Similarly, for the same particle-size distribution, an increase of acceptable error 
from 10, to 20, to 40% decreases the sample-size requirement from 400, to 100, to 25 
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particles, respectively.  Either a doubling in sorting, or halving of the acceptable error 
leads to a fourfold increase in sample size.  These numerical examples demonstrate that 
statements of sample-size requirements cannot be taken out of context, but must be 
evaluated in light of streambed sorting and the acceptable error. 
 
 
5.2.2.8  Influence of multiple operators on sampling accuracy 

None of the sample-size recommendations presented so far account for errors introduced 
by operators.  Operator errors may be attributed to two main factors: (1) incorrect 
measurement of particle size (Section 2.1.3.6), and (2) biased particle selection among 
operators (Section 4.1.1.3 – 4.1.1.6).  Both factors increase the variability of the sample 
(i.e., standard deviation) and consequently increase the sample-size requirement or reduce 
the accuracy.  In contrast to the statistical error, the operator error becomes relatively more 
important as sample size increases.  This is because the statistical error decreases with 
sample size, but operator error is the same for all sample sizes (Hey and Thorne 1983).  
Since sampling accuracy is comprised of the errors made by all operators involved, 
sampling accuracy decreases as more operators are involved in the sampling. 
 
Prompted by observed operator errors, Marcus et al. (1995) compared results of five 
replicate samples each obtained by eight different operators at two different sites with five 
replicate samples each from a single operator.  They found that when multiple operators 
took the samples, the standard deviation around a given particle size increased at a rate 
about twice as high with particle size than standard deviations of replicate samples from a 
single operator (Fig. 5.4).  For a particle size of 2 mm, samples collected by the single 
operator had a standard deviation of  ±2.6 mm.  This value increased to ±4.2 mm when the 
replicate samples were collected by several operators.  Likewise, particles with a 250 mm 
diameter had a standard deviation of ±30 mm for a single operator.  The value nearly 
doubled to ±54 mm for multiple operators.  This difference shows that it is more 
problematic to detect a change in bed-material size over time or between sites when 
several operators are involved. 
 
As the standard deviation for multiple-operator samples exceeds the standard deviation for 
samples from a single operator (Marcus et al. 1995) by a factor of 1.8, the sample size 
needs to be larger by a factor of 1.82 = 3.2 when multiple operators are employed.  
Consequently, using two or more operators in the belief that the larger sample will provide 
a more accurate estimate of the population characteristics has the opposite effect: it 
increases the sample size necessary for the sample level of accuracy.  The maximum 
benefit of intensive sampling is achieved only if all samples are collected by a single 
operator, unless operator bias can be substantially reduced (e.g., by training and using a 
sampling frame), or be eliminated altogether. 
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Fig. 5.4:  Relation of mean size of 10 percentiles (Dmin, D5, D10, D25, D50, D75, D84, D90, D95, Dmax) to 
standard deviation for replicate samples collected by one ( ■  , !) and by multiple observers (", +).  ■  and " 
refer to one sampling site, ! and + to another.   (Redrawn from Marcus et al. (1995), by permission of the 
American Geophysical Union).  
 
 
5.2.2.9  Computation of sample size and error in the field 

A study site may not be close to the office, and it might be inconvenient, if not unfeasible, 
to return to the study site at a later time to augment a sample size that is too small.  Thus, 
it is recommended to compute the relation between sample size and error around the mean 
in the field.  A laptop computer is needed and a prepared spreadsheet that computes a 
cumulative frequency distribution, the φ16 and φ84, the Inman sorting coefficient, and the 
absolute error around the mean for a given sample size (Fig. 5.5).  The spreadsheet should 
likewise be set up to compute the sample standard deviation using the moment method 
(Section 2.1.5.4).   
 
As particles are added to the frequency distribution of the sample (ni), sample size, the 
particle size of the percentiles of interest, the sorting coefficient, and the currently 
obtained absolute error are automatically updated.  Particles need to be added to the 
sample until the computed error is less than a specified value, for example ±0.2 φ.  
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                   Table of t-values for  
 D  φ   ni   n%    Σn%       95% confidence interval      
                      n-1  t1-α/2,n-1  
 2     -1.0   4   1.6      0.0        1  12.701 
 2.8    -1.5   5   2.0      1.6 φ16 = -2.82    2    4.303 
 …   …   …    …  …  φ84  = -6.70       …      … 
          
 128     -7.0   3   1.2    99.6  s,I  =  1.94     120    1.98  
 180     -7.5   1   0.4  100.0         ∞    1.96  
          
           n=246  100           

                e±φm = 
t1-α/2;n-1 ·  sI

 n
  = 

1.96 ·  1.94
246

 = 0.24 φ 

 
 
Fig. 5.5:  Schematic presentation of a spreadsheet that could be used to compute the absolute error around 
the mean particle size in φ-units directly in the field. 
 
 
5.2.3  Specified error for all percentiles 

The equations presented in the previous sections determine the sample size required for 
estimating the error between the sample and the population mean.  However, the user 
might need to know the error associated with specific percentiles or with all percentiles of 
the distribution.  A two-step sampling procedure (Section 5.2.3.1) can be used to compute 
the relation between sample size and precision for the median or percentiles close to the 
median.  A binomial approach (Section 5.2.3.2) can be used for specific percentiles (e.g., 
D10, D90), while a multinomial approach (Section 5.2.3.3) is used for computing the 
precision of the entire distribution.  A bootstrapping approach (Section 5.2.3.4) can be 
used compute the precision around specified percentiles through a resampling procedure. 
 
 
5.2.3.1  Two-stage sampling approach (ISO 1992) 

Two-stage sampling is a procedure for bed-material sampling proposed by the 
International Organization of Standards (ISO 1992).  The first step of the procedure 
involves collecting several subsamples (e.g., 5) each of equal size (e.g., 50 or 100 particles 
each).  The median or, a percentile close to it, is computed for all subsamples as well as 
the standard deviation.  In the second step a common sample-size equation (e.g., Eq. 5.2 in 
Section 5.2.2.1) is used to determine the number of subsamples needed to ensure that the 
difference between the computed median particle-size and the population median particle-
size does not exceed a specified error value.  The total number of sampled particles is the 
number of subsamples times the number of particles per subsample. 
 
 
Computation for particle sizes in mm 
Following the general steps previously described, a number of subsamples (q) are taken 
from a homogeneous deposit, each sample containing n particles.  For each of the q 
subsamples, the particle size of the median is determined, either graphically from 
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cumulative distribution curves, or by logarithmic interpolation between percentiles 
(Section 2.1.4.2).  ISO (1992) proposes to compute the D50 in units of mm (although φ 
units are preferable, see below).  It is assumed that the q values of D50 are approximately 
normal distributed.  The standard deviation s50 of the q values of D50 is determined from: 
 
 

  s50 = 
∑
i=1

q

(D50 - D50m)2 

q-1                      (5.12) 

 
 
where D50m is the arithmetic mean particle size in mm of the D50 obtained from the q 
subsamples.  
 
The number of subsamples q, each with the same sample size n, required for a 5% chance 
(if α = 0.05) that the absolute difference (positive or negative) between the sampled 
median D50 and the population median (i.e., the mean median established from the 
subsamples) is larger or equal to the acceptable absolute error e±D50 is computed using Eq. 
5.13.  The sample size q is likely to be rather small, perhaps less than 10.  The value for t 
varies markedly with sample size as long as samples sizes are small.  It is therefore 
important to use an appropriate value for t1-α/2,q-1 (Table 5.2).  The appropriate value for t 
is found by iteratively solving Eq. 5.13 until q equals the subsample size q.  
 
 

  q = 



t1-α/2;q-1

e±D50
 ·  s

2

                    (5.13) 

 
 
The total number of particles to be sampled is the number of particles in each subsample 
n, multiplied by the number of q subsamples. 
 

Example 5.7:  
Eq. 5.13 is solved iteratively because the number of subsamples is 
typically smaller than 30 in bed-material samples, and the value 
for t1-α/2,q-1 varies especially for small sample sizes.  Assume that 
five subsamples had D50 particle sizes of 45, 64, 76, 90, and 108 
mm, with a mean D50 of 77 mm, and a standard deviation s50 of 
24.1 mm.  The tolerable absolute error around the D50 is ±10 mm.  
In the absence of an a priori estimate of the appropriate sample 
size for a ±10 mm error, a value of q = 20 subsamples is selected 
in the first trial of solving Eq. 5.13 (any other value would have 
been fine, too) and yields a subsample size of q = 26. The 
estimated subsample size (qest=20) and the computed subsample 
size (qcomp=26) do not match after the first trial. The second trial uses 
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the estimated subsample size q = 26 to estimate the appropriate 
value of t.  The newly computed subsample size is q = 25.  Using 
the t-value for q = 25, the value computed for q is 25.  Equivalence 
is reached between the estimated and computed q for a subsample 
size of 25 after the third trail. 
 
 Trial   qest   q-1   t1-α/2;q-1  qcomp 
 ----------------------------------------------------------------------------------------------------------------------------------- 

   1   20   19   2.093   25.4 ≅  26. 
   2   26   25   2.060   24.7 ≅  25 
   3   25   24   2.064   24.7 ≅  25. 
 
A total of 1,250 particles, i.e., 25 subsamples of 50 particles each, 
have to be sampled to ensure that the D50 particle size is within 
±10 mm of the true D50 particle size. 

 
 
Computations in units of φφφφ 
It is recommended to apply the two-stage approach to particle-sizes in units of φ, rather 
than to units of mm.  The term D50 in Eqs. 5.12 and 5.13 is then substituted by values of 
φ50.  The advantage of computations in φ units is that the medians in φ obtained from 
several subsamples approximate a normal distribution better than median values D50 in 
mm.  For a normal distribution, sample means will be normally distributed for any 
subsample size n, whereas for lognormal or skewed distributions, sample means attain a 
normal distribution only for subsample sizes of 30 and larger (Triola 1995, p. 252-257).  
 
 

Example 5.8:  
The φ50 particle sizes of four subsamples of 50 particles each are  
-5.2, -5.1, -5.0, and -4.8 φ.  The standard deviation s of the four 
values of φ50 is 0.171 φ.  For an acceptable absolute error of ± 0.2 
φ, Eq. 5.13 yields 
 

  q = 



3.182

0.2  ·  0.171
2

 = 7.4 ≅  8 

 
q = 8 subsamples (of 50 particles each, = 400 particles total) are 
required for an acceptable error around the φ50 of ±0.2 φ-units.   
 

 
The two-step sampling method is most suitable when estimating the required sample size 
for a specified error around the median in the field. For sample sizes of 100 or 50, the 
median particle size can be quickly calculated on paper. Sample standard deviation is a 
preprogrammed function of many scientific calculators. Prepared forms or spreadsheets 
may be helpful when computing the sample size necessary for a specified error in the field. 
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5.2.3.2  Binomial distribution approach (Fripp and Diplas 1993) 

The one-step methods compute the absolute error in mm or φ-units, or the percentage error 
around the mean, whereas the two-step methods compute the absolute or percent error 
around a specified percentile.  For both procedures it was assumed that either the entire 
distribution approximated a normal distribution, or that the percentile values from the 
various subsamples approached normal distributions.  A binomial and a multinomial 
approach (Section 5.2.3.3) can be used for computing the error around a given percentile 
in terms of a percentile range.  For example, a percentile error of ±10% means that the 
particle size of the D75 may be within the particle size range of the D65 and D85 of the 
population.  Binomial and multinomial approaches assume no specific underlying 
distribution type. 
 
The binomial approach presented by Fripp and Diplas (1993) is based on the binomial 
probabilities of the percent finer or percent coarser cumulative particle-size distribution 
(i.e., the grain-size curve).  The approach is used for computing the percentile error around 
a given percentile e±p.  The computed sample size n ensures that the particle size of a 
given percentile p is within a specified error range between two percentiles that are ± 
some percentage larger and smaller than the percentile p.  n is calculated from: 
 
 

  n  =  
(Z1-α/2)

2 ·  p ·  (1 - p)
 e±p

2                   (5.14) 

 
 

Z is the standard normal deviate that cuts off  (100 α/2) % of the upper tail of a standard 
normal distribution.  Z-values for various values of 1-α/2 can be obtained from statistical 
tables provided in general statistics books.  The value of Z1-α/2 for the commonly chosen  
95% confidence interval with α = 0.05 is 1.96 (see Table 5.1 for the relation between 
confidence interval, α-levels, and corresponding values for Z1-α/2).  p is used as a decimal 
value of the percentile of interest (i.e., 0.5 for D50), and the subscript p refers to a specified 
percentile.  

 
Example 5.9: 
The sample size required to remain below a ± 10% percentile error 
around the D16, i.e., the D16 particle size is to be within the range 
of the sample D6 to D26, is  
 

    n = 
1.962·  0.16 ·  (1 - 0.16)

 0.12   = 51.6 ≅  52 

 
Eq. 5.14 can be solved for the error term and be used to compute 
the error associated with a given sample size.  The error around the 
50th percentile of a distribution of particle-sizes in mm (D50) for a 
sample size of n = 100 is 
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  e±p = 1.96 ·  
0.5 ·  (1 - 0.5)

100   = 0.098 = 9.8%    

  
 
An error of e±p ≈ 10% indicates that the particle size of the sample 
D50 is within the D60 and the D40 of the population distribution 

 
The binomial approach calculates independent confidence intervals, one at a time, for each 
particle size-class and can therefore not be used to represent the entire distribution.  A 
multinomial approach is needed to compute error bands around an entire particle-size 
distribution. 
 
 
5.2.3.3  Multinomial distribution approach (Petrie and Diplas 2000) 

To overcome the limitations of a binomial approach, Petrie and Diplas (2000) presented a 
multinomial approach which can be used for placing confidence intervals around all 
particle-size classes in a cumulative frequency distribution curve of a pebble count 
sample.  The population cumulative frequency distribution (i.e., the percent finer or 
percent coarser curve) can then be expected to be within the confidence interval in a 
specified percentage of all cases (e.g., in 90% of all cases for a 90% confidence interval).  
Similar to a binomial approach, a multinomial approach does not assume a specific 
underlying distribution type.   
 
 
Relation between sample size and error 
The number of particles n necessary to ensure that a percentile of interest p is within an 
allowable confidence interval, e±p (i.e., percentile error) is computed from: 
 
 

  n = 
(e±p + p) ·  (1 - e±p - p) ·  χ2

α/k;1

e±p
 2               (5.15) 

 
e±p is the error in percentage points around the percentile p of a particle-size distribution.  
An error of  ±10 percent around the D50 (e%p50 = 0.1), for example, means that the particle 
size of the sample D50 may be within the D40 and the D60 of the population distribution.  
χ2

α/k;1 is the upper (1-α/k) ·  100 percentage point of the chi-square distribution for one 
degree of freedom and can be obtained from standard statistical tables.  α is the 
confidence coefficient and k is the number of size classes of the particle-size distribution.  
If table values are not available, the value for χ2

α/k;1 can be approximated using a 
regression function that relates published values of χ2

α/k;1 to α/k and yields (r2 = 0.99): 
 
 
  χ2

α/k;1 = - 1.435 (- 1.755 ·  ln (α/k))              (5.16) 
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Example 5.10: 
D50 is the percentile of interest p.  The tolerable error e±p between 
the sample estimate of D50 and the confidence interval around the 
D50 is ±10 percent, i.e., e±p = 0.1.  This means that the particle size 
of the sample D50 could be within the particle size of the D40 and 
the D60 of the population distribution.  The desired confidence 
level is α = 0.05, and the distribution has 10 size classes so that α/k 
= 0.005.  The table value of χ2

α/k;1 for one degree of freedom and 
α/k = 0.005 is 7.88.  Eq. 5.16 computes χ2

α/k;1 as 7.86.  Using the 
value 7.88, the necessary sample size is (Eq. 5.15) 
 

  n = 
(0.1 + 0.5) ·  (1 - 0.1 - 0.5) ·  7.88

0.12   

 

     =  
0.6 ·  0.4 ·  7.88

0.01   =  189.1 ≅  190. 

