5. Sample size

One of the most common objectives of bed-material sampling is the characterization of
the distribution of particle sizes present in agiven stream channel. Theideal way to
describe the particle-size distribution of a streambed would be to count and measure every
particle within the reach. Thisis essentially impossible, and therefore one must rely on
taking samples of the bed material and use the sampl e results to estimate the general
characteristics of the sampling area.

The question is, how many particles or how much sediment should be sampled? The
answer is a compromise between sampling precision and sampling effort. Asthe number
of particles collected increases, the precision with which the bed material can be described
increases aswell. The precision obtained in the sample must be sufficient to measure the
effects being investigated by the project goals (e.g., Isthere a significant increase or
decrease in streambed fines? Has the armor layer changed, etc.?). If the sampling
program is not sufficient to meet these goals, the validity of the field results must be called
into question. As the sample sizes collected increase, the costs and effort associated with
the field work also increase and will eventually become prohibitively large. Another
factor to consider is that the increased precision obtained by collecting ever larger sample
sizes does not follow alinear relationship. The benefit obtained from collecting an
additional 10 particlesis much greater when the existing sample sizeis 20 as opposed to
when the sample size is 200.

The characteristics of the bed material being sampled is also an important factor in
determining sample size. When thereislittle variability in the material, i.e., when the bed
iswell sorted , smaller samples will sufficeto precisely describe the bed. With greater
variability, i.e., poorer sorting, the sample sizes must be increased to obtain the same
precision. Similarly, asmaller sample size sufficesif the bed is homogeneous, which
means that the particle-size distribution is more or less the same throughout the sampling
area.

Because sampl e size determines both the cost and the benefits of field measurements,
careful attention should be paid to this aspect before going out into the field. The
minimum sample size necessary to ensure a specific sampling precision should be
calculated beforehand and then be evaluated for cost requirements. However, in order to
estimate the minimum sample size for some preset precision, one must have at least an
approximate estimation of the bed-material standard deviation or sorting —which in itself
requires sampling. This circularity may be resolved by performing a pilot data-collection
study or through estimation based on experience with streams that have bed-material
characteristics similar to the stream being studied.
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Various methods for computing a relationship between sample size and precision for bed-
material samples are described in the literature. The methods fall into three groups:

* Empirical recommendations,
*  Computations based on an assumed normal distribution, and
» Computations that do not assume any underlying distribution type.

Older literature on sediment sampling often has empirical recommendations of sample
size that are based on the Do particle size and developed for particular bed-material
properties. These recommendations usually do not assign a certain level of precisionto a
certain sample size and are not generally applicable. More recent literature bases sample-
Size computation on an assumed normal distribution of the bed-material particle size.
These procedures are generally applicable if the assumptions of a normal distribution
holds, but the descriptions can be highly technical and difficult to understand without
background knowledge of statistics. Other sample-size recommendations do not assume
an underlying distribution type and are generally applicable. This document compilesa
variety of sample-size computations, explains their application, and compares the results.
This chapter provides the user with background information that assistsin selecting a
sample-size procedure suitable for a specific study objective.

Methods used to compute minimum sample size are different for number-based sampling
(Section 4.11 and 4.1.2), areal sampling (Section 4.1.3), and volume-based sampling
(Section 4.2). For this reason, sample-size computations are discussed separately for each
sampling method.

5.1 Factors affecting sample size

The computation of sample size is affected by a variety of factors which include:

» Assumptions made about the underlying distribution type of the bed-material particle-
size (approximately normal, log-normal, or no assumptions are made regarding the
distribution type (Section 2.1.4.3)) and these assumptions determine which statistics
need to be used;

» Bed-material characteristics:
- standard deviation s of the particle-size distribution (typically estimated by the
Inman sorting coefficient s or by the moment method Sgq),
- heterogeneity of bed material within the reach (variability among samples),
- limited parent population size (N) in relation to sample size (n) in asmall sampling
areq,

» Acceptable error of measurements which may relate to:

- absolute, percentage, or standard error,
- particlesizesin gor mm units,
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- the distribution mean or any percentiles (e.g., Ds, Dso, or Dgs), and
- be affected by the number of operatorsinvolved;

» Acceptable chance that the computed result is wrong
- expressed by a predetermined confidence level a;

» Bias(systematic deviation of sampling results from population characteristics) due to:
- unrepresentative particle selection (operator bias),
- unrepresentative sampling from heterogeneous deposits (sampling bias),
- unrepresentative presence of particles from the largest size class (statistical bias).