 
The relation between sample size and percentile errors around the D50 is plotted in Fig. 5.6 
for different numbers of particle size-classes k.  A pebble count particle-size distribution 
from a coarse gravel or cobble-bed stream typically has 15 to 20 size classes when particle 
sizes are measured in 0.5 φ intervals.  According to Eq. 5.15, a 100-particle sample with15 
size classes has a percentile error e±p50 of ±16% and can only ensure that the D50 particle  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.6:  Sample size necessary for various percentage errors around the D50 for different numbers of particle 
size-classes k of a particle-size distribution. 
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size is within the range of the population D34 to D66.  A 400-particle sample reduces this  
error to about ± 7%, narrowing the range of the D50 particle size of the sample to within a 
range between the D43 and the D57 population particle-size. 
 
 
Confidence bands 
Confidence bands can be plotted around a distribution using the equation 
 
 

  e±p = 
χ2

α/k;1 ·  pi ·  (1 - pi)
n                 (5.17)  

 
The absolute percentile error around a given percentile varies only with the number of size 
classes k and the selected α-value, and is the same for any particle-size distribution as 
long as the values of α and k are identical.  Fig. 5.7 plots error bands for a 95% confidence  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.7:  Error bands (e±pi) for a 95% confidence level around the example particle-size distribution given in 
Section 2.1.4.1 with 15 size classes (α/k = 0.05/15 = 0.0033; χ2

α/k;1 = 8.57).  Vertical lines indicate particle 
size classes in 1.0 φ-units. 
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level around the example particle-size distribution with 15 size classes presented in 
Section 2.1.4.1.  Error bands are not entirely symmetrical around the distribution.  For the 
example distribution used in Fig. 5.7, a sample size of n = 100 produces a percentile error 
around the D80 of ±11.7%, i.e., the D80 particle size could fall between the D92 and the D68 
particle size.  The percentile error around the D16 is ±10.5%, meaning that the D16 particle 
size may fall between the D5.5 and the D26.5 population particle size.  
 
 
5.2.3.4  Bootstrap approach: no assumed distribution type (Rice and Church 
1996b) 

Rice and Church (1996b) proposed a computer sampling, or “bootstrap” method for 
determining the sample size required for a prespecified error (standard error or error in φ 
units) around a given percentile.  Bootstrapping determines the relation between error and 
sample size from repetitive computer sampling of a parent distribution that constitutes 
several thousands of actually measured bed-material particle b-axes.  Bootstrapping, like 
the binomial and multinomial approaches (Section 5.2.3.2 and 5.2.3.3), does not require 
assumptions about the underlying parent distribution type.  Computations are therefore 
free of any error introduced by assuming an inappropriate underlying distribution type and 
have the advantage that the computed sample-size requirements are tailored to a specific 
bed-material composition found at a specific sampling site. 
 
 
Computation of the bootstrap percentile standard error and the absolute percentile 
precision 
A measurement of 3,500 particle b-axes provides a data base that is sufficiently large to be 
a good approximation of the population distributions.  A large number of replicate 
samples r, e.g., r = 200 is drawn, each with the sample size n (sampling without 
replacement for each individual sample).  A particle-size frequency distribution and a 
probability density function are constructed for each sample, and all percentiles of interest 
are determined.  Thus, for each sample size n there are 200 repeated samples for a given 
bootstrap percentile Dpb (subscript b refers to bootstrap analyses), e.g., 200 values of D16b 
established for a sample size of n = 50, 100, 500, etc. particles.  The 200 replicates define 
a distribution of Dpb,r=200 - values with an arithmetic mean Dpmb,r=200 and a standard 
deviation spb,r=200.  The standard deviation is the bootstrap percentile standard error spb for 
the bootstrap percentile Dpb and is computed from (Rice and Church 1996b): 
 
 

  spb = 
∑

r

  (Dpb - Dpmb)
2

r - 1                        (5.18) 

 
 
where Dpmb is the mean particle size of a specified percentile p in the bootstrap analysis.  
The procedure is repeated for each percentile of interest for various sample sizes.  Once 
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the bootstrap standard error around a given percentile is known for various sample sizes, a 
power regression function can be established between spb and sample size n  
 
 
  spb = ap ·  σ n 

c                     (5.19) 
 
 
for each percentile.  σ is the population bed-material standard deviation, ap and c are 
coefficients obtained from the regression function.  
 
For a known distribution, a percentile standard error sp can be computed from:  
 
 

  sp = 
p ·  (1 - p)

yp
 ·  

σ
n
                   (5.20) 

 
 
The index p refers to the specified percentile, p is the decimal value of the percentile (i.e., 
0.5 for D50), yp is the ordinate (y-value) of the population probability density function at 
the given percentile.  yp is not known if the distribution is not known, which makes it 
impossible to use Eq. 5.20 without prior knowledge of the particle-size frequency 
distribution.  However, the first term of Eq. 5.20  
 
 

  
p ·  (1 - p)

yp
 = ap = constant                  (5.21) 

 
assumes a constant value ap for each percentile for all sample sizes.  The value ap can be 
obtained from the least-square regression function of the relation between standard error 
and sample size (Eq. 5.19) computed from the bootstrap results.  Substituting the first 
term of Eq. 5.20 with ap allows the computation of the standard error around a percentile 
in an unknown distribution:  
 
 

  sp = ap ·  
σ
n
                     (5.22) 

 
   
In order to adjust computer sampling without replacement to a finite population from 
which the samples are drawn, a correction factor needs to be applied to the percentile 
standard error for a preset sample size n and population size N.  This adjustment modifies 
Eq. 5.20 to  
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  sp' = 
p ·  (1 - p)

yp
 ·  

σ
n
 ·  

N - n
N - 1                (5.23) 

 
 
The standard percentile error corrected for finite population size is then computed from 
 
 

  sp' = ap ·  
σ
n
 ·  

N - n
N - 1                     (5.24) 

 
 
For a population sample size N of 100 n or more, the last term approaches 1 and can be 
omitted.   
 
Rice and Church (1996b) used the bootstrap approach to compute the relation between 
sample size and error for various particle-size percentiles of a gravel-bed river in Canada 
(Mamquam River, Fig. 5.8).  The particle-size distribution has a standard deviation of s = 
1.17 φ and is slightly skewed towards a tail of fine particles (skaF&W = 0.165 (Eq. 2.61); 
skfrq = 0.55 (Eq. 2.70)), a characteristic common to many gravel beds.  The graphs 
showing the relationship between sample size and standard error (Fig. 5.10 and 5.11) are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5.8:  Particle-size distribution for a sample from a bar head in the Mamquam River, British Columbia; 
mean annual flood is 152 m3/s.  D95 = 111 mm (-6.8φ), D84 = 79 mm (-6.29φ , D50 = 38 mm  
(-5.25φ), D16 = 15 mm (-3.91φ), and D5 = 7.5 mm (-2.91φ); σ = 1.17φ , skewness =  0.165 (ska,F&W) or 0.55 
(skfrq).  According to a Kolmogorov-Smirnov test there is a less than 1% chance (α = 0.01) that the 
distribution is Gaussian.  (Reprinted from Rice and Church (1996b), by permission of the Society for 
Sedimentary Geology). 
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discussed in the following section where the statistical (bootstrap) bootstrap error will be 
compared to statistical errors computed by assuming an underlying distribution type.  The 
standard error computed from Eq. 5.24 can be converted into an absolute error in φ-units 
by  
 
 

sp = 
e±φp

t(1-α/2,n-1)
   and vice versa    e±φp = sp ·  t(1-α/2,n-1)         (5.25) 

 
 
Values of t(1-α/2,n-1) for various samples sizes are listed in Table 5.2.  Table 5.6 presents 
absolute errors in φ obtained by converting the bootstrap standard errors for sample sizes 
50, 100, 400, and 1000 particles and a 95% confidence level.  Error values in Table 5.6 
may be used as a general estimate of absolute errors expectable around various percentiles 
for bed material that is slightly skewed towards a tail of fine particles and that has a 
sorting coefficient close to 1.17.  
 

 
Table 5.6: Absolute error e±φp in ± φ-units for a 95% confidence level for percentile 
estimates of the Mamquam River, with a distribution slightly skewed towards a tail of fine 
particles and a standard deviation of s = 1.17 φ (from Rice and Church 1996b). 
____________________________________________________________________________________________ 

Sample size  D5   D16  D25  D50  D75  D84  D95 
_____________________________________________________________________________________________________________ 

     50   0.89  0.61  0.52  0.37  0.33  0.35  0.44 
   100   0.62  0.40  0.36  0.26  0.23  0.25  0.30 
   400   0.30  0.21  0.19  0.12  0.11  0.11  0.12 
 1000   0.19  0.13  0.12  0.07  0.07  0.06  0.07 
______________________________________________________________________________________________________________________ 

 
 
Note that the computed bootstrap error is purely statistical.  It does not include errors 
stemming from unrepresentative sampling by operators.  The (statistical) bootstrap error 
around the seven percentiles between D5 and D95 for a sample size of n = 400 (gray  
shaded box in Table 5.6) is plotted in Fig. 4.2 (Section 4.1.1.3) and compared to the total 
error observed in parallel pebble counts in mountain streams. 
 
Standard and absolute errors in φ-units can be converted into percent errors in mm-units.  
Fig. 5.9 may be used for these conversions.  
 
 
Percentile standard errors: bootstrap computation versus computations with assumed 
distribution types 
In symmetrical Gaussian distributions, standard percentile errors sp and absolute errors in 
φ-units e±φp around percentiles have two properties: (1) they are paired such that errors 
around the φ95 and the φ5, and errors around the φ84 and φ16, etc. are equal; and (2) the tails 
of the distribution (φ 5 and φ95) have higher errors than the mean (φ50).  
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Fig. 5.9:  Conversion of absolute and standard errors, in φ-units to percent error in mm-units. t1-α/2,n-1, or Z1-

α/2 were approximated by the numerical value of 2.  
 
 
The distribution of bed-material particle sizes in gravel-bed rivers is rarely symmetrical, 
not even when large sample sizes with smooth frequency distributions are collected in 
large streams (Fig. 5.8).  Coarse gravel beds are usually slightly skewed towards a tail of 
fines particles.  Therefore, standard or absolute errors are usually not paired, nor is the 
standard error of any percentile identical to the one computed when an underlying 
Gaussian distribution is assumed.  In bed-material size distributions that are skewed 
towards a fine tail, the computed bootstrap error around the φ84 is smaller than the error 
around the D84 computed from an assumed symmetrical normal distribution (Fig. 5.10).  
By contrast, the bootstrap error around the φ16 is larger than the error around the φ16 
computed for an assumed Gaussian distribution.  The more asymmetrical the particle-size 
population, the larger the difference between the error of paired percentiles, e.g., the D16 
and D84. 
 
Similarly, the more asymmetrical the particle-size population the larger the difference 
between the standard or absolute errors for given percentiles obtained by bootstrapping 
compared to those obtained by assuming an underlying Gaussian distribution. 
 
Note however, that the absolute error e±φ50 obtained from the bootstrap approach for the 
D50 particle size at the Mamquam River is similar to the absolute error around the mean 
e±φm computed by the general sample-size equation (Eq. 5.2). 
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Fig. 5.10:  Percentile standard errors for various sample sizes obtained from bootstrapping and from 
assuming an unskewed Gaussian distribution.  (Reprinted from Rice and Church (1996b), by permission of 
the Society for Sedimentary Geology). 
 
 
Rice and Church (1996b) compared not only the bootstrap percentile errors with the 
percentile errors computed for an assumed normal distribution, but also for a skewed 
normal distribution.  The question was whether fitting a skewed normal distribution to the 
parent population would remove the difference between the bootstrap error and the error 
computed analytically for a best-fit skewed normal distribution.  The assumption of a 
skewed normal distribution did not achieve a better agreement between bootstrap error 
and analytical error (Fig. 5.11).  Particularly disconcerting was the unreliability of the  
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Fig. 5.11:  Percentile standard errors for variable sample size obtained from bootstrapping and from 
assuming a skewed normal distribution.  (Reprinted from Rice and Church (1996b), by permission of the 
Society for Sedimentary Geology). 
 
 
improvements: while errors around some percentiles were well predicted when assuming a 
underlying skewed normal distribution, errors around other percentiles were greatly over- 
or underpredicted (Fig. 5.11).  The only percentile for which there is relatively little 
difference between sample-size requirements from a bootstrap approach and those 
computed from assuming an underlying symmetrical or skewed Gaussian distribution is 
the φ50.  This similarity indicates that bootstrapping is not necessary if the percentile in 
question is the D50, or if a pilot study indicates that surface bed-material sizes could be 
approximated by a Gaussian distribution.  If the distribution does not approach a normal 
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a multinomial approach should be used.  Alternatively, a two-step approach for percentiles 
in φ-units may be used (Section 5.2.3.1).  Bootstrapping becomes particularly useful for 
skewed and bimodal distributions, since the latter has no formal sample-size criteria (Rice 
and Church 1996b).   
 
Software that includes bootstrapping procedures is commercially available, such as the 
program “Resampling Stats” from Resampling Stats Inc1. which has an add-in version for 
the spreadsheet program Microsoft Excel. 
 
 
Collecting the large sample necessary for bootstrapping is problematic in mountain 
streams  
A thorough bootstrapping analysis requires taking a large field sample to characterize the 
parent population.  Rice and Church (1996b) used a sample of more than 3,500 particles.  
Sample sizes that large may be possible to obtain only in the beds of large streams that 
have large areas of homogeneous particle-size mixtures.  Sampling several thousand 
particles is a problem in mountain gravel bed-rivers.  If, for example, a stream is 10 m 
wide, and four particles are sampled per 1-m section along a transect using the sampling 
frame (Section 4.1.1.6), 40 particles can be sampled per transect.  Almost 90 transects 
would have to be sampled to obtain 3,500 particles such as in the study by Rice and 
Church (1996b).  If transects were spaced at about 2 m intervals, a homogeneous reach 
almost 200 m long would have to be sampled.  Homogeneity over a 200 m stream segment 
could perhaps be expected in a plane-bed stream, but not in a riffle-pool stream that, if 10 
m wide, has about 4 riffle-pool sequences over a 200 m distance.  However, even though a 
bootstrap approach may not be feasible in a mountain gravel-bed river, the knowledge 
gained from the bootstrap study by Rice and Church (1996b) about percentile errors in 
skewed distributions as opposed to symmetrical ones is quite valuable and should be 
considered when estimating errors around high or low percentiles in skewed distributions. 
 
 
5.2.3.5  Summary: the relation between sample size and error  

Beneficial effect of sampling tapers off for large sample sizes 
Sampling precision increases as the reciprocal of the square root of sample size n 
(standard error sp ≈ 1/ n ).  Thus, sampling precision improves dramatically as n increases 
at small values of n, but the improvement becomes insignificant for high values of n.  For 
the bed material of the Mamquam River with σ = 1.17 φ, Rice and Church (1996b) 
determined the cutoff point beyond which further sampling does not significantly improve 
sampling precision is at a sample size of 400 particles.   
 
 
Relation between sample size, sorting, and error 
The relation between sample size, sorting, and error n = (t ·  s/e)2 is such that halving the 
acceptable error margin e, or doubling of bed-material sorting s leads to approximately a 

                                                 
1 Resampling Stats, Inc., 612 N/ Jackson St., Arlington, VA 22101; Web-page: http://www.resample.com;  
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fourfold increase in sample size n, and a doubling in sorting doubles the error for a given 
sample size (Section 5.2.2.7).  The relation between sample size, sorting, and error around 
the mean is visible in Fig. 5.2.  A 400-particle surface sample in moderately-sorted bed 
material (s = 1 φ) yields an approximate absolute error of ± 0.1 φ around the mean, 
whereas sampling only 100 particles increases the absolute error margin to approximately 
±0.2 φ.  In more poorly sorted bed material with s = 2 φ, sampling 400 particles leads to an 
absolute error around the mean of  ±0.2 φ, and 100 particles to an error of ±0.4 φ. 
 
 
Comparison: one-step and bootstrap approach 
The relation between sample size, sorting, and error around the mean is similar to the 
relation between sample size, sorting, and error around the D50 established by Rice and 
Church (1996b) in a bootstrap approach.  For the Mamquam River with a standard 
deviation of 1.17 φ, a sample size of 400 particles resulted in an absolute error around the 
D50 of ±0.122 φ, whereas an absolute error of ±0.115 φ around the mean particle size φm 
was computed for a 400-particle sample by the general sample size equation (Eq. 5.2).  
 
For percentiles other than the D50, results from the bootstrap approach and an assumed 
normal distribution differ and the difference increases towards the tails of the distribution.  
The bootstrap approach indicates that for distributions skewed towards a tail of fine 
particles, sample error is significantly lower for high percentiles than for low percentiles.  
Consequently, it takes a considerably larger sample size to accurately characterize low 
percentiles (D5, D16) than high percentiles (D84, D95) in distributions skewed towards a 
fine tail.  Percentiles between D50 and D95 require nearly the same sample size for a given 
precision (Table 5.6 and Fig. 4.2 in Section 4.1.1.3).   
 
The poor precision of low percentiles for a given sample size in distributions skewed 
towards a fine tail results from the relative scarcity of fine gravel particles in coarse gravel 
and cobble-bed streams.  In a 100-particle pebble count from a coarse gravel bed, the 
number of counts per size class typically varies between 0 and 5 for each of the finest 5 or 
8 size classes (excluding sand).  However, each of the coarsest 4 or 5 size classes (except 
the very largest size class) might have 10 or 20 counts.  The addition of one more count in 
any of the fine size classes cause more change in the percentile particle size of that size 
class than the addition of one more count to a coarse size class that has already 10 or 20 
counts.  This results in more uncertainty in the quantification of the low percentiles. 
 
 
Comparison: bootstrap and empirical results 
Results from the bootstrap analysis compare well with results from empirical studies 
conducted in mountain gravel-bed streams (Section 4.1.1.3, Fig. 4.2) with distributions 
skewed towards fines and sorting coefficients of ≈ 1.2 φ.  When a sampling frame (Section 
4.1.1.6) was used to reduce operator bias in particle selection in pebble counts, repeated 
pebble counts on riffles in various streams had total absolute errors e±φp of ±0.1 to ±0.15 φ 
around all percentiles between the D50 and D95.  This range of total absolute errors is quite 
similar to the bootstrap errors established for the slightly skewed distribution from the 
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Mamquam River and suggests when sampling large gravel and cobbles, operator errors do 
not significantly contribute to the total error. 
 
The absolute error of ±0.42 φ obtained for the D5 particle size of pebble counts in mountain 
streams exceeded the bootstrap error around the D5 of ±0.30 φ.  The poor accuracy for 
samples of small particles in pebble counts is attributable to the (inconsistent) operator bias 
against small particles and should be disconcerting for studies concerned with the amount 
of surface fines.  Sampling accuracy for small particles requires not only larger sample 
sizes than are required for large percentiles, but requires sample sizes even larger than 
predicted from appropriate sample-size statistics to account for operator bias against fines.  
 
Comparison: One-step and bootstrap with multinomial approach 
Fig. 5.7 illustrates error bands computed around the example distribution presented in 
Section 2.1.4.1 (s = 1.94 φ, skaF&W = 0.17, skfrq = 0.72) for various sample sizes using the 
multinomial approach.  An absolute error in mm around a given percentile can be obtained 
from Fig. 5.7 as the horizontal distance between the error band and the sample distribution.  
The absolute error around the D50 is approximately ±0.4 φ units for a sample size of 400 
and increases to nearly ±0.8 φ for a sample size of 100.  Therefore, the absolute error 
predicted for the D50 from the multinomial approach is approximately twice as large as the 
absolute error around the mean computed from the one-step approach (Eq. 5.2). 
 
The error bands computed with the multinomial approach for the skewed distribution 
described in Section 2.1.4.1 indicate a larger absolute error for small percentiles than for 
large percentiles.  These figures are similar to the bootstrap results for the skewed 
distribution from the Mamquam River. 
 
5.2.4  Detectability of change in percent fines (Bevenger and King 1995) 

Natural or anthropogenic disturbances in the watershed or the riparian area may lead to 
elevated amounts of fine sediment in a streambed.  The amount of fine sediment that 
impairs aquatic habitat depends on the species of concern, the benthic community, and 
bed-material properties.  Monitoring fine sediment can be used to observe and evaluate 
the effects of change in the natural conditions of the watershed or in watershed 
management.   
 
Fine sediment supplied to a mountain gravel-bed stream accumulates primarily in the 
interstitial spaces of the subsurface sediment and in backwater areas.  Accumulations of 
fines in the surface sediment of the general streambed are relatively scarce.  Taking 
volumetric samples of the subsurface is time and labor consuming, however.  To simplify 
and accelerate the sampling process, Bevenger and King (1995) proposed sampling and 
analyzing the amount of surface fines in the bed using a (zigzag2) pebble-count procedure.   

                                                 
2 The operator walks a zigzag course from bank to bank picking pebbles from the streambed at intervals spaced about 7 
feet apart, and covers about a hundred meters of stream section (Bevenger and King 1995), (Section 6.2.2.1). The 7-foot 
interval was chosen to reduce serial correlation in the samples particles and more closely adhere to the statistical 
independence assumptions of the analysis.  
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The statistical error associated with small percentiles is usually relatively large (Section 
4.1.1.3).  Bevenger and King (1995) therefore specified the sample size necessary for 
detecting differences in the percent fines obtained from two pebble counts using a 2 x 2 
contingency table analysis.  One of the pebble counts is carried out in a reference reach, 
which means before the reach was impaired or in an unimpaired reference reach that 
serves as “background”.  The second pebble count is performed in the study reach, which 
means in the reach in which the percent fines may have changed over time.  The sample 
size necessary to detect a change in the percent fines of the study reach depends on four 
factors: 
 
• Sample size at the reference site 

Sample size at the study site has to be larger if the sample size at the reference site is 
small, and can be smaller, if a large sample was taken at the reference site. 

 
• Percent of fines at the reference site 

A larger sample must be taken at the study reach if the reference reach has a high 
percentage of fines (i.e., sandy gravel-bed streams).  A smaller sample can be taken 
when the percent fines at the reference site is small (i.e., gravel beds with little sand).  

 
• The minimum difference in the percent fines to be detected between the reference and 

study site 
Detecting a small difference in the percent fines between study and reference sites 
requires a larger sample size than is needed to detect a larger change in the percent 
fines. 

 
• Acceptable risk levels in terms of Type I and Type II error   

Type I error is the risk of falsely concluding a significant difference between the two 
samples and is typically set at α = 0.05.  Type II error is the risk of falsely concluding 
that there is no difference and is typically set to β = 4α = 0.20.  Type I and Type II 
errors are inversely proportional for a given sample size.  That is, a decrease in one 
necessarily results in an increase of the other.  If the occurrence of a difference in the 
grain-size distribution is as important as the occurrence of no difference, then both α 
and β are set to 0.05. 

 
5.2.4.1  Sample-size determination from diagrams 

The required sample size depends on combinations of the four factors mentioned above.  
Thus, Bevenger and King (1995) provided multiple plots with several curves each (Figs. 
5.12 and 5.13) to specify the sample size at the study site for different values of the four 
factors.  The following five steps are taken to determine sample size from the diagrams: 
 
1. Determine the risk levels for Type I and Type II error and select the appropriate figure 

(Fig. 5.12 or 5.13).   
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2. Determine the percent fines at the reference site and select the appropriate plot from 
Fig. 5.12 or 5.13.  For 10% fines at the reference site (pr = 0.10), select the plot “10% 
fines at reference site” in Fig. 5.12 or 5.13.  

 
3. Determine the detrimental percent fines at the study site.  For example, 19% fines at 

the study site (ps = 0.19) may be a threshold value for impairing aquatic habitat.  The 
necessary minimum detectable difference between study and reference site must then 
be ps - pr = 0.19 - 0.1 = 0.09 or 9%. 

 
4. Determine the sample size taken or to be taken at the reference site and select the 

corresponding graph for 100, 150, 300, 450, or 600 particles on the diagram. 
 
5. On the appropriate diagram in Figs. 5.12 or 5.13 locate a minimum detectable 

difference of 0.09 on the vertical axis, and determine the sample size at the study-site 
at the intersection of a minimum detectable difference of 0.09 with the respective 
graph for reference-site sample size.   

 
For example, the plot for 10% fines at the reference site in Fig. 5.12 indicates that a 300-
particle sample (stippled line) at the reference site requires another 160 particles to be  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.12:  Sample size necessary at the study site to detect a minimum difference in percent fines between 
the study and the reference site ps - pr for various reference-site sample sizes and risk levels.  Risk levels for 
type I and type II errors are set to α = 0.05 and ββββ = 0.20.  (Reprinted from Bevenger and King (1995)). 
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collected at the study site.  A 600- particle sample at the reference site reduces the sample 
size at the study site to 120.  Likewise, if 150-particle had been sampled at the reference 
site, a little over 300 particles have to be sampled at the study site.  
 
If the tolerable percent fines at the study site was 12% (ps = 0.12), and the reference site 
had 5% fines, the required minimum percent difference that needs to be detectable 
between study and reference site is ps - pr = 0.07.  In this case, the plot for 5% fines at the 
reference site in Fig. 5.12 indicates that at 300-particle sample at the reference site 
requires at least 170 particles to be sampled at the study site. 
 
Fig. 5.13 is used if both the Type I and Type II error are set to a confidence level of 95% 
(α and β = 0.05).  If there are 10% fines at the reference site, and the tolerable percent 
fines at the study site is 20%, the minimum difference to be detected is ps - pr = 0.10.  The 
plot for 10% fines at the reference site in Fig. 5.13 indicates that about 290 particles need 
to be sampled at the study site, if 300 particles had been sampled at the reference site.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.13:  Sample size necessary at the study site to detect a minimum difference in the percent fines 
between the study and the reference site ps - pr for various reference-site sample sizes and risk levels.  Risk 
levels for Type I and Type II errors are set to α = 0.05 and ββββ = 0.05.  (Reprinted from Bevenger and King 
(1995)). 
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This yields a total sampling effort of 590 particles.  If 600 particles had been collected at 
the reference site, 195 particles would have to be collected at the study site, and this 
increases the total sample size to 795 particles.  If 100 particles were sampled at the 
reference site, an extrapolation of the graph for 100 particles would intersect the line for a 
minimum detectable difference of 0.1 at more than 1,000 particles for the study site and 
result in a total sample size of more than 1,100.  Little information about a change in the 
percent fines is gained when small samples are collected both at the reference and the 
study site.  If 100 particles were sampled at each site, the minimum detectable difference 
is only 0.18.  Given 9% fines at the reference site, a 100-particle pebble count can at best 
detect a doubling of the percent fines at the study site (Potyondy and Hardy 1994; King 
and Potyondy 1993). 
 
The total sampling effort can be minimized if the same number of particles are sampled at 
both sites.  Table 5.7 indicates, for α and β  = 0.05, that sampling 293 particles at both 
sites results in the smallest total sample size (586 particles).  In order to optimize the study 
effort and to find the smallest total sample size that will detect a given difference pilot 
studies should be conducted to estimate the percent fines at both the reference and the 
study sites.  The result can then be used for estimating the optimum sample size. 
 
 

Table 5.7:  Equal and unequal sample sizes for pr = 0.10 and ps = 0.20, and preselected values  
of α and β (from Bevenger and King 1995). 
______________________________________________________________________________________________________ 

        Equal sample Size         Unequal sample Size 
        α              α           
    0.01     0.05     0.10     0.01          0.05           0.10  
  β        nr, ns     nr, ns     nr, ns     nr        ns    nr        ns    nr        ns  
________________________________________________________________________________________________________________________ 

0.01   566  417  347   848 424  635 318  534 267 
0.05   419  293  236   617 309  439 220  357 179 
0.10   349  236  185   510 255  350 175  278 139 
0.20   275  177  134   394 197  257 129  197   99 
___________________________________________________________________________________________________________________________________ 

 
 
5.2.4.2  Sample-size computation  

The statistical background for the procedure presented by Bevenger and King (1995) is 
provided by Fleiss (1981).  Sample size for a tolerable risk level is based on the 
acceptance or rejection of the null hypotheses that the difference between the proportion 
of the percent fines at the reference site pr and the study site ps is either 0 (no difference), 
or > 0 (i.e., there is a difference).  Minimum sample size ns for the pebble count at the 
study site can be calculated from Equations 5.26 and 5.27 (Fleiss 1981).  If sample size at 
the reference site nr is negotiable, and if there is no reason for different sample sizes 
between the two sites, an equal sample size should be selected for the reference and study 
sites as it results in the smallest combined sample size ns + nr.  The smallest sample size 
for both the study and reference site can be computed from: 
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   ns = 
n'
4  








1 + 1 + 
4

n' ·  |ps-pr|
 

2

                (5.26) 

 
 
with 
 
 

  n' = 








zα pr + ps ·  





1 - 
pr + ps

2   -  z1-β pr ·  (1 - pr) + ps ·  (1 - ps)
2

(ps - pr)² 
   (5.27) 

 
 
where zα and z1-β refer to the ordinates of the standard normal distribution, and the 
subscripts α and β refer to the risk levels of the error Type I and II.  Commonly used 
values for zα and z1-β are: 
 
 α or β            :   0.01    0.05    0.10    0.20 
 __________________________________________ ______________________________________________________________ 

 zα (neg.values); z1-β (pos.values): (-) 2.327   (-) 1.645   (-) 1.282  (-) 0.842 
 
 
Example 5.11: 
If the reference site has 10% fines < 8 mm (pr = 0.10), and it is 
desirable to detect an increase in the percent fines to 20% or more 
at the study site (ps = 0.20), with acceptable risk levels of α = 0.05 
and β = 0.20, sample size at the study site is computed from Eq. 
5.26 and 5.27: 

 
  
 

n' = 








-1.645 0.1 + 0.2 ·  





1 - 
0.1+0.2

2   -  0.842 ·  0.1 ·  (1 - 0.1) + 0.2 ·  (1 - 0.2)
2

(0.2 - 0.1)2   

 
 

    n' = 
(-1.645 ·  0.3 ·  0.85  - 0.842 ·  0.1 ·  0.9 + 0.2 ·  0.8)2

0.12   

 
 

    n' = 





 
-0.831 - 0.421

0.1

2

 = 157  

 
    and 
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    ns = 
157
4  ·  








1 + 1 + 
4

157 ·  |0.2 - 0.1| 
2

            

  
 
    ns = 39.2 ·  (1 + 1.255)2  = 177               
  
 
 
Modified forms of Eqs. 5.26 and 5.27 are used if the sample size for the reference and 
study site are different; however, the ratio of sample size at the reference site and the study 
site needs to be known prior to the computation.  The reader is referred to the source 
literature by Bevenger and King (1995) and Fleiss (1981) for this case. 
 