Assumptions made about the underlying distribution type

Assumptions made regarding the population distribution type of the bed material sampled
determine the kind of statistics used for sample-size computations. Traditionally, itis
assumed that unimodal, log-transformed bed-material particle-size distributions derived
from a sufficiently large sample size approach a normal distribution in ¢-units. Assuming
an approximately normal distribution has the advantage that commonly available sample-
Size statistics can be used which are based on normal distributions (Section 5.2.2). Bed-
material samples, however, rarely have atrue normal or Gaussian distribution (Kothyari
1995). The user needs to evaluate whether the goodness-of-fit to a Gaussian distribution
is close enough to warrant the assumption of approximate normality (Section 2.1.4.3).
Church et al. (1987) and Rice and Church (1996b) cautioned that true Gaussian
distributions for log-transformed particle-size distributions are unlikely for gravel-bed
streams. The user could either use an empirical approach to determine a “sufficient”
sample size, or use a bootstrap (resampling) approach (Section 5.2.3.4) that provides a
relation between sample size and error. Sample size — error relations computed from a
bootstrap approach are independent of an underlying distribution type and may differ
substantialy from similar relations computed using Gaussian-based statistics.

Bed-material characteristics

For a specified accuracy and precision, sample size n should increase as the variability of
the parent population increases, i.e., as the sorting of the bed material becomes poorer or
the standard deviation becomeslarger. If the bed-material composition is spatially
heterogeneous and varies markedly between different locations of the sampling reach,
samples collected from the reaches are likely to be highly variable aswell. Thelarge
standard deviation between individual samples necessitates collecting a large number of
samples for adesired accuracy and precision. Small mountain streams with large particles
might have only alimited number of particles available for sampling. In this situation, the
population size N is limited in relation to sample sizen. Thislimitation takes a statistical
effect as N becomes | ess than about 100 times the necessary number of particles n and
causes a decrease in the sample size necessary for a specific precision. Bed-material
characteristics further affect the relationship between sample size and accuracy when
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operators tend to favor mid-size particles while neglecting fines and large cobblesin
poorly sorted bed material.

Accuracy and precision

Usually when samples are taken, the user wants to know the accuracy and precision of a
sample. Accuracy refersthe size of the deviations from the true value. The accuracy of
bed-material sampling may never be known because the true distribution of bed-material
particlesin the reach could only be determined by collecting every particle in the reach.
Using the example of target practice (Fig. 5.1), with the target being the representative
description of the particle-size distribution of a deposit, accuracy is the closeness of the
shots to the target center (Fig. 5.1 d). Precision refersto the size of deviations from the
mean value obtained by repeated applications of the sampling procedure, i.e., the ability to
repeatedly hit the same area (hopefully the center) of the target (Fig. 5.1c and d).

a. * b.
High bias + low precision = low accuracy Low bias + low precision = low accuracy
C. d.

High bias + high precision = low accuracy  Low bias + high precision = high accuracy

Fig. 5.1: Patterns of shots at atarget. (Redrawn from Gilbert (1987), by permission of John Wiley and
Sons, Ltd.).
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Precision describes how dispersed or tightly bunched the shots are (Fig. 5.1 aand b) and
indicates the inter-sample variability (i.e., standard deviation between samples). Precision
is used to quantify how many repeated samples are needed to arrive at a stable sampling
result. Accuracy and precision are interrelated. Samples of low precision also have alow
accuracy (Fig. 5.1 aand b). Samples of high precision are not necessarily accurate if all
samples are off set from the true result by some constant amount, i.e., by bias. Precise
samples can only be accurate in the absence of bias (Fig. 5.1 d).

Bias

Biasisthe systematic deviation of a sampling result from the true population characteristics
(Fig. 5.1 aand c). Bias can stem from avariety of sources. Operator bias results when the
operator selects mid-sized, “handy” particles and excludes “inconveniently” small, or large
particles, or particles form poorly accessible streambed locations. Operator bias can be
ameliorated by training and using an appropriate sampling methodology (Sections 4.1.1.3 —
4.1.1.6, 5.2.2.8), but since it cannot be eliminated, operator bias increases with the number
of operators and with sample size. Satistical biasis caused by sampling too few particles
from the largest size class and is ameliorated by alarge sample size (Sections 5.4.1.1,
5.4.1.3,5.4.1.4). Sampling bias means to sample particle distributions not representative of
the parent distribution in the reach and may result from sampling spatially heterogeneous
beds in an unrepresentative way. This can be avoided by using spatially segregated
sampling schemes (Sections 6.3 and 6.5).

5.2 Pebble counts: number-based sample-size recommendations

5.2.1 General form of number-based sample-size equations

For approximately Gaussian shaped particle-size distributions that are not very skewed,
mean and median are similar. In this case, a one-step procedure can be applied to estimate
the sample size necessary to obtain a desired precision of the sample mean particle size ¢,
or Dy,. The general form of a sample-size equation is:

= g%ﬁ (5.1)

nisthe sample size, i.e., the number of particles to be sampled, t is a statistical numerical
value, o isthe population standard deviation, and e is the acceptable error around the
mean. These termswill be described in more detail.

Standard deviation
The population standard deviation o describes how wide the range of valuesiswithin the
population, specifically the range of values comprised within the central 68% of all data
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(Section 2.1.5.4). However, the population standard deviation is rarely known, and must
therefore be substituted by an estimate of standard deviation that is derived from the
sample. ¢ may be estimated from the sample standard deviation s = \/? where s isthe
sample variance. The sample standard deviation sis computed from the absolute or
percent frequencies of the particle number frequency-distribution

S:—\/? :/\/ nfll:il N (%I - %)2 (See Eq. 256)

where n isthe total number of particles (or 100 %), k is the number of size classes, n; is
the number of particles per size class (or the percentage), @ isthe center of classin ¢
units of theith size class, and @, is the arithmetic mean particle sizein @-units. This
computation of standard deviation is also called the “second moment” method. The
expression becomes complicated for grouped data such as particle-size distributions (see
Eg. 2.58) and is therefore commonly substituted by the Inman sorting coefficient s that
describes the range of particle sizes contained within the central 68% of al data (Eq. 2.46,
Section 2.1.5.4).

s = L@“—Z@I (see Eq. 2.46)

Numerical values of standard deviation and the Inman sorting coefficient are identical for
true Gaussian distributions, but deviate somewhat if the particle-size distribution is not
exactly normal (see Table 2.14).

The sample standard deviation or the Inman sorting coefficient is usually not known
before the sampling project starts, and need to be obtained from apilot study. A
preliminary value of sample size is then computed for a preset precision using the
estimated value of s or 5 and a sample of the computed size is collected. The standard
deviation sor 5 is computed for the collected sample, and sample sizeisrecalculated. If
sampl e sizes based on the pilot study and on the actual sample are different, the process of
computing and comparing sample-size requirements needs to be repeated until the
difference in required and collected sample sizeisinsignificant.

Error

The error around the mean can be expressed in absolute or in percentage terms. The user
may specify an acceptable error for the sample mean, e.g., £0.15 garound the mean in ¢
units (@y) or £10% around the mean in mm (D,,), and compute the sample size necessary
to attain thisgoal. Similarly, the error associated with a given sample size may be

246



calculated by solving sample-size equations for the error e. The inverse square relation
between n and e is such that afourfold increase in sample size reduces the error by half
whereas alowing for twice the error reduces the sample size by afactor of 4. Other
possibilities to express sampling errors include standard errors and errors around
percentilesin terms of mm, ¢, % or in terms of a percentile range (Section 5.2.3).

Sample statistics
Thetermtin Eq. 5.1 isastatistical numerical value known as Student’st. For bed-
material sampling studies, Student’st is preferred over other statistics because the

population gis usually not known and approximated by s, the sample standard deviation.
Thet-variate cuts off (100 a/2)% of the upper tail of at-distribution with n-1 degrees of

freedom. The numerical value of Student’ st depends on two parameters: confidence

level: and sample size. The confidence level a describes the certainty (or the percent of
all cases) in which a specified precision will be obtained by sampling the required sample
size. A vauetypicaly chosenis a = 0.05 which pertains to a 95% confidence level which

means that the particle size of interest will be within a predetermined limit in 95% of al
cases. Table 5.1 showsthe relation between percent confidence, a-levels, and the
resulting value for ty.4/2, n.1 for large n. Note that for large n, values of ty.g2 n.1 are
identical