 
5.2.4.3  Operator error in the percent fines adds to the statistical error 

Statistical computations of sample size, including the computation of sample size by 
(Bevenger and King 1995) refer to the statistical error associated with a certain sample. 
Computation of sample size, including the computation of sample size by Bevenger and 
King (1995) only refer to the sample size needed to avoid a statistical error.  However,  
the user must keep in mind that operators introduce further sampling errors that are not 
included in the computed statistical sampling error but nevertheless add to it.  Operators 
commonly bias against fine particles (Section 4.1.1.3), because fine particles may be 
partially hidden between large particles, and because large particles are more likely to be 
touched and selected in a pebble count than fine particles.  Fine particles also tend to 
accumulate in locations of the streambed that are poorly accessible, such as in pools or 
under overhanging branches near the banks.  Inaccessibility makes fine particles less likely 
to be included in a pebble count.  Operator errors and bias against fines are not included in 
a computed relation between sample size and statistically detectable error in the percent 
fines.  The actual minimum detectable error in the percent fines is therefore smaller than 
computed from the statistical analysis.  To account for this neglect, a sample size larger 
than predicted is required to detect a given change in the percent fines.  Operator bias 
against fines as well as the variability of sampling results between operators can be 
reduced by using a sampling frame (Bunte and Abt 2001) (Section 4.1.1.6).  Sampling the 
streambed in a systematic pattern along even-spaced transects spanning the full bankfull 
width of the stream further assists in reducing operator errors with respect to sampling 
fines. 
 

5.3  Areal sampling: area-based sample-size recommendations 

In contrast to pebble counts or grid samples that collect a predetermined number of 
particles from a transect or a grid, areal samples collect all surface particles contained in a 
specified (small) sampling area (Section 4.1.3).  Thus, sample size may be described in 
terms of the size of the area that needs to be sampled.  The size of the sampling area may 
be based on geometrical consideration, such as a multiple of the area covered by the Dmax 
particle size.  Alternatively, a two-stage sampling approach may be applied to specify the 
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number of subsamples needed from a homogeneous deposit to attain a specified sampling 
precision for the median particle size (Section 5.3.2).  A multinomial approach may be 
used to compute the percentile error for the entire distribution (Section 5.3.3) 
 
5.3.1  Dmax and geometrical considerations  

Diplas (1992a) and Diplas and Fripp (1992) suggested that an areal sample should cover a 
sampling area equal to at least 100 times the area of the Dmax particle size in order to 
provide a relatively high precision for all percentiles.  Fripp and Diplas (1993) increased 
this sample-size recommendation to 400 time the area of the Dmax particle.  This increase 
ensured that the volume of the sample would satisfy De Vries’ (1970) “low precision” 
criterion with a relative error of 10% (Sect. 5.4.1.1).  
 
The area of one individual areal sample is usually small (about 0.1 m2) and several 
individual areal samples need to be combined for the total sample.  The total sampling 
area Atot can be estimated from a multiple of the exposed area of the largest particle(s) 
 
  Atot = 400 Dmax

2                       (5.28) 
 

Example 5.12: 
The Dmax particle size of a deposit is estimated at 40 mm, the 
upper range of particle sizes suitable for adhesive sampling 
(Section 4.1.3.2).  If a spherical particle shape is assumed, the area 
covered by an individual particle Ap with a 40 mm b-axis size is  
 

  Ap = π ·  



b

2

2

 = π ·  



0.04 m

2

2

 = 0.00126 m2        

 
If an ellipsoidal particle shape with the a-axis 1.5 times the b-axis 
is assumed, the area covered by one particle increases to   
 
 

 Ap = π ·  



a ·  b

4  = π ·  



0.06 m ·  0.04 m

4  = 0.00189 m2        

 
An intermediate particle area of 0.00160 m2 is obtained if a square 
particle shape is assumed with Ap = b2.  Using Ap = b2, the total 
sampling area Atot = 400 ·  0.0016 m2 = 0.64 m2, which is an area 
of 0.8 by 0.8 m.   
 
 

If one areal sample covers approximately 0.1 m2, Eq. 5.28 suggests that 6 – 7 of those 
areal samples should be collected in order to sample an area of sufficient size and to gain 
sufficient material for a particle-size analysis. 
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5.3.2  Two-stage sampling: specified error around the median 

ISO (1992) proposes a two-stage approach for defining the minimum sampling area.  ISO 
(1992) advises that the minimum sampling area for each individual sample As must be 
larger than 8 times the area of the Dmax particle size in order to avoid bias towards the 
largest particles.  For a Dmax particle size of 40 mm, each individual areal sample should 
be at least 0.11 by 0.12 m = 0.013 m2 in size. 
 
 
Computation in mm units 
A two-stage approach can be used to determine the relation between sample size and 
absolute error around central percentiles of the distribution (Section 5.2.3.1).  A number of 
q areal subsamples are collected, and the median particle size is computed for each of the 
q subsamples, either graphically from cumulative distribution curves, or by linear 
interpolation between percentiles (Section 2.1.4.2).  ISO (1992) suggests using the median 
particle size D50 in units of mm, assuming that the q values of D50 are approximately 
normally distributed.  This guideline document recommend using the median particle size 
φ50 in units of φ (see below). 
 
The sample standard deviation s50 of the q values for D50 is determined from 
 
 

  sp = 
∑
i=1

q

(D50 - D50m)2 

q-1                      (5.29) 

 
 
D50m is the arithmetic mean particle size in mm of the D50 values obtained from the q 
samples.  An appropriate value for t1-α/2,q-1 is selected from Table 5.2.  Eq. 5.30 can then 
be used to calculate the number of subsamples q so that there is only a 5% chance (at α = 
0.05) that the absolute difference (positive or negative) between the estimated values of 
the percentile in question D50 and the true population D50 is larger or equal to the 
acceptable absolute error e±D50.  The absolute error is the difference (in mm) between the 
sample and the population D50.  Note that Eq. 5.30 may have to be solved iteratively (see 
Example 5.13) 
 
 

  q = 



t1-α/2;q-1

e±D50
 ·  s50

2

                       (5.30) 

 
 
The total sampling area for one complete areal sample is Atot = As ·  q. 
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Example 5.13: 
Dmax is estimated as 40 mm and D50 is the percentile of interest.   
Sample area As required for avoiding bias against large particles in 
a subsample is 8 ·  0.042 m2 = 0.0128 m2.  Five subsamples were 
collected with five closely-spaced values for D50 of 22, 25, 27, 30, 
and 32 mm.  From Eq. 5.29, the sample standard deviation s for 
the D50 percentile is computed to be 3.96 mm. The acceptable 
error around the D50 particle size is 5 mm. 
 
Eq. 5.30 needs to be solved iteratively when t-statistics are used.  
An arbitrary sample size of 10 subsamples is selected in the first 
trial of Eq. 5.30 and yields a sample size of 3.2.  Estimated and 
computed subsample size q do not yet correspond.  After four 
subsequent trails, correspondence is reached for a subsample size 
of 5. 
 
 Trial   qest   q-1      t1-α/2;q-1     qcomp 
 ------------------------------------------------------------------------------------------------------ 

    1    10     9   2.262   3.2  ≅   4 
    2     4     3   3.182   6.4  ≅   7 
    3     7     6   2.447   3.7  ≅   4 
    4     5     4   2.776   4.8  ≅   5 
 
Taking 5 subsamples from a total area of Atot = 5 ·  0.013 m2 = 
0.065 m2 (about 0.25 by 0.26 m) provides a 95% probability that 
the sample D50 size is within ± 5 mm of the population D50.  This 
is a sampling area about 10 times less than predicted from Eq. 
5.28. 
 
If the 5 subsamples were more different and had D50 sizes of 14, 
19, 27, 33 and 39 mm, and a standard deviation of 10.139, the 
iterative solution of Eq. 5.30 yields (2.101 ·  10.139/5)2 = 18.15 
which is rounded up to 19.  The total area covered by the 
subsamples is As = 19 ·  0.013 m2 = 0.247 m2 (about 0.49 m by 
0.50 m).  The total sampling area in this example is much larger 
than in the previous example because the spread (variance) of the 
5 values of D50 is much larger.  Nevertheless, the sampling area 
computed from Eqs. 5.29 and 5.30 is still less than half the total 
sampling area computed from Eq. 5.28. 
 
 

Note that the two-stage approach computes only the precision for the particular set of 
subsamples used in the computation.  The precision associated with a given sample size 
would have to be computed numerous times, each time with a newly collected set of 
subsamples, in order to compute the mean precision associated with a specified subsample 
size in a specified sampling area.  This topic is discussed in more detail in Section 5.4.2.1. 
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Computations in units of φφφφ 
It is recommended to apply the two-stage approach to median particle-sizes in units of φ, 
rather than the median in mm, because values of φ50 from several subsamples approximate 
a normal distribution better than the values of D50 (Triola 1995; Section 5.2.3.1).  D50 in 
Eq. 5.29 is then substituted by values of φ50.   
 
 
5.3.3  Multinominal approach 

Sample sizes computed from simple geometric approximations such as sampling area A = 
100 or 400 Dmax

2 (Eq. 5.28) yield relatively large sample sizes in order to provide a 
relatively high precision for all percentiles.  However, a concrete relation between sample 
size and error around a given percentile and selected confidence level is not obtained from 
Eq. 5.28.  In order to specify a relation between sample size and error, Petrie and Diplas 
(2000) suggest a multinomial approach to compute the size of the sampling area.  The 
multinomial approach is applied in two steps.  The first step computes the number of 
particles needed for a grid sample (Section 5.2.3.3).  The second step converts this number 
of particles to the size of a sampling area.  A factor is needed for this conversion, and its 
numerical value depends on the packing of surface particles and the proportion of surface 
voids.  For a voidless surface, the Kellerhals and Bray (1971) conversion coefficients 
(Section 4.3.1), may be used.  Other conversion factors may be needed for other surface 
conditions (Sections 4.3.2 and 4.3.3).  The reader is referred to the original literature by 
Petrie and Diplas (2000) for details. 
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5.4  Volumetric sampling: mass-based sample-size recommendations 

Sample mass required for representative volumetric samples can be computed by three 
methods: 
 
• As an empirical function of the Dmax particle size, 
• By computing the number of subsamples required (two-stage approach), and 
• By analytical means based on an assumed underlying distribution type. 
 
A large number of empirical equations exist in which sample mass is expressed as a 
function of the Dmax particle size (Sect. 5.4.1).  These equations are simple to apply, but 
different equations predict greatly different sample sizes.  Sample-mass recommendations 
based on the Dmax particle size do not require assumptions about an underlying frequency 
distribution type.  Sample sizes predicted from empirical functions of Dmax are generally 
large, but they do not provide information about the relationship between sample mass 
and error.  Therefore, the precision of a sample remains unknown. 
 
If the precision of a sample needs to be known, sample-mass equations should be 
employed that provide information on the relation between sample mass and precision.  
One possibility is a two-stage sampling approach in which a number of subsamples is 
collected (Section 5.4.2.1).  Based on the central limit theorem, the precision of any 
percentile3 in a distribution can be computed for various samples sizes.  However, the 
precision obtained for a specific sample size, e.g., three subsamples, is not the same for 
any set of three subsamples from a deposit because each subsample is (slightly) different.  
Therefore, many sets of three subsamples would have to be collected to obtain the mean 
precision for a subsample size of three.  The requirement for collecting a specified number 
of subsamples repeatedly can be bypassed by plotting the precision for various 
(unrepeated) subsample sizes.  The data will scatter, but fitting a power- or exponential 
function through data points provides a surrogate relation between sample size and 
precision for a given percentile in a given deposit (Section 5.4.2.2).  
 
A large physical sampling effort can be reduced by using a bootstrap procedure.  
Bootstrapping is a technique that collects repeated samples (by computer) from a parent 
population.  The parent distribution might be generated by a computer based on 
specifications of the actual deposits (standard deviation and mean) that are obtained from 
a pilot study and an assumed distribution type (Section 5.4.3).  The computational effort 
of bootstrapping is rather large and may require using a resampling program.  The main 
drawback is that the computer-generated sample cannot be a perfect surrogate for a large 
sample from a distinct parent distribution.  Bootstrapping may also be applied to a parent 
distribution of an actual bed-material sample (5.2.3.4) that is entered into the computer.  
The sample needs to be (usually prohibitively) large in order to accurately describe the 
parent population and all particles must be collected independently of each other.  
 

                                                 
3 Two-stage approach is better suited for central percentiles.  Peripheral percentiles require a larger sample size to reach 
normality. 
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5.4.1  Sample mass as a function of largest particle size 

Why use the Dmax particle size? 
Sample-size statistics that assume an underlying normal distribution indicate that a larger 
sample size is required to accurately describe the distribution tails than the central parts of 
the distribution.  Consequently, a sample size that is sufficiently large to describe the 
distribution tails will also suffice to accurately describe the entire particle-size 
distribution. 
 
The coarse tails of bed-material samples from gravel- and cobble bed streams are 
comprised of only a few large particles per size class which nevertheless contribute a 
rather large proportion of the total sample weight.  Presence or absence of one or a few 
large particles in the distribution tail influences not only the percentiles of the coarse tail, 
but central and fine percentiles as well.  Therefore, a volumetric sample needs to be 
sufficiently large so that coarse particles are representatively included in the sample.  
Because representatively sampling the coarse tail ensures accuracy for the entire 
distribution, sample mass is determined as a function of the Dmax particle size.  Because 
particle mass is a function of the third power of particle size, sample-size equations for 
volumetric samples are (usually) a function of the third power of Dmax, i.e., Dmax

3.  
 
 
Defining the Dmax particle size 
The Dmax particle size used for determining the mass of volumetric samples does not 
necessarily have to be the largest particle found in the sampling reach, but should be the 
size of the largest particles to be represented in the sample.  The largest particle sizes to be 
represented in a sample depend on the study objective.  When determining the D50 or 
another percentile for computations of bedload transport rates in a given streambed, 
untransportably large particles, e.g., boulders: unearthed from glacial deposits, or supplied 
from rock fall, should not be included in the sample.  If the study objective is to compute 
the stream roughness, untransportably large boulders should be included in the analysis. 
 
The largest particle size of concern that should be representatively included in bed-
material samples for bedload studies is often the dominant, large particle size Ddom.  In 
mountain streams with occasional supply of non-fluvial supply of large particles, the 
particle size of Ddom is roughly equivalent to the D90 particle size.  Ddom is approximately 
the largest particle size transportable during frequently occurring large floods (e.g., 
bankfull flow or a flood with a two-year recurrence interval).  The size of Ddom can be 
estimated from the mean b-axis size of about 30 large (except the very largest) particles 
deposited on the upstream end of gravel bars or on other fresh depositional surfaces that 
are not affected by backwater or wake hydraulics.  Absence of alga cover and negligible 
embeddedness may be interpreted as signs of recent transport.  Those indicators can be 
misleading and indicate particle sizes too large for Ddom, if the last flood greatly exceeded 
the commonly largest bankfull or biennial flood and deposited either extraordinarily large 
clasts, or buried the streambed with finer sediment.  In this case, a tractive force diagram 
(Lane 1955; Leopold 1992, p. 194) may be used to estimate the size of Ddom for flow 
properties of commonly occurring floods.   



 290 

 
In uncoupled streams, the Dmax particle size may be transportable during the floods of 
concern.  Sample-mass: equations may then be based on the center of class of the largest 
fluvially transported size class Dmax,c, or the D95 particle size.  The term Dmax is used as the 
largest transportable size class in the discussion of sample mass in the following section, 
and not as the absolute largest particle size found in a reach. 
 
 
5.4.1.1  Sample mass as cubic functions of Dmax 

Several sample-mass recommendations are available that predict sample mass as a 
function of Dmax

3:,(e.g., ISO (1977) following De Vries (1970), Neumann-Mahlkau 1967), 
Church et al. (1987), Diplas (1992a), Diplas and Fripp (1992), Fripp and Diplas (1993).  
However, these cubic sample-mass equations are based on different criteria which include:  
 
• Effect that adding or omitting the largest particle(s) has on the total sample mass,  
• Error acceptable for the particle size of a large size fraction,  
• Constant coefficient of variation for the sizes of individual particles within a size class 

   over neighboring large size classes,  
• Number of particles that should be contained in the largest size class, and  
• Feasibility of obtaining a statistically required sample volume. 
 
The different criteria produce different cubic sample-mass equations.  To facilitate a better 
comparison of the numerical results, all cubic sample-mass equations are expressed in the 
same form of 
 
 
  ms = a ·  Dmax

3 ·  ρs =  b ·  Dmax
3               (5.31) 

 
 
where ms is sample mass and usually expressed in units of kg unless otherwise specified.  
a and b are coefficients, and ρs is the particle density.  The unit of the Dmax particle size is 
in meters for the equations in Section 5.4.1.1, however in Fig. 5.14, Dmax is indicated in 
units of mm for familiarity.  For simplicity, all particles are assumed to be spheres or 
ellipsoids4, and the term π/6 is incorporated in the a coefficient.  A particle density ρs of 
2,650 kg/m3 is assumed for particles and the numerical value is incorporated into the b 
coefficient.  All cubic sample-mass equations are plotted in Fig. 5.14 (the numbers on 
graphs refer to equation numbers in Section 5) and listed in Table 5.8.  Sample masses 
predicted by these equations for a specified Dmax particle size range over three orders of 
magnitude, i.e., the percentage weight of the Dmax particle size of total sample mass ranges 
between roughly 0.01 and 10%. 
 
 

                                                 
4 The volume of an ellipsoid with an axis ratio a:b:c of 3/2:1:2/3 is equal to the volume of a sphere with a diameter of 1.  
See Eq. 5.64 in Section 5.4.5. 
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Percent error in total sample mass incurred by the largest particle 
One of the criteria used to establish an appropriate sample mass is the amount of error 
produced by the unrepresentative presence or absence of the largest particle in the total 
sample mass.  In small samples from poorly sorted deposits, the largest particle can 
account for a substantial fraction of the total sample weight.  The arbitrary presence or 
absence of the largest particle thus substantially affects the weight of the total sample 
mass.  If the resulting error in sample mass is not to exceed 1%, sample mass must be 
larger than 100 times the mass of the Dmax particle.  A regression function fitted to the 
graph provided by Neumann-Mahlkau (1967) determined the relationship between sample 
mass and Dmax particle size to be 
 
 
  ms = 138,000 Dn,max

3                      (5.32) 
 
 
where Dn,max is the nominal diameter (in m) of the Dmax particle size (Section 2.1.2), and m 
is sample mass (in kg).  For spheres, or ellipsoidal particles with axes ratios of a = 3/2 b,  
b = Dmax, and c = 2/3 b, the particle weight of Dmax is equal to the weight of a particle with 
a nominal diameter of Dmax (D(n)max).  If the potential error introduced by the largest 
particle is allowed to increase to 10% (i.e., the Dmax particle size is allowed to assume 
10% of the total sample mass), the regression function becomes (same units as above) 
 
 
  ms = 13,800 Dn,max

3                      (5.33) 
 
 
Both functions are plotted in Fig. 5.14 and labeled 32 and 33. 
 
 
Relative error 
The sample-mass recommendation by De Vries (1970) is based on an analysis of the 
relative error e%pi of the ith size fraction.  The relation can be computed from: 
 
 

  e%pi
2 = 

Di
3 ·  β ·  ρs

pi ·  ms
                      (5.34) 

 
 
where pi is the probability by mass of the ith size fraction and β is a constant.  Laboratory 
experiments using sand and small gravel < 14 mm estimated a mean value of β = 0.8.  De 
Vries (1970) considered the D84 as characteristic of the large particle-size fraction.  Thus, 
sample mass ms as a function of the D84 particle size can be computed from:  
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  ms = 
D84

3 ·  0.8 ·  ρs

 e%pi
2 ·  pi

                      (5.35) 

 
 
De Vries (1970) suggests setting pi = 10%.  For a relative error e%pi of 1% (“high 
precision”), the denominator in Eq. 5.35 is 10-5.  The sample size for various degrees of 
precision is 
 
 

  ms = 
D84

3 ·  0.8 ·  ρs

 0.012 · 0.1   =  
D84

3 ·  0.8 ·  ρs

 10-5   =  0.8 ·  10X ·  D84
3 ·   ρs       (5.36) 

 
 
with units in meters and kg.  The exponent x equals 5 for a “high” precision of 1%, 4 for a 
“normal” precision of 3%, and 3 for a “low” precision of 10%.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.14:  Comparison of various sample-mass recommendations (kg) for gravel and cobble bed material 
based on cubic functions of Dmax.  The numbers on the graphs refer to the equation numbers in Section 5.  
The four lines labeled 0.01, 0.1, 1 and 10 refer to the percent sample mass contained in the mass of the Dmax 
particle. 
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The sample-mass recommendations by De Vries (1970) were developed for sand and fine 
gravel.  If De Vries’ recommendations are applied to medium and large gravel particles 
and cobbles, the sample mass becomes very large.  The International Organization of 
Standardization (ISO 1977) adopted the De Vries (1970) sample-size recommendations.   
 
In order to compare the sample-mass recommendations by De Vries (1970) and ISO 
(1977) that use the D84 particle size with those that are based on Dmax, the 
recommendations based on the D84 needs to be modified.  If the Dmax particle size is 
assumed to be equal to the D97.7, and the sample standard deviation is 1.0 φ, then the D97.7 
particle size is approximately 1.0φ-units larger than the D84 (i.e., twice as large) (Fig. 2.19 
in Section 2.1.5.4).  The sample mass required for a D84 particle 8 mm in size in the 
original plot by De Vries (1970) is therefore assigned to a D97.7 or Dmax particle size of 16 
mm in Fig. 5.14.  The sample mass (kg) for high, normal, and low, precision 
recommended by De Vries (1970) (Eq. 5.36) can then be expressed as cubic functions of 
the D97.7 particle size (m)  
 
 
  ms = 26,500,000 D97.7

3   for “high precision”             (5.37) 
 
  ms = 2,650,000 D97.7

3   for “normal precision”            (5.38) 
 
  ms = 265,000 D97.7

3    for “low precision”             (5.39) 
 
 
Constant variability of particle sizes per size class over all size classes 
Church et al. (1987) presented a sample-mass criterion that is independent of an assumed 
underlying distribution type.  Church et al. (1987) found that the coefficient of variation 
CV of particle sizes within a 0.5 φ-size class is approximately 10% if the size class 
contains more than 100 particles.  To ensure a constant CV of 10% for all sizes classes 
including the largest, Church et al. (1987) empirically determined that the mass of the 
largest particle in the sample should not exceed 0.1% of the total sample mass.  
Consequently, the sample mass ms (kg) should be 1,000 times the mass of the Dmax 
particle size.  This recommendation can be mathematically expressed as 
 
 

  ms = 1,000 
π
6 Dmax

3 ·  ρs   = 524 ·  Dmax
3 ·  ρs   = 1,388,000 Dmax

3       (5.40) 

 
 
with Dmax in m, and a particle density ρs of 2,650 kg/m3 (see graph labeled 40 in Fig. 
5.14).  Similar to the “normal” precision criterion by De Vries (1970), Eq. 5.40 yields 
unmanageably large sample masses when applied to particle sizes larger than 32 mm.  For 
coarse gravel with a Dmax of 32 to 128 mm, Church et al. (1987) therefore suggest a less 
stringent criterion in which the mass of a Dmax particle accounts for 1% of the total sample 
mass.  This can be expressed by: 



 294 

  ms = 100 
π
6 Dmax

3 ·  ρs    = 52.4 ·  Dmax
3 ·  ρs    =  138,000 Dmax

3       (5.41) 

 
 
Equation 5.41 (graph 41 in Fig. 5.14) is identical to the sample-mass equation by 
Neumann-Mahlkau (1967) for the 1% precision criterion (Eq. 5.33, graph 33 in Fig. 5.14).  
As particle sizes exceed 128 mm, sample masses again become so large that Church et al. 
(1987) lowered the criterion to Dmax = 5% of the total sample weight. 
 
 

  ms = 20 
π
6 Dmax

3 ·  ρs   = 10.47 ·  Dmax
3 ·  ρs = 27,751 Dmax

3        (5.42) 

 
 
The three sample-mass criteria by Church et al. (1987) plot as parallel graphs in Fig. 5.14.  
In order to obtain one function applicable to all particle sizes, the three functions can be 
united by a staircase function which, in a second step, can be smoothed by a power 
regression function that is fitted through the corner points of the staircase functions.  This 
procedure and the resulting sample-mass equation is discussed further under “Canadian 
standards” in Section 5.4.1.2. 
 
 
Volumetric considerations 
Diplas (1992a) and Diplas and Fripp (1992) based their sample-mass recommendation for 
volumetric samples on the following considerations:  If 100 particles are sufficient for a 
line or a grid sample, and if a particle with the diameter D occupies an area larger than D2, 
then the minimum area for an areal sample is Amin = 100 ·  D2.  For an entire particle-size 
distribution, total sampling area could be defined as Atot = 100 Dmax

2.  If the minimum 
depth of a volumetric sample is set to 2 Dmax (Sect. 4.2.2.2), sample mass m (kg) becomes 
 
 
  ms = 200 Dmax

3 ·  ρb =  460,000 Dmax
3                (5.43) 

 
 
where Dmax is in meters and ρb is the sediment bulk density assumed to be 2,300 kg/m3 
(Table 2.16 in Section 2.5).  Subsequent computations of precision and sample size 
prompted Fripp and Diplas (1993) to increase the minimum number of particles for a 
pebble count to 200 - 400 particles.  Total sample area Atot then increases to 200 or 400 
Dmax

2 (Eq. 5.28), with a sample mass of  
 
 
  ms = 400 to 800 Dmax

3 ·  ρb  = 1,380,000 Dmax
3             (5.44) 
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if a multiplier of 600 is selected.  Note that sample-mass recommendations in Eq. 5.44 are 
nearly identical to those proposed by Church et al. (1987) in their 0.1% criterion (Eq. 5.40). 
 
 
Sampling until 5 Dmax particles are contained in the sample 
A simple field criterion for estimating the necessary sample mass that does not require 
monitoring sample weight is proposed by Ibbeken (1974).  He suggests continuing to 
sample until at least 5 particles of the Dmax size class are contained in the sample.  This 
approach implies that the spatial distribution of Dmax particles within a sediment deposit is 
truly random, and that there is no user bias towards or against sampling large clasts.  In 
order to compare Ibbeken's criterion with those discussed above, a percentage weight 
needs to be assumed for Dmax particles in the total deposit.  If the percentage is set to 1%, 
and the Dmax particle-size class is 180 mm with an average Dmax particle weight of 8 kg, 
Ibbeken's sample-mass criterion yields 5 ·  8 kg ·  100 = 4,000 kg.  In this sample of 4 
metric tons, the mass of one Dmax particle mDmax comprises 0.2% of the total sample 
weight.  In terms of the notations used above, Ibbeken's sample-mass criterion can be 
rewritten as:  
 
 

  ms = 2000 ·  mDmax = 2000 ·  
π
6 Dmax

3 ·  ρs   = 2775,073 Dmax
3        (5.45) 

 
 
If it is assumed that Dmax particles make up 5% of the deposit, Ibbeken's sample-mass 
criterion yields 5 ·  8 kg ·  20 = 800 kg and the mass of one Dmax particle mDmax would 
comprise 1% of the total sample weight.  This result is identical to the sample mass 
criterion in Eq. 5.41. 
 
 
5.4.1.2  National standards: non-cubic functions of Dmax particle size 

It is conceptually evident that sample mass should increase as a cubic function of particle 
size.  Nevertheless, the resulting steep increase of sample mass with particle size leads to 
large and often unmanageable sample sizes for cobble-sized bed material.  Most national 
standards therefore propose sample-mass recommendations that require a relatively high 
sample mass for small Dmax sizes, but the increase of sample mass with particle size then 
continues at a lesser rate than it does with a cubic function.  Regression functions fitted to 
the relations between sample mass and particle size yield either power functions with 
exponents between 1 and 1.5, or linear functions.  Note that these relations are empirical 
and units on both sides of the equations do not necessarily match.  
 
 
British, German, and American table value standards  
Some of the national sample-mass recommendations are provided as table values only.  
Examples are the British BS 812, I standards (cited by Mosley and Tindale 1985), the 
German recommendations (DVWK 1988), and the American ASTM D75-71 standards 
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(cited by Mosley and Tindale (1985)).  The British and German sample-mass 
recommendations are limited to particle sizes smaller than 60 mm, whereas the American 
ASTM D75-71 standards apply to particles smaller than 90 mm.   For a visual comparison 
of sample mass, tabulated values and computed sample mass are plotted in Fig. 5.15. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.15:  Empirical sample-mass recommendations for gravel and cobbles expressed as power and linear 
functions of Dmax (combined from various sources).  The four lines indicate the percentages of 0.01, 0.0, 1, 
and 10 % of the total sample mass comprised in the mass of the Dmax particle size (see Fig. 5.14). 
 
 
American standards 
Sample mass (kg) recommended by the ASTM D75-71 standards for particles smaller 
than  90 mm can be expressed by a linear regression equation 
 

  ms = 2,069 Dmax - 6.7                     (5.46) 
 

with Dmax expressed in units of m (Fig, 5.15).  The American ASTM C136-71 standard 
(cited by Church et al. 1987) has no restriction on particle size and determines sample 
mass m (kg) as  
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  ms = 2,596 Dn,max
1.5                      (5.47) 

 
 
where Dn,max (in m) is the nominal diameter (Section 2.1.2) of the particles retained on the 
largest sieve size (Fig. 5.15). 
 
 
German standards 
Sample-mass recommendations published by the Deutscher Verband für Wasserbau und 
Kulturtechnik (DVWK 1988) extend to particle sizes up to 60 mm and can be expressed 
by a power regression function (with m in kg, and Dmax in m; Fig. 5.15) 
 
 

  ms = 712.4 Dmax
1.43                      (5.48) 

  
 
Swiss standards 
The empirical Swiss recommendations for sample mass in gravel-bed rivers are based on 
sample volume (V) (Anastasi 1984; Fehr 1987) 
 
 
  Vs = 2.5 Dmax                        (5.49) 
 
 
with V in m3 and Dmax in m.  The mass of sediment contained in this sample volume varies 
with the bulk density ρb which is affected by the sorting and packing of the particles in the 
sample.  Bulk density for gravel deposits ranges between 1,700 and 2,600 kg/m3 (Table 
2.16 in Section 2.5).  For comparison with other sample-mass equations, ρb was set to 
2,300 kg/m3, a value proposed for gravel-sand mixtures by Carling and Reader (1982).  
Sample mass (m) in kg is then  
 
 
  ms = 2.5 Dmax ·  ρb  = 5,750 Dmax                 (5.50) 
 
 
Canadian standards 
Church et al. (1987) proposed using three sample-mass criteria depending on the Dmax 
particle size (Section 5.4.1.1).  However, use of three criteria can lead to confusion in 
samples-mass estimates.  Sample-mass requirements for particles of 32 mm is 45 kg if the 
0.1% criterion is applied (Eq. 5.40), whereas sample mass for 45 mm particles is only 13 
kg, if a less stringent criterion of 1% is used (Eq. 5.41) (Fig. 5.14).  The Canadian 
standards described by Yuzyk (1986), Yuzyk and Winkler (1991), and Zrymiak (in press) 
fitted a staircase function through the three graphs by Church et al. (1987) to unite the 
three criteria in a monotonic function.  Another possibility to unite the three sample-mass 
criteria in one strictly monotonic function is to fit a power regression function through the 
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corner points of the staircase function (Fig. 4.20 in Section 4.2.3.2), yielding the sample-
mass equation (r2=0.999): 
 
 
  ms = 2,881.6 Dmax - 47.56                    (5.51) 
 
 
with m in kg, and Dmax in m.  The adjusted sample-mass equation for Church et al. (1987) 
falls midway between the range of the other non-cubic sample-mass equations (Fig. 5.15).   
 