Table 5.1: Relation between precision (expressed in terms of confidence levels, or percent
chance that error is exceeded), the corresponding a-levels, and values of ty g, or Z;. o, for

n — oo,
% confidence % chance a-level Percentile of Distance betw. median
that error is that error is normal and percentilein terms
not exceeded exceeded distribution of standard deviation
1-a (%) a% a 1-a/2 t1-0/2, 1 00 OF Za-gri2
0 100 1.0 0.5 0.0

30 70 0.7 0.65 0.385

50 50 0.5 0.75 0.675

68.2 318 0.318 0.841 1.000

80 20 0.20 0.90 1.280

85 15 0.15 0.925 1.440

90 10 0.1 0.95 1.645

91 9 0.09 0.955 1.695

92 8 0.08 0.96 1.750

93 7 0.07 0.965 1.810

94 6 0.06 0.97 1.880

95 5 0.05 0.975 1.960

98 2 0.02 0.99 2.327

99 1 0.01 0.995 2.576

99.5 0.5 0.005 0.9975 2.810

99.9 0.1 0.001 0.9995 3.270

99.96 0.04 0.0004 0.9998 3.490

99.99 0.01 0.0001 0.99995 3.603
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to the values of Z;.4» which isthe standard normal deviate that cuts off (100 a/2)% of the
upper tail of a standard normal distribution. Values of Z;.,» are used instead of t1.4/2 -1 if
the population standard deviation o is known and nislarger than 100.

For a specified confidence level, the relationship between t and sample size nisnot linear.
For sample size larger than 200, t takes a constant value of 1.96 for a 95% confidence

level (for a = 0.05, t1-g/2 n-1= tog7s, n1 = 1.96). But for small sample sizes, t changes
significantly with sasmple size. For asample size of 5 which alows n-1 = 4 degrees of
freedom, to 75 n-1 = 2.776, and increasesto 12.7 for asample size of 2. Table 5.2 provides
t-values for various degrees of freedom which are equal to n-1, and a 95% confidence

level for which ty.q2 = tog7s. Vauesfor t for other confidence levels and samples sizes can
be obtained from statistical tables available in standard statistics books (e.g., Gilbert
1987).

Table5.2: Vauesfor Student’st for various degrees of freedom (n-1) and a 95% confidence level (a =
0.05) with ty.4 = togrs

1 R N1 tigona N1 tigmna N1 tigmna N1 tigmna
1 12.706 11 2.201 21 2.080 35 2.032 85 1.991
2 4.303 12 2.179 22 2.074 40 2.021 90 1.990
3 3.182 13 2.160 23 2.069 45 2.015 95 1.988
4 2.776 14 2.145 24 2.064 50 2.010 100 1.987
5 2571 15 2.131 25 2.060 55 2.005 105 1.985
6 2.447 16 2.120 26 2.056 60 2.000 110 1.983
7 2.365 17 2.110 27 2.052 65 1.998 115 1.981
8 2.306 18 2.101 28 2.048 70 1.996 120 1.980
9 2.262 19 2.093 29 2.045 75 1.995

10 2.226 20 2.086 30 2.042 80 1.993 [ 1.96

Sample size

The necessary sample size n may have to be computed iteratively if nis smaller than
approximately 200 because the value of t depends on sample size (Table 5.2). Thisis not
aconcern for pebble counts which comprise more than 200 particles. However, when
using the general sample-size equation Eqg. 5.1 to compute the number of subsamples
required for a specified precision (two-stage sampling, Section 5.2.3.1), n may be smaller
than 10, and t varies pronouncedly with nwhen nissmall (Table 5.1).

The calculated sample size refers to the confidence level specified by thet value. If at-
value for a 95% confidence level isused, i.e., ti-q/2, n-1= togrs, n-1, @aSample sizeis
computed for which there is a 95% chance that the absolute difference (positive or
negative) between the estimated sample mean and the true population mean is less than
the specified acceptable error.
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The computed sample size is usually rounded to the next higher integer value, because
sample sizes are whole numbers, not decimals. Either 7 or 8 samples are collected, but
not 7.3. Itisleft at the user’s discretion of whether a sample size of 13.1 isrounded to 13
or 14. Rounding is denoted by the symbol [Jin this document.

5.2.2 Prespecified error around the mean

The variablesin the right-hand term of the general sample-size equation (Eg. 5.1) can be
dlightly altered, so that Eq. 5.1 can be used to compute the sample size around the mean
for avariety of different applications. Sample errors around the mean may be specified as
absolute error eqm in @-units, as percent error eypm around the mean in mm, and as
percent error ey,gm around the mean in @-units (Sections 5.2.2.1 —5.2.2.3). The confidence
level may be changed, and consequently the numerical value of t. In al example
computations provided in this section, sample sizes are computed for a 95% confidence
level (a = 0.05), avalue that is commonly selected. However, some study objectives may
specify adifferent confidence level. A normal distribution of bed-material is assumed
when using Eqg. 5.1, but aslight variation of the error term makes it possible to use the
equation for logarithmically distributed samples (Section 5.2.2.4). Another assumption
for Eg. 5.1 isan unlimited supply of particlesto be sampled. Again, aslight modification
of Eq. 5.1 alowsthe user to compute sample size when the number of particles that may
be sampled islimited, for example, in asmall sampling area (Section 5.2.2.5). All
variations of EQ. 5.1 used in Section 5.2.2.1t0 5.2.2.5 arelisted in Table 5.5 in Section
5.2.2.6. Example computations are performed with all equations introduced in Sections
5.2.2.1 - 5.2.2.5 for the same particle-size distributions so that computed samples sizes
may be compared (Section 5.2.2.6).

5.2.2.1 Absolute error around the mean in @units

The sample size for a specified absolute error around the mean particle size of asamplein
terms of g-units (e.9., €:gm = 0.2 @-units) is computed from:

_ 1-a/2'n-1_
=z of 52)

n isthe sample size for which thereisasmall (e.g., 5%) chance only (a = 0.05) that the
absolute difference (positive or negative) between the estimated sample mean and the true
population mean is larger than or equal to the acceptable absolute error exgm.

Example 5.1:
Given isthe particle-size distribution from Table 2.3 and Fig. 2.12

in Section 2.1.4.1:
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Dgs =104 mm (s =-6.70 S = |- @ell2=194
Dsp= 32 mm P50 = -5.00
Dis= 7 mm Qs =-2.82
Dy =27.2 mm @n =-4.76

If the user has no idea about the approximate value of n, the t-
value for an indefinitely large samplesizen - o isused in afirst
trial. For a = 0.05, tog7s, -1 = 1.96, and sample size n for an
acceptable absolute error e = £0.2 @-units becomes:

2
9%
n= %1@ - 1.94@ = 361.5 1362,

If the acceptable error isincreased to e.qn = +0.5 ¢, n becomes 57.8,
rounded up to 58. In this case, at-value of 1.96 would not be
appropriate and computations need to be repeated with at-value for
n-1=>57, whichiscloseto 2.00 (Table 5.2). Using tyogrs n1 = 2.00,
n=60.2, and isrounded to 61. This computed nisamost similar to
the n for which the t-value was selected. Usually, about three
iterations are required to reach this convergence.

Eq. 5.2 indicates that a pebble count in a poorly sorted streambed (s = 2) requires almost
400 particles for a 95% certainty that the mean of the sample is by no more than 0.2 ¢
units different from the population mean. An error of £0.2 ¢ means that in 95% of all
samples, the sampled mean can be expected to be within the range of -4.56 to -4.96 ¢
(i.e., between 23.6 and 31.1 mm) of the true mean of -4.76 ¢( i.e., 27.2 mm).

Fig. 5.2 shows relations between sample size and the absolute error exqm in @units around
the mean using t-statistics and a 95% confidence level for samples with various sorting
coefficients. These curves may be used to estimate the number of particles required for a
desired precision in pebble counts in streams with different sorting coefficients. Sample
sizein Fig. 5.2 was calculated iteratively to account for the variation of ti./2 n-1 = to.975,n1
with n.

5.2.2.2 Percent error around the mean in mm

Eq. 5.2 can be adjusted to apply to particle sizesin mm (ISO 1992). In this case, sorting is
expressed as the logarithmic geometric standard deviation sy« (See Eq. 2.54, Sect.
2.1.5.4), and the error is expressed in terms of the log of the percentage error around the
Dminmm added to 1.