 
Summary 
Sample-mass recommendations that are based on the size of the Dmax particle vary over 
several orders of magnitude for a specified Dmax particle size (Fig. 5.14. and 5.15).  This 
variability is shown in Table 5.8 that presents cubic and non-cubic regression equations 
for sample-mass recommendations and compares sample-mass requirements for Dmax 
particle sizes of 16 and 180 mm.  
 
None of these recommendations have been formally adopted as the standard for sampling 
bed material in gravel-bed streams in the United States.  The empirical sample-mass 
recommendations most frequently used and referenced are those by Church et al. (1987).  
The adjusted and strict-monotonic sample-mass equation for Church et al. (1987) 
describes the center of the range proposed by cubic and non-cubic sample-mass equations. 
 
 
5.4.1.3  Error of the entire particle-size distribution due to the presence or 
absence of particles from the largest size class  

Presence or absence of large particles not only affects total sample mass, but also alters 
the particle-size distribution in general.  The presence of a statistically non-representative 
large particle is less likely than an absence, but has a disproportionate effect on the 
sampled particle-size distribution.  The presence of an unrepresentative large Dmax 
particle, that comprises a large percentage of the total sample mass, considerably coarsens 
the entire particle-size distribution compared to a parent population in which large 
particles are not overrepresented.  This can be illustrated with Fig. 5.16, which is 
described in a different context below.  Assuming the heavy black line in Fig. 5.16 
represents the parent particle-size distribution of the deposit, the line termed “biased” 
indicates a sample distribution in which the largest particle comprises 30% of the total 
mass.  Compared to the parent population, the D50 particle size is more than doubled, and 
the D75 size is even quadrupled in the sample in which large particles are overrepresented.   
 
Chance absence of particles from the largest size class causes a sample particle-size 
distribution that is finer than the parent population.  This effect is less pronounced than a 
chance overrepresentation, but it occurs statistically more often.  The effect of chance 
absence of the Dmax particle on the sample particle-size distribution is discussed in more 
detail in Section 5.4.1.4. 
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Table 5.8:  Comparison of cubic and non-cubic regression functions for sample mass as a function of the 
Dmax particle size (sample mass in kg and Dmax particles size in m).  Sample mass in parentheses indicates 
that the Dmax particle size is beyond the intended range of the equation.  See text for assumptions and units. 
________________________________________________________________________

 
Regression Function  Author, Criterion           Equation     Sample Mass (kg) for Dmax of: 
                    Number   16 mm  180 mm  
________________________________________________________________________________________________________________________________

 

Cubic sample-mass equations: 

ms = 26,500,000 Dmax
3 De Vries (1970), ISO (1977), high prec.. 5.37     108       (154,550) 

ms =   2,775,073 Dmax
3 Ibbeken (1974), 5 Dmax particles     5.45     11.4     16,180 

ms =   2,650,000 Dmax
3 De Vries (1970), ISO (1977), norm. prec. 5.38     10.9    (15,450) 

ms =   1,388,000 Dmax
3 Church et al. (1987), Dmax = 0.1% ms     5.40       5.7       8,090 

ms =   1,380,000 Dmax
3 Fripp and Diplas (1993), 400 particles    5.44       5.7       8,050 

ms =      460,000 Dmax
3 Diplas and Fripp (1992) , 100 particles    5.43       1.9       2,680 

ms =      265,000 Dmax
3 De Vries (1970), ISO (1977), low prec. 5.39       1.1      (1,550) 

ms =      138,800 Dmax
3 Church et al. (1987), Dmax = 1% ms      5.41      (0.60)    810 

ms =      138,000 Dmax
3 Neumann-Mahlkau (1967), ms =100 Dn  5.32       0.57     805 

ms =        27,751 Dmax
3 Church et al. (1987), Dmax = 5% ms      5.42      (0.11)    160 

ms =        13,800 Dmax
3 Neumann-Mahlkau (1967), ms =10 Dn    5.33       0.06       80 

 
Non-cubic sample-mass equations: 
ms =        5,750 Dmax   Anastasi (1984); Fehr (1987)     5.50      (92)       1030 

ms =        2,069 Dmax - 6.7 ASTM D75-71       5.46       26       (370)  

ms =        2,882 Dmax - 47.6 Church et al. (1987), adjusted   5.51         1.1    472 

ms =        2,596 Dmax
1.5  ASTM C136-71       5.47         5.2      200  

ms =        712.4 Dmax
1.43  DVWK (1988)       5.48         1.9    (61) 

_______________________________________________________________________________________________________________________________________________ 

 
 
5.4.1.4  Sample-mass reduction: truncation and readjustment at the coarse end 

All cubic, and even some of the non-cubic sample-mass equations recommend sample 
masses ranging from several metric tons to several hundreds of metric tons for bed 
material containing large cobbles and boulders.  Such sample masses are not only 
unmanageably large, but would severely disturb the streambed as a consequence of their 
collection. 
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Church et al. (1987) recommend truncating volumetric samples in coarse beds and 
excluding from the sample particles larger than 256 mm, which typically weigh more than 
about 23 kg a piece.  Particles larger than 256 mm are difficult, if not unsafe, to pick up 
for most persons and are therefore not likely to be representatively included in a 
volumetric sample, anyway.  However, the presence of particles larger than the largest 
sampled size-class in the streambed should be recorded in the field notes.  Any 
inadvertently collected large particle may then be discarded and only sufficient sediment is 
retained for an unbiased sample of the largest particle size present in the truncated sample.   
 
The truncation and readjustment method of estimating the coarsest part of a cumulative 
frequency distribution is based on the assumption that the percent frequency of the largest 
one or two particles size classes is typically small in very large and representative samples 
from coarse gravel-bed streams.  To obtain a smooth shape of the upper end of the 
cumulative distribution curve, the truncated sample needs to be extended to its relevant or 
full (pre-truncation) particle-size spectrum.  This is accomplished by assigning small 
percentage frequencies to the truncated size classes (Fig. 5.16).  The added percentages 
decrease for consecutively larger particle sizes.  Estimates for those small percentages can  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5.16:  Example of a biased sample from a deposit with a Dmax size class of 256 mm.  The sample was 
truncated by two size classes at 128 mm and then readjusted to its original Dmax particle-size class of 256 
mm.  
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be obtained by handfitting a smooth upper part of the cumulative distribution curve.  The 
total percent frequency needs to be reset to 100% to compute the new cumulative 
frequency distribution.  
 
If the assumption that large particles in unbiased samples account for only a small 
percentage of the total distribution mass is valid for a given sampling situation, truncation 
and readjustment can provide a more accurate approximation of the true bed-material size 
distribution than in small samples in which 20% or more of the sample weight is due to a 
single large particle, or in which the largest particles are not accounted for at all.  
 
Truncation and readjustment is not applicable if there is reason to believe that the paucity 
or abundance of large particles in the sample is a result of fluvial processes, for example, a 
recent change in the local sediment budget.  An abundance of large particles in subsurface 
sediment, or a scarcity of large particles in the surface sediment, may result from the 
burial of a former armor surface by a local deposition of mid-sized particles.  
 
 
5.4.2  Sample mass as a function of acceptable percentile errors  

Sample-mass considerations in previous sections are primarily aimed at avoiding bias due 
to the unrepresentative presence or absence of a single large particle.  The resulting 
empirical sample mass equations do not provide information regarding sampling 
precision.  If a relationship between sample mass and sampling precision is needed, it may 
be computed from a two-step approach.  A two-step approach computes the number of 
subsamples necessary for a specified sampling precision around the median particle size 
based on the central limit theorem.  The particle size of the means or medians (or of 
percentiles close to the median) in subsamples are approximately normal distributed).  
Sections 5.2.3.1 and 5.3.2 described two-stage sampling for pebble counts with number-
based sample-size statistics and for areal samples.  Section 5.4.2.1 describes how a two-
stage approach is used to estimate the precision of volumetric weight-based samples.  
 
 
5.4.2.1  Two-stage sampling approach (ISO 1992) 

Individual volumetric samples taken with one of the sampling devices described in 
Section 4.2.3 are not likely to contain sufficient sediment for an acceptable level of 
precision in a size-distribution analysis.  Therefore, ISO (1992) suggests collecting several 
subsamples.  The mass of the largest particle Dmax (in m) per subsample should be less 
than 3% of the subsample mass mss in order to avoid sample bias towards the larger 
fraction.  This criterion for subsample mass mss (in kg) can be expressed by the function: 
 
 

  mss = 33.3 
π
6 Dmax

3 ·  ρs   = 46,205 Dmax
3               (5.52) 

 
 

where ρs is particle density of 2,650 kg/m3.  



 302 

Computation in units of mm 
Similar to the two-stage sampling approaches proposed by ISO (1992) for grid and areal 
sampling (Sections 5.2.3.1 and 5.3.2), a number (q) of volumetric samples are collected 
from a homogeneous deposit.  For each individual sample, the particle size of the median 
or a percentile close to it is computed, either graphically from cumulative distribution 
curves or by logarithmic interpolation between percentiles (Section 2.1.4.2).  ISO (1992) 
proposes to compute the median D50 in units of mm.  It is assumed that the q values of D50 
are approximately normally distributed.  This guideline document recommends 
performing the computations in φ-units (see below).   
 
The sample standard deviation s50 of the q values of D50 is determined from: 
 
 

  s50 = 
∑
i=1

q

(D50 - D50m)2 

q-1                      (5.53) 

 
 
D50m is the arithmetic mean particle size in mm of the median D50 obtained from the q 
samples.  Equation 5.53 for sample standard deviation is preprogrammed in most 
scientific pocket calculators and spreadsheet programs.  For two subsamples, s50 is 
computed by 
 
 

  s50 = 
D1 - D2

2
                         (5.54) 

 
 
Eq. 5.55 can be used to determine the number of weight-based subsamples q required to 
remain below a 5% chance (α = 0.05) that the absolute difference (positive or negative) 
between the estimated values of the D50 and the true population D50 is larger than or equal 
to the acceptable absolute error e±D50 .  The absolute error is the difference (in mm) 
between the D50 in the sample and in the population.  Using an appropriate value for 
Student’s t from Table 5.2, the number of subsamples q is  
 
 

  q = 



t1-α/2;q-1

e±D50
 ·  s50

2

                      (5.55) 

 
 
Total sample mass mtot is the mass contained in each subsample mss multiplied by the 
number of q subsamples. 
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Example 5.14: 
The Dmax particle size of a deposit is estimated as 64 mm.  Sample 
size mss for each subsample is 12 kg according to Eq. 5.52.  Five 
subsamples were collected and have D50 particle sizes of 23, 29, 32, 
38, and 44 mm.  From Eq. 5.53, the standard deviation s50 for the 
D50 is 8.1 mm.  An absolute error of e±D50 = 5 mm around the D50 
particle size is considered acceptable.  Eq. 5.55 needs to be solved 
iteratively when t-statistics are used (see Table 5.2 in Section 5.2.1 
for t-values).  An arbitrary sample size of 20 subsamples is selected 
in the first trial of Eq. 5.55.  The subsample size qest = 20 is not 
equal to the computed subsample size qcomp = 12 after the first trial.  
 
 Trial   qest   q-1   t1-α/2;q-1  qcomp 
 ----------------------------------------------------------------------------------------------------------------------------------- 

   1   20   19   2.093   11.5 ≅  12 
   2   12   11   2.201   12.7 ≅  13 
   3   13   12   2.179   12.5 ≅  13. 
 
After the third trial, the subsample size qest for which the t-value 
was selected has converged with the computed subsample size qcomp 
= 13.  The total sample mass of 13 subsamples of 12 kg each = 156 
kg has a 95% probability that the sample D50 size is approximately 
within ± 5 mm of the size of the population D50.  

 
Note that one physical sample, i.e., the amount of sediment that is collected by using a 
sampling device once, might not have a sufficient mass for an unbiased representation of 
large particles.  For Dmax particle sizes larger than 90 mm, the 3% criterion in Eq. 5.52 
requires a subsample mass of 34 kg.  Therefore, for large Dmax sizes, it may be necessary 
to combine several physical samples into one subsample in order to reduce bias incurred 
by the statistically unrepresentative presence or absence of large particles.  Combined 
subsamples are then used for the two-stage sampling approach. 
 
 
Computations in units of φφφφ 
It is recommended applying the two-stage approach to median particle sizes in units of φ 
rather than to units of mm.  Values of φ50 from several subsamples are expected to 
approximate a normal distribution better than the values of D50 (in mm) and should 
therefore be preferred over computations in units of mm (Triola 1995) (Section 5.2.3.1).  
D50 in Eqs. 5.53 and 5.54 is then substituted by values of φ50.  
 
 
Precision from two-stage approach is not general but refers to analyzed samples only  
Each set of subsamples has a unique precision.  For example, one set of three subsamples 
may have three D50 particle sizes of 45, 50, and 55 mm, while another set of three 
subsamples has the three D50 sizes of 43, 49, and 54 mm.  Sample standard deviations will 
be slightly different for each set of subsamples, e.g., 5.0 in the first set of subsamples, and 
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5.5 in the second.  Consequently, the computed sampling error (or precision) is different 
as well, yielding an absolute error of 12.4 mm around the D50 for the first, and of 13.7 mm 
for the second set of three subsamples. 
 
The variability between individual subsamples increases due to bed-material heterogeneity 
in the sampling area or due to operator errors.  The mean precision for a specified number 
of subsamples within a sampling area (e.g., three subsamples) is obtained if sets of three 
subsamples are collected repeatedly and precision is computed for each set.  The precision 
is then averaged over all subsets of three samples and the result is the mean precision 
expected for a sample size of three.  The same procedure is repeated for all sample sizes.  
The resulting data provide a description of the relationship between sample size and 
precision for a given percentile in a given deposit.  The precision of this relationship 
increases with the number of subsamples over which precision is averaged for each 
subsample size.  However, the repeated computation of precision for a large number of 
samples of the same sample size is a (prohibitively) large sampling effort. 
 
Sampling efforts can be reduced by two procedures: One is using a regression function to 
determine the relationship between sample size and precision in a scatter plot.  The second 
is a computer re-sampling procedure from a parent distribution for which the measured 
particle sizes are entered into a computer.  Hogan et al. (1993) combined both procedures 
and developed a computerized two-stage sampling methodology (Section 5.4.2.2).  
 
 
5.4.2.2  Computerized two-stage sampling (Hogan et al. 1993)   

The first step for computerized two-stage sampling is to obtain a large bed-material 
sample (parent sample) that may be derived from combining several subsamples taken 
from within a homogeneous deposit.  The parent sample serves as a population surrogate 
and should be as large as possible, because the larger the mass of the parent sample, the 
more accurate the surrogate.  The sample is sieved, and the sizes of all particles are 
entered into a computer data file.  No assumptions about the distribution type of the parent 
population need to be made.  The computer then selects random particles from the parent 
distribution with replacement to create subsamples to which particles are added until a 
specified mass (e.g., mss = 50 kg) is exceeded.  The subsample mass needs to be large 
enough to avoid bias against or towards large particles in the sample (sample size for bias 
avoidance: Section 5.4.2.1, Eq. 5.52, and Section 5.4.3.1, Eq. 5.60 and Fig. 5.20).  
 
 
Sampling with no replication 
The smallest subsample size (q = 2) collected from the parent population consists of two 
subsamples, each with a sample mass of mss ≥ 50 kg and a total sample mass of 2 mss ≥ 
100 kg.  The largest sample size might comprise 30 subsamples (q = 30) with a mass of 30 
mss ≥ 1,500 kg.  The particle sizes of all percentiles of concern Dp are computed for each 
subsample, for example the seven percentiles D5, D16, D25, D50, D75, D84, and D95.  The 
smallest subsample comprises two values for each percentile Dp, whereas the largest 
subsample comprises 30 values for each Dp.  Although Hogan et al. (1993) used mm-units, 
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these guidelines recommend that the analyses be performed in units of φ, because 
percentiles in φ approach normality better than percentiles in mm. 
 