_H tigzn:
=gtiieny e 9
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Fig. 5.2: Relation between sample size n and absolute error e.,m around the mean in ¢@-units based on
Student’ s t-values for approximately normal distributed bed material for various sorting coefficients, and a
=0.05. Sample size n was computed iteratively to adjust for the variability of tygzs n.y With sample size.

A pilot study estimates Dgs = 104 mm, and D1g =7 mm. The
logarithmic geometric standard deviation (Sect. 2.1.5.4) is
Sysq = 0.5log (Dg4/D16) = 0.586.

The absolute error of £0.2 ¢ in EQ. 5.2 corresponds approximately
to a£13.9 % error around the Dy, of 27.2 mm (see below) which
was chosen as the tolerable error. Inlog units, an error of £13.9 %
is expressed aslog (1+0.139). niscomputed by solving the
equation:

1.96
n= 091139 0.586% =415.7 1416

Comparison of absolute error in gand percent error in mm

Sample-size computationsin gunits and in the corresponding units of mm are not truly
equivalent, because an error that is symmetrical around amean in gunitsis not
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symmetrical around the mean in mm, and vice versa. For example, an absolute error of
+0.2 @units around a mean particle size of @, =-5.0 gencompasses the range of -4.8 to -
5.2 ¢. Theequivalent rangein mm s 27.9 to 36.8. The percent difference between 27.9
mm and the mean particles size Dy, of 32 mmis(27.9 - 32) - 100/32 = -12.8%, whereas
the percent difference between 36.8 mm and the D, of 32 mmis (37.7 - 32) - 100/32
=15.0%. Thisasymmetry may be negligible for relatively small errors, but becomes quite
pronounced as the absolute error in @increases. An error of £1.0 @around a @y, of -5.0 @
(=percentage error of 20%) encompasses the size range of -4 to -6 @that is equivalent to
the range of 16 to 64 mm, and describes an error of -50 to +100% around the D, of 32
mm (see Fig. 5.9 in Section 5.2.3.4).

5.2.2.3 Percent error around the mean in @units

The percent error eygm around the mean in @-units is the absolute error divided by the
mean and computed from eyym = €xem/ @n. Sample size for a percent error ey,ym with a 5%
chance (a =0.05) that the difference between sample @, and population mean @y is
smaller than the prespecified percent error may be computed from

n= ﬁl—a/zn—l . iﬁ — ﬁ%ﬂ . Cvg (54)
€6gm @n ©6gm

Note that sample standard deviation (or sediment sorting) is divided by @, aswell. @y
defines the coefficient of variation CV, also termed the relative standard deviation. Using
the Inman sorting coefficient s to describe the standard deviation s, CV may be computed
from:

|@4 - ﬂGI
2 -
@n @n 2¢mn

Estimates of @4, @0, and @ may be obtained from a pilot study of a 100-particle pebble
count. Table 5.3 presents coefficients of variation (CV) for bed material of different
sorting coefficients and different mean particle sizes.

Example 5.3:
From Example 5.1, 5 istaken as 1.94, and sample @, is-4.76 @

An absolute error of £0.2 @-units (Example 5.1) becomes a percent
error eygm = £0.2/-4.76 = 0.042 or 4.2%. niscomputed from:

L9 1.94
N=19042 " -4.76

g = (46.67 - 0.408)° =361.7 1362
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The sample size calculated by EqQ. 5.4 is equal to the sample size
calculated by Eq. 5.2.

Table5.3: Valuesof CV for poorly sorted bed material with various
sorting coefficients and various mean particle sizes

Dn O Sorting coefficient 5

(mm) (@-units) 1.0 15 20
16 -4.0 0.25 0.38 0.50
22.6 -4.5 0.22 0.33 0.44
32 -5.0 0.20 0.30 0.40
45 -55 0.18 0.27 0.36
64 -6.0 0.17 0.25 0.33

5.2.2.4 Percent error in @and mm for approximate lognormal distributions

Although particle-size distributions in @ units tend to roughly approach normal
distributions, it is conceivable that a particular particle-size distribution might obtain a
better fit to alog-normal distribution than a normal distribution. In this case, Eq. 5.5 may
be used to estimate the sample size for a prespecified percent error around the mean
(Gilbert 1987).