The next step in the two-stage procedure is to compute the sample standard deviation spq 
for the q percentile values Dp, assuming that the q values for the percentile particle size Dp 
approximate a normal distribution.  Either Eq. 5.53 or a preprogrammed function in a 
spreadsheet program may be used to compute the sample standard deviation.  The absolute 
error e±Dp (in mm) around a percentile Dpq is computed from: 
 
 

  e±Dp;q = 
t1-α/2;q-1

q
 ·  spq                      (5.56) 

 
 
which is the general sample-size equation Eq. 5.55 or 5.2 solved for the error term.  Table 
5.2 provides values of Student’s t.  Alternatively, the absolute error e±Dp added or 
subtracted from the population percentile value Dpµ could be computed.  If the study 
requires a result in terms a percent error, the percent error e%Dp around a percentile Dp is 
computed from  
 
 

  e%Dp = 
e±Dp

Dpµ
 ·  100                        (5.57) 

 
 
Best-fit regression function for visualizing the data trend  
For all percentiles of concern, the error computed for each sample size (Eq. 5.56) is 
plotted against that sample size.  Data plotted from these computations may scatter 
considerably (due to the lack of sample replications, Section 5.4.2.1).  An example of such 
scatter can be observed in Fig. 6.18 (Section 6.4.3.1).  In order to visualize the trend of the 
data, a best-fit regression function is fitted through the points (Fig. 5.17).  Knowing that 
the trend of the curves describes a decrease of sampling error e with 1/ q , the regression 
function may have the form of e = a ·  q-0.5.  
 
The resulting graphs for positive, as well as negative errors, approach the x-axis 
asymptotically from both sides (“trumpet curve”) (Fig, 5.17).  Graphs as these can be 
established for all percentiles of concern.  Graphical visualization of the relationship 
between sample size and error is useful when determining where to make the compromise 
between tolerable error, sample size, and expendable effort and costs.  Note, however, that 
the smoothed graphs imply an unduly high precision of the computed relationship between 
sample size and precision.  A further caveat of this methodology is that two-stage 
approach used for the computations is not designed to determine errors around low and 
high percentiles, which may not approach normality for low sample sizes.  Thus, the true 
precision may differ from the computed precision.  However, the computations are 
relatively easy and may suit as a first approximation of sampling precision. 
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Fig. 5.17:  Results of two-stage computer sampling with no replications for a bed-material sample from the 
Cache la Poudre River, Colorado.  Relation between absolute error (in mm) around percentile particle sizes 
of the D5, D30, D60, and D84 (top), and D10, D50, and D95

  (bottom) added and subtracted from the population 
percentile particle-size and sample mass.  The error curves have been smoothed by fitting a regression 
function (from Hogan et al. 1993). 
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Error-curves 
The error is at a maximum when sample size is small (or mass in this case) and becomes 
smaller as sample size increases.  At some point, a further increase in sample size 
contributes only insignificantly to a further decrease in sampling error (see also Figs. 5.10 
and 5.11 in Section 5.2.3.4).  The absolute error around a percentile in units of mm for a 
given sample size is smallest for small percentiles and increases for larger percentiles (Fig. 
5.17).  However, a more interesting result from the study by Hogan et al. (1993) is that the 
percent error for a specified sample size is not symmetrically distributed around paired 
percentiles.  For a fixed sample size, the percent error is largest around the D5, strongly 
decreases towards the D10, is lowest for the D84 and increases slightly for the D95.  This 
result can be expected for the bed-material from the South Fork Cache la Poudre which is 
a coarse gravel or cobble distribution slightly skewed towards fines.  This finding is also 
in agreement with the results obtained by Rice and Church (1996b) for their bootstrap 
analysis of a large sample from the Mamquam River (Section 5.2.3.4). 
 
For the bed-material sample analyzed in Fig. 5.17, a sample mass of 200 kg determines 
the D10 particle size to within ± 5 mm of the population D10 particle size of 38 mm.  More 
than 500 kg are needed to define the D50 to the same absolute precision of ± 5 mm.  The 
increase in the absolute error for higher percentiles for a given sample size (or mass) is a 
result of using mm-units for the analysis.  It is recommended that the analysis be 
performed in φ-units if the underlying distribution approaches normality in φ-units.  The 
error would then be highest for low and high percentiles and lowest around central 
percentiles.  The distribution of errors around low and high percentiles for a specified 
sample size is discussed in Section 5.4.4. 
 
 
Replicate sampling 
Scatter in the data points can be reduced if precision is computed repeatedly for different 
sets of samples of the same subsample size, and if the mean precision for a given 
subsample size is plotted.  The more sets of subsamples collected and analyzed, the higher 
the precision of the relationship between sample size and certainty of the result. 
 
Replicate sampling reduces the scatter in the plots of sampling precision versus sample 
size.  The number of replicates needed to produce smooth error curves increases as the 
sorting of the parent distribution becomes poorer, and as subsamples with smaller mass 
are taken.  Rice and Church (1996b) recommend that about 200 replicates be performed 
for each sample size.  Ferguson and Paola (1997) even used 500 replicates.  Because this 
might exceed the capacity of user-developed spreadsheets, the use of commercially 
available bootstrapping programs may be required (e.g., Resampling Stats, available as an 
add-in program to Microsoft Excel, Section 5.2.3.4).  
 
For 200 replications, each sample size q is represented by 200 replicates r1, r2, ... r200.  
Each of the 200 replicates has a slightly different composition of particle sizes.  Thus, the 
particle size of the D50 and all other percentiles is slightly different for each of the 200 
replicates constituting the sample size q.  The variability is reduced when the D50 particle 
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size associated with the sample size q is taken as the arithmetic mean of the 200 
individually computed D50 particle sizes (D50,q,200).  Likewise, the D84 particle size 
computed for the sample size q = 3 is the arithmetic mean of all the D84 values obtained 
from 200 repetitions with a sample size 3 (D84,3,200).   
 
The actual two-stage sampling procedure is the same as described in Section 5.4.2.1, with 
the exception that each particle-size percentile represents the arithmetic mean of 200 
replicates.  A diagram explaining the resampling procedure for two-stage sampling is 
provided in Fig. 5.18, for a preset subsample mass of 50 kg, two subsample sizes q = 2 
with m2=100 kg, and q = 3 and m3=150 kg, and with D16 as the percentile of concern.  
 
 
5.4.3  Analytical computation of sample mass (Ferguson and Paola 1997) 

Sample size necessary to obtain a specified precision is influenced by a variety of factors 
(Section 5.1), but volumetric sample-size equations discussed thus far have not addressed 
many of those factors.  The empirical recommendations that determine sample mass as a 
function of Dmax were developed for various sampling goals and physical settings.  Thus, 
sample-mass requirements vary widely between different equations (Section 5.4.1).  None 
of the Dmax-based sample-mass recommendations provides information on percentile 
errors. The two-stage approach (Section 5.4.2.1) can be used to indicate the error around 
the sample mean or median for a specific set of subsamples.  A computerized two-stage re-
sampling approach provides a surrogate for percentile errors (Section 5.4.2.2).  A bootstrap 
approach that re-samples a large parent distribution repeatedly (e.g., 200 times) can 
reliably quantify percentile errors (Section 5.2.3.4) once a large sample is collected.   
 
However, a methodology is needed that allows the user to make a reliable estimate of the 
sample mass required for a tolerable error around a specified percentile for a given stream 
setting before the sample is collected, and to compute the sampling precision for a 
collected sample.  With this task in mind, Ferguson and Paola (1997) developed sample-
mass equations with the following properties: the equations (1) allow the user to compute 
the sample mass necessary for avoiding bias; (2) are suitable for computing the 
relationship between sample-size and error for any percentile(s) of concern, and (3) can be 
applied to bed-material of any standard deviation or sorting coefficient.  However, a pilot 
study is needed to estimate the bed material D50 and the standard deviation (sorting).  A 
drawback of the approach is that the computations are based on an assumed normal 
distribution, and results are correct only if an underlying normal distribution in φ-units can 
be assumed for the deposit, which strictly speaking is rarely the case. 
 
The sample-mass equations determined by Ferguson and Paola (1997) were derived from 
three large computer-generated particle-size populations with standard deviations or 
sorting coefficients of 0.5, 1.0, and 1.5 σ.   The samples were generated based on an 
underlying lognormal distribution of particle mass per size class for particle sizes in mm-
units (equivalent to a normal distribution in terms of φ-units).  Random samples with 
replacement were drawn by computer from these parent populations until samples of 
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Fig. 5.18:  Diagram explaining a resampling procedure with replicates for the example of a preset subsample 
mass of 50 kg, with subsample sizes q = 2 and mq2=100 kg, and q = 3 and mq3=150 kg, and with D16 being 
the percentile of concern.  s16,2 and s16,3 are the standard deviation of the D16 particle sizes of the 2 or 3 
subsamples, respectively. 
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specified volumes were reached.  Each sample size was represented by 500 replicate 
samples to ensure a high precision of the computed relationship between sample size and 
error. 
 
 
Computation of relative sample volume and absolute sample mass 
In order to develop graphs that are applicable to all particle sizes, Ferguson and Paola 
(1997) expressed sample size as the ratio of the total sample volume V and the volume of 
the D50 particle size V50.  A spherical or ellipsoidal D50 particle of 32 mm, for example has 
a volume of π/6 D50

3 = 17.16 cm3.  A relative sample volume of V/V50 = 1 corresponds to 
a volume of 17.16 cm3, and a sample mass of V ·  ρs = 17.16 cm3 ·  2.65 g/cm3 = 45 g or 
0.045 kg, where ρs is the particle density.  Similarly, relative sample volumes (V/V50) of 
10, 100, 1,000, and 10,000 correspond to absolute sample masses of 0.45, 4.5, 45, and 455 
kg, respectively.  For a D50 particle of 16 mm, the corresponding sample masses are 0.006, 
0.057, 0.57, 5.7, and 57 kg, respectively (see Figs. 5.19 a-c, 5.21 a-c and 5.22 a-c).  Thus, 
to compute sample mass in absolute terms, the D50 particle size needs to be known.   
 
 
Estimation of the D50 particle size from one other percentile and the distribution sorting  
If the only percentile known from a distribution is the D84, for example, then the user can 
determine the respective D50 particle size if the distribution sorting is known, and if a 
normal distribution in terms of φ-units can be assumed.  The D50 particle size can then be 
determined graphically (Fig. 2.19 in Section 2.1.5.4) or analytically.  Fig. 2.19 can be used 
to identify the D50 if the distribution sorting sI is close to the values of 0.5, 1, or 1.5.  The 
curve with the appropriate sorting coefficient is shifted to the right or left until the curve 
passes through the one known percentile value, e.g., D84 = -6.5 φ.  The D50 particle size 
can then be read from the shifted curve.  The φ50 percentile particle size can be estimated 
analytically if the sample standard deviation and one other percentile size is known 
(Gilbert 1987): 
 
 
  φ50 =  φp + (Zp ·  s)  for φp > φ50                 (5.58) 
 
or 
 
  φ50 =  φp - (Zp ·  s)   for φp < φ50                (5.59) 
 
  
where φp is the particle size of the known percentile, and Zp indicates the distance between 
the percentile p and the median (i.e., φ50) in terms of standard deviation.  Zp can be 
obtained from standard statistics tables (e.g., Gilbert 1987, p. 254, Table A1).  Values for 
Zp for frequently used percentiles are provided in Tables 5.9 and 5.1. 
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Table 5.9:  Values for Zp for various percentiles (See Table 5.1 for more values) 
________________________________________________________________________________________________ 

 Percentiles: 50    65      75    84   90         95       97.5       99 
        35    25    16   10       5     2.5   1   

  _________________________________________________________________________________________________________________ 
 Zp     0      0.385  0.675  0.995     1.282     1.645       1.96   2.327 
________________________________________________________________________________________________ 

 
   
    Example 5.15: 

From a previous study it is known that the D75 = 68 mm, and the 
sample sorting s = 1.67.  Convert the D75 percentile size into φ-
units:  φ75 = -3.3219 log(68) = -6.09 φ.  Compute φ50 using Eq. 
5.58:  φ50 =  - 6.09 + (0.675 ·  1.67)  = - 6.09 +1.13  = -4.96 φ. 
Converting back to mm yields:  D50 =  24.96  = 31.1 mm 

 
 
5.4.3.1  Sample mass for bias avoidance 

The analysis by Ferguson and Paola (1997) indicated that small samples are systematically 
biased towards the fine fraction (Fig. 5.19 a-c).  This becomes evident as the number of 
large particles is relatively small in a given sample volume.  Thus, there is a less than 
average chance for large particles to be included in a small sample.  Consequently, the 
sample particle-size distribution is finer than the population size distribution.  Bias due to 
the chance presence of an overly large particle in an individual sample is not addressed in 
this computation, because particles larger than the parent distribution cannot be drawn 
from the parent population by the computer.  But the occurrence of bias in an individual 
sample may introduce a pronounced error into the resulting particle-size distribution (Sect. 
5.4.1.4).   
 
Figs. 5.19 a-c indicate that bias is more pronounced for poorly sorted rather than for well 
sorted sediment.  Fig. 5.15 also shows that the relative sample mass required for avoiding 
bias for the D95 particle size is approximately two orders of magnitude larger than the 
sample mass for avoiding bias in the D50.  On the basis of these results, Ferguson and 
Paola (1997) propose a dimensionless equation for determining the bias-avoiding sample 
volume  Vb .  Vb is a relative sample volume scaled by the volume of the D50 particle V50: 
 
 

  log 



Vb

V50
 = 1.3 + log (σ) + 0.9 σ ·  Zp                  (5.60) 

 
 
Zp describes the distance between the percentile p and the median in terms of the standard 
deviation of a normal distribution (Table 5.9).  Eq. 5.60 can be used for any percentile.  
The percentile for which bias is avoided is specified through the selection of an 
appropriate value of Zp.  To apply to the D84, Zp is selected as 0.995 from Table 5.9 or 
Table 5.1. 
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          11.3:    0.020         0.20          2.0         20.0      200          2,002   
       16:   0.057       0.57      5.7        56.8   568         5,683   
   22.6:    0.160     1.60      16.0      160.0    1,600       16,017   
       32:   0.455        4.55     45.5      454.7 4,547       45,467   

     45: 1.264      12.64    126.4   1,264.4  12,644     126,439   
              64:    3.637       36.37     363.7   3,637.3  36,373     363,734   
           10   100    1,000     10,000   100,000   1,000,000 
                                V/V50 
 
Fig. 5.19 a-c:  Relation between bias in terms of φ-units (∆ψp) and relative sample volume V/V50 for given 
percentiles between D50 and D99, and standard deviation of σ = 0.5 φ (a), σ = 1.0 φ (b), and σ = 1.5 φ (c).  
Numbers on the curves indicate percentiles.  Bias is the difference    (continued on next page) 
 

 D50 
(mm) 

 Sample mass 
        (kg) 
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between the sample mean particle size of a given percentile in φ-units, averaged over 500 replicate samples, 
and the particle size of that percentile in the population.  A negative difference indicates the sample 
percentile is finer than the population percentile.  Sample size is a multiple of the volume V50 of the 
population median particle-diameter.  (Reprinted from Ferguson and Paola (1997), by permission of John 
Wiley and Sons, Ltd.).  Discrete values of sample mass (kg) are given for various D50 particle sizes (mm) at 
the bottom of the plot.  The numbers on the bottom of the plots indicate sample mass values in kg for 101, 
102, 103, 104, 105, and 106 V/V50 for various D50 particle sizes. 
 
 
    Example 5.16: 

Assume the bed-material sample in φ-units approaches a normal 
distribution and has a standard deviation of s =1.5 φ.  Relative 
sample volume Vb/V50 for avoiding bias in the estimation of the 
D84 particle size is computed from Eq. 5.60: 
 

  
Vb

V50
 = 10(1.3 + log (1.5) + 0.9 ·  1.5 ·  0.995)           

 
        = 10(1.3+0.176 +1.343) = 102.819 = 659 

 
For a D84 particle size of 90 mm, and a sorting of s =1.5 φ, D50 is 
32 mm (see Fig. 2.19 or Eq. 5.58).  Sample volume without pore 
space is 
 
  Vb = 659 ·  (π/6) ·  D50

3 = 659 ·  17.16 cm3 = 11,307 cm3 
 
Multiplication by particle density ρs =2.65 g/cm3 provides sample 
mass  
 
  mb = 11,307 ·  2.65 = 29,963 g = 30 kg  
 
Dividing by an assumed bulk density of 1,500 kg/m3 for shoveled 
gravel gives the sample volume of 0.02 m3 which is about 2 
household buckets of 10 liters each. 

 
 
Relative sample volume in terms of V/V50 for bias avoidance was computed with Eq. 5.60 
and plotted against sediment standard deviation σ for various percentiles between D50 and 
D99 in Fig. 5.20.  Fig. 5.20 indicates that a relative sample volume of V/V50 = 30 is 
required for avoiding bias in the D50 particle size in a distribution with a standard 
deviation of 1.5 σ.  The numbers on the side of the plot present the absolute sample mass 
in kg for relative sample volumes of 10, 100, 1,000, etc.  If the D50 particle size of the 
deposit was 32 mm, the column under 32 mm is used to interpolate between 4.5 and 45 
kg.  A relative sample volume of 659 V/V50 is approximately 6.6 ·  4.5 kg ≈ 30 kg.   
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Sample mass for bias avoidance can become very large for high percentiles in poorly 
sorted river beds.  A relative sample volume of 35,000 V/V50 is needed to avoid bias 
around the D95 in a poorly sorted distribution with s = 2 φ.  If the distribution has a D50 
particle size of 64 mm, an absolute sample mass of 3.5 ·  3640 kg = 12.7 metric tons is 
needed.  
 
The widely used sample-mass requirements by Church et al. (1987) suggest that the mass 
of a particle of the Dmax size should comprise 0.1, 1, and 10% of the sample mass (Section 
5.4.1.1).  For comparison, these criteria are also plotted in Fig. 5.20.  Fig. 5.20 shows that 
even the10% criterion suffices to prevent bias in all but the 99th percentile. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.20:  Relation between relative sample volume (V/V50) for bias avoidance and sediment sorting for 
various percentiles between D50 and D99.  Sample sizes for paired percentiles (e.g., D10 and D90) are 
identical.  The numbers on the right side of the plot indicate sample-mass values in kg and metric tons for 
102, 103, 104, 105, 106, and 107 V/V50 for various particle sizes of D50.  (Modified from Ferguson and Paola 
(1997), by permission of John Wiley and Sons, Ltd.).  
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5.4.3.2  Sample mass for specified acceptable error 

Sampling precision can be quantified by means of the percentile standard error sp in φ-
units between replicate samples.  In unbiased samples, sp is computed from Eq. 5.53.  The 
percentile standard error sp relates to the absolute error e±φp around a percentile in φ-units 
by 
 
 
  e±φp = Z1-α/2 ·  sp                         (5.61) 
 
 
where Z1-α/2 is 1.96 for a 95% confidence limit (Table 5.1).  Thus, a percentile standard 
error sp of ±0.15 φ-units is equivalent to an absolute error e±φp of almost ± 0.3 φ-units, 
which, in turn, corresponds to a percentage error in mm-units e%Dp of -18 to +23%, and a 
percentage standard error in mm-units sp,%D of -9 to +12% (Fig. 5.8 in Section 5.2.3.4).   
 
The results of the bootstrap procedure by Ferguson and Paola (1997) in Fig. 5.21 a-c 
illustrate a similar trend to the results by Rice and Church (1996b; Figs. 5.10 and 5.11) 
and by Hogan et al. (1993; Fig. 5.17).  The error decreases with sample size or sample 
volume as a function of 1/ n or 1/ V, respectively.  For volume-based sampling, it 
appears that the error decreases only after a threshold sample volume has been exceeded, 
but this phenomenon may be due to the logarithmic scale of sample size along the x-axis.   
 
Results by Ferguson and Paola (1997) clearly show the relationship between standard 
deviation, sample mass, and sampling error.  Sample mass for a specified standard error is 
orders of magnitude larger for poorly sorted sediment than for well-sorted sediment.  
Sample mass for a specified error is also larger for the D95 percentile size than for the D50.  
On the basis of this analysis, Ferguson and Paola (1997) developed a dimensionless 
equation that facilitates computing sample volume Vg necessary to obtain a specified 
percentile standard error sp when sampling a population with a standard deviation σ: 
 
 

  log 



Vg

V50
 = 1.4 + 4.2 log (σ) + 0.9 σ ·  Zp  - 2 log (sp)            (5.62) 

 
 
where Zp is the pth percentile variate of the unit normal distribution (Tables 5.9 and 5.1).  
For a preset percentile standard error sp = 0.15 φ-units, the last term in Eq. 5.62 yields the 
numerical value of -1.65 and simplifies to  
 
 

  log 



Vg

V50
 = 3.0 + 4.2 log (σ) + 0.9 σ ·  Zp                (5.63) 
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          11.3:   0.020        0.20         2.0         20.0     200        2,002   

16:  0.057       0.57       5.7         56.8        568        5,683   
22.6:   0.160       1.60     16.0       160.0     1,600      16,017   
32:  0.455       4.55       45.5       454.7     4,547      45,467   
45:  1.264     12.64   126.4    1,264.4   12,644    126,439   

             64:       3.637     36.37   363.7    3,637.3   36,373    363,734   
     10     100  1,000   10,000 100,000 1,000,000 
                       V/V50 
 
 
Fig. 5.21 a-c:  Results from the bootstrap analysis:  Relation between percentile standard error sp and relative 
sample volume V/V50 for given percentiles between D50 and D99, and population standard deviation of σ = 
0.5 φ (a), σ = 1.0 φ (b), and σ = 1.5 φ (c).  Numbers on curves indicate percentiles.  Note that the bottom 
plot (c) covers one more log cycle of sample size than plots a and b (Reprinted from Ferguson and Paola 
1997, by permission of John Wiley and Sons, Ltd.).  The numbers on the bottom of the plots indicate 
sample-mass values in kg for 101, 102, 103, 104, 105, and 106 V/V50 for various sizes of D50. 
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        (kg) 
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If the error around the D50 is of concern, the last term of Eq. 5.63 can be omitted since the 
numerical value of Zp becomes 0. 
 

Example 5.17: 
For a deposit that can be assumed to approach a normal 
distribution and has a sorting of s = 1.2, the relative sample 
volume Vg/V50 required for estimating the D95 particle size to 
within a standard error of ±0.15 φ-units is (Eq. 5.62) is 
 

  
Vg

V50
 = 10(1.4 +4.2 log (1.2) + 0.9 ·  1.2 ·  1.645 - 2 log (0.15 ))      

      = 10(1.4+0.33 +1.78 - (-1.65)) = 105.16 = 144,544. 
 

If the bed material D95 particle size is 200 mm, the D50 particle 
size can be computed from Fig. 2.19, or Eqs. 5.58 and 5.59 and is 
50.9 mm.  The absolute sample volume Vs can then be computed 
from 
 
  Vs = 144,544 ·  (π/6) ·  D50

3 = 144,544 ·  69.05 cm3  
   = 9,980,494 cm3  ≈ 10 m3. 
 
Multiplication by particle density ρs =2650 kg/m3 provides the 
sample mass  
 
  ms = 10 m3 ·  2650 kg/m3 = 26,500 kg  = 26.5 metric tons.  
 
Dividing by a bulk density of 1.5 kg/m3 for shoveled gravel, 
sample bulk volume is 17.7 m3 (approximately the volume of a 
small office).  

 
Relative sample volume in terms of V/V50 for sample precision of ±0.1, ±0.15, and ±0.2 φ 
standard errors was computed with Eq. 5.63 and plotted versus the sediment sorting for 
various percentiles between D50 and D99 in Figs. 5.22 a -c.  The graphs indicate that 
relative sample volume, and thus sample mass, strongly increases with sediment sorting 
and with an increase in the percentile size being addressed.  Because the parent 
distribution was Gaussian in terms of φ-units, sample mass for a preset error and sorting 
are symmetrically distributed around the mean, and thus identical for paired percentiles 
such as the D10 and the D90. 
 
Fig. 5.22 is used similar to Fig. 5.20.  The first step is to select the plot with the 
appropriate error (plot a, b, or c).  If, for example, the task is to estimate the sample size 
necessary to remain below an absolute error of ±0.2 φ around the D75 in a gravel bed with 
a standard deviation of s = 1.5 φ, select Fig. 5.22 a.  A relative sample volume of V/V50 = 
12,000 is obtained from the graph for D75 in Fig. 5.22 a.  If the bed-material D50 particle 
size is 64 mm, the absolute sample mass may be read on the right side of the plot as 1.2 ·  
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36.4 t = 43.5 metric tons.  This example is somewhat extreme because the accurate 
determination of the D95 subsurface particle-size in gravel-bed streams is usually not the 
task of volumetric sampling.  Sample mass is orders of magnitude smaller if the D50 is the 
percentile of interest, and if the bed-material is better sorted.  A relative sample volume of 
V/V50 = 2,500 suffices for estimating the D50 to within an absolute error of ±0.2 φ if the 
bed material sorting is 1φ.  For a D50 particle size of 22.6 mm, sample mass on the right 
side of the plot can be read as 2.5 ·  16 kg = 40 kg. 
 
The user may be frequently surprised by the large sample sizes necessary for volumetric 
samples in coarse gravel and cobble-bed streams.  Sample masses larger than a few 100 kg 
are usually not feasible to collect in mountain streams.  It may become necessary to reduce 
the tolerable error for the study, or to restrict precision requirements to central percentiles. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
        
 
 
 
 
 
 
 
 
 
Fig. 5.22 a-c:  Relative sample volume V/V50 as a function of sediment sorting for various percentiles 
between D50 and D99 for specified standard errors of ± 0.1 φ-units (b),  ± 0.15 φ-units (c), and of ± 0.2 φ-
units (d).  Absolute sample mass is a multiple of the volume V50 of the median-sized particle.  The 0.1, 1, 
and 10% sample-mass criteria by Church et al. (1987) are included for comparison.   (Modified from 
Ferguson and Paola (1997), by permission of John Wiley and Sons, Ltd.).  The numbers on the right side of 
the plots indicate sample mass values in kg and metric tons for 102, 103, 104, 105 , 106, and 107 V/V50 or  
various sizes of D50.                 (continued on next page) 
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The widely used sample-mass criteria by Church et al. (1987), i.e., the mass of a particle 
of the Dmax size comprises 0.1, 1, and 10% of the sample mass (Fig. 5.14, Section 5.4.1.1) 
are plotted in Fig. 5.22 for comparison.  The 1% criterion (Dmax <1% of sample mass) is 
sufficient to determine the D84 and all smaller percentiles with an absolute error of ±0.3 φ-
units in bed material with a sorting coefficient between 1 and 2.  In fact, the sample 
requirement could be an order of magnitude or two less than the 1% criterion for 
determining the D50 particle size to within an acceptable absolute error of ±0.3 φ-units.  
However, the 0.1 % criterion needs to be applied for large percentiles > D84, or if more 
stringent error criteria are used. 
 
 
5.4.4  Comparison of error curves for low, central, and higher percentiles  

The general shape of the error curve, i.e., the relationship between precision and sample 
size  e = f (1/ n) is similar for all percentiles, irrespective of the manner in which the 
error was computed, and irrespective of any assumptions made about the parent 
distribution.  However, sampling error is not automatically smallest for the smallest 
percentile (e.g., the D5), but is controlled by the way in which the sampling error was 
computed.  The error can be lowest for either the D5, D50, or the D95 within a specified 
gravel population depending on whether the error was computed:  
 
• as absolute or percent error, 
• in terms of mm or φ-units, and 
• from an assumed symmetrical, or asymmetrical underlying size distribution. 
 
Consequently, comparisons of errors around different percentiles need to specify exactly 
how the error was computed and which assumptions were made about the underlying 
distributions. 
 
 
5.4.4.1  Symmetrical parent distributions 

Absolute error in units of φφφφ and mm  
In symmetrical, unskewed parent distributions, absolute errors in φ-units for a given 
sample size are paired around the mean.  Thus, error curves are identical for the φ5 and φ95 
percentiles, and the φ16 and φ84 percentiles.  The errors are highest for the distribution 
tails, i.e., the φ5 and φ95 percentiles, and lowest for the φ50.  The error curves for a 
theoretical Gaussian distribution provided by Rice and Church (1996b) in Fig. 5.10 are an 
example for the systematical distribution of errors.  If the same degree of precision is 
desired for each percentile, a smaller sample size suffices to determine the error around 
the mean or some central percentile than for the fine or the coarse tail.  If the error analysis 
is performed in mm-units, the absolute mm-errors are highest around high percentiles 
(e.g., D95), and lowest around small percentiles (D5).  The error curves by Hogan et al. 
(1993) in Fig. 5.17 are an example.  The relative positions of error curves are sketched for 
particle sizes in φ- and mm-units, absolute and relative errors, for symmetrical, unskewed, 
as well as for asymmetrical, skewed distributions in Fig. 5.23.   
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A: Symmetrical parent distribution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B: Parent distribution skewed towards a fine tail 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 5.23:  Comparison of error curves around the D5, D50, and D95 percentile for different computations of 
error (absolute, percent, φ -units and mm).  All computations are for the same gravel deposit.  A normal and 
symmetrical parent distribution was assumed in (A), and an asymmetrical distribution positively skewed 
towards a tail of fines was assumed in (B). 
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Percent error in units of φφφφ and mm 
The percent error around percentiles in φ-units is lowest for the φ50, higher for the φ95, and 
significantly higher for the φ5.  The relative error around percentiles in mm-units is paired, 
with the lowest error for the D50, and equally high errors for the D5 and D95 (Fig. 5.23). 
 
 
5.4.4.2  Asymmetrical parent distributions skewed towards a fine tail 

Absolute error in units of φφφφ and mm 
Particle-size distributions, even when analyzed in φ-units, are rarely symmetrical in coarse 
gravel-bed streams, but are often positively skewed towards a tail of fine particles.  The 
position of the error curves for the φ5, φ 50, and φ 95 is different for symmetrical and 
asymmetrical parent distributions. 
 
For asymmetrical parent distributions that are skewed towards a fine tail, absolute errors 
around percentiles in φ-units for a given sample size are highest around the φ5, lowest for 
the φ50, and only slightly higher around the φ95 than around the φ50.  The error curves 
provided by Rice and Church (1996b) for the bootstrap analysis in Fig. 5.11 are an 
example.  If the same degree of precision is desired for each percentile, nearly the same 
sample size that suffices to determine the D50 of the distribution is sufficient for the D95 as 
well.  However, a huge sample mass is required to estimate the D5 to within the same 
precision.  An error analysis in mm-units results in absolute mm-errors being highest 
around the D95, and lowest around the D5.  See the error curves by Hogan et al. (1993) in 
Figs. 5.17 a and b for an example.  Fig. 5.23 b compares error curves for absolute and 
relative errors in φ and mm for skewed distributions.  The position of the φ5 and φ95 curves 
are switched if the distributions are negatively skewed towards a tail of coarse particles 
(e.g., beds comprising mostly sand and a few larger gravel particles). 
 
 
Percent error for units in φφφφ and mm 
The percent error around percentiles in φ-units is approximately equally low for the D50 
and the D95, and highest for the D5.  The relative error around percentiles in mm-units is 
lowest for the D50, higher for the D95, and highest for the D5 (Fig. 5.23 b). 
 
 
 
 
 
 
 
 
 
 
 
 