2 2
_Uigoni- S

"= (et (55)

Example 5.4:
In accordance to Example 5.3, an absolute error of £0.2 @-units

around the mean of -4.76 @ becomes a percent error of 0.042 or 4.2
%. Sample sizeis computed from:

_1.96°- 1.94° 384. 376
N="n©042+1) = 0041

= 351.4 1352

A similar form of Equation 5.5 may be applied if particle sizesin mm units approached a
lognormal distribution. The graphic geometric standard deviation sy = (Dsa/D16)° is
used in this case and has the value of 3.85 for Dgy = 104, and D1 = 7 mm (EQ. 2.54 in
Section 2.1.5.4). A percentage error of 0.042 (4.2%) in terms of ¢@-units (see above) is
approximately similar to a percent error of 13.9% in mm-units for the particle-size
distribution in the example.
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2 2
_ t 1-a/2n-1 * Sgsg
In (e%pnit1)

(5.6)

Example 5.5:

_1.96°- 385" 3.84- 14.83
M="n(0139+1) = 0129

= 438.9 1439

5.2.2.5 Limited number of particles available for sampling (N # o)

When sampling small geomorphological units (e.g., bars and riffles), or sedimentary units
(areas of homogeneous bed-material composition) there may be a shortage of particles that
can be sampled. The number of particles present on the particular geomorphological or
sedimentary unit (the population size N) might not be much larger, or even smaller than
the sample size n computed with Egs. 5.2 - 5.6. In this case, sample size n needs to be
adjusted for limited population size N. Thisis accomplished by dividing the equation for
unlimited sample size by 1 + the quotient of the original sample-size equation and
population size N. Equations that include aterm for limited population size N provide
virtually the same results as equations for unlimited N, if N exceeds n by a factor of 1000
or more. If N =100 n, nisreduced by less than 1% compared to the n computed without
adjustment for N, and if N = 10 n, n reduces by 10%. Thus, as N decreases, sample size n
also decreases.

Absolute error around mean in @units
For a prespecified absolute error e.qm in @-units, and alimited number of particles N in the
target population available for sampling, n is computed from (Gilbert 1987)

(5.7)

Example 5.6:

A grid count isdone on asmall bar with an area A, =2 m [2.6 m
=5.2m% Almost al surface particles are within the size range of
35 - 45 mm. If the mean particle b-axis sizeis 45 mm, and
particles are mostly lipsoid (a-axis = 1.5 b-axis) and flat lying,
the area covered by one particle A, can be approximated by A,= 1t
(0.045/2 - 0.068/2) = 0.0024 m”. Thus, the number of surface
particles on this bar is estimated to be N = Ay/A, = 2164.
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96
- 2 194@ -
= . = 1+(361/2164
1+fE2. 1.94%/2164@ ( )

Equation 5.2 (for unlimited population size) produced a sample
size of 362. Because of the limited number of particlesin the
population, Eq. 5.7 calculates alower sample size of n=310. The
effect of population size N on sample size becomes negligible as N
exceeds 100 n (ca. 50,000), and nincreasesto 359. For the
example above, this occurs as the sampling area reaches 119 m?
(Table 5.4).

=309.4 [J310

Table5.4: Example of change in sample size n with a change in population size N.

N Sampling Area(m?)  Side length for square (m) n
100 0.24 0.5 78
500 12 11 210
1,000 24 15 265
5,000 12 35 337
10,000 24 5 349
50,000 119 11 359
100,000 238 15 360
500,000 1190 35 361

Percentage error around the mean in mm
If the adjustment for limited population size is applied to Eq. 5.3, the sample size required
for a specified percentage error around the Dy, (in mm) is computed from:

1-a/2;n-1 ° | 3
= QOQ (1+eyom)
1-a/2;n-1 ° |
1+ gog (1+9%Dm)§ IN

(5.8)

Percent error around the mean in @-units
Similar to Eq. 5.4, sample size for a specified percent error around the mean in alimited

population size and an approximately normal distribution of particle sizesin @-unitsis
estimated from:
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n= (5.9)

1- a/2 n- 1
e)/oqrn

1+

1- a/2 n- 1 g
e%)(ﬂ'n

Percent error around the mean in g@-units, approximate lognormal distribution assumed
Parallel to Eq. 5.5, sample size for a specified percent error around the mean of an
approximately lognormal distribution of particle sizesin ¢-units and alimited population
Sizeis obtained from:

1:21—67/2;n—1 ' 52

2
1 (@) + FE25 S

Percent error around the mean in mm, approximate lognormal distribution assumed
Asin Eg. 5.6, sample size for a specified percent error around the mean of an
approximately lognormal distribution of particle sizesin mm and alimited population size
is obtained from:

n= (5.10)

2
n= Coapny & P (5.11)
[In (eon+1)] + 5=

5.2.2.6 Comparison between sample-size equations for errors around the mean

Equations introduced in this section are summarized in Table 5.5. When applied to the
same particle-size distribution, all equations compute sample sizes between 352 to 439 for
an absolute error around the mean of £0.2 ¢, which is equivalent to a4.2 % error (around
the mean in ¢), and approximately equal to an error of +13.9 % around the mean in mm.
To compare the results of the five equations (5.2 to 5.6) over awide range of errors,
sample sizes were computed for errors between +0.1 and 1.0 ¢ and plotted in Fig. 5.3.
Egs. 5.2 (e:gm) and 5.3 (exem) Yield identical relations between sample size and error,
while sample size computed for a corresponding percent error in mm units, (€ypm) (EQ.
5.3) isdlightly higher. The sample size — error relations have a somewhat different shape
if the particle-size distribution is assumed to approach alognormal distribution instead of
anormal one.
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Table 5.5: Variations of the standard sample-size equation for computing absolute or percent errors around
the mean particle-sizein mm (D)) or @-units (@) for approximately normal and lognormal distributions, and
for unlimited and limited population particle numbers. Numbers in parentheses refer to equation numbersin

the document.
Particle Particle-size Error around Unlimited Limited
size distribution the mean population Size population Size
units type (N> 100 n) (N<100n)
2
: Ao
approx. - s ' gm
absolute .5.2 .5.7
¢ lognormal Uergn U (69 5.2) 1+ 03 SEZ/ND (- 5.7)
[T gm 0
Ot S mot o m)%z
approx. t - Syw [] g (1+ep
mm lognormal percent [fog (1+ evom) (] (eg. 5.3) o 5 (eg. 5.8)
1+ %9 (1+eypm) /Nﬁ
2
ﬁ gt s
approx. Ot- s [&yom @l
t .54 .5.9
Q@ normal percen @%m . (nnlj (eq ) 1+ @ t . iEIZ/N':' (eq )
D]:b%qm % EI
approx. 2. g2 2. g2
¢ lognormal percent n(1+e (eq.5.5) 7 57 (€4.5.10)
w5 5 e
approx. Sy - 2 Syet 511
mm lognormal percent In (1+eypm) (eq. 5.6) eq. 5.11)

7 72— (
In (Lreon) + B2 =1

H

t = values for Student’st stetistic, = ty.4; n-1; § = INMan’s sorting coefficient; sy« = geometric standard
deviation, square-root approach; e.,» = absolute error around the mean particle-size computed in @-units. eypm
= percent error around the mean particle-size; ey,m = percent error around the mean particle-size computed in

@-units.
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Average percent error around mean in
0 0.07 014 021 028 0.35 043 050 0.58 0.66 0.75
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Absolute error around mean in @units

Sample size

0 21 4.2 6.3 84 105 126 147 168 189 210
Percent error around mean in @units

Fig. 5.3: Relation between sample size and error around the mean computed for the example particle-size
distribution (Dsp = 32 mm, s=1.94; Table 2.3, Fig, 2.12) with five sample-size equations (Eg. 5.2 — 5.6).
Equation numbers are indicated in brackets. The x-axis scale “ Absolute error around the mean in @-units’
refersto Egs. 5.2 and 5.4. The x-axis scale “Percent error around the mean in @-units’ refersto Eg. 5.5,
whereas the x-axis scale “ Average percent error around the mean in mm-units’ refersto Egs. 5.3 and 5.6.

5.2.2.7 Effect of bed-material sorting and error on sample size

The effects of bed-material sorting and acceptable error on sample-size requirements are
quite pronounced (Fig. 5.2). Bed-material sorting typically ranges between 0.5 (well
sorted lowland gravel-bed rivers) and 2.5 (poorly sorted headwater streams). Acceptable
errors typically range between 5 and 50%. The numerical value for Student’ st varies by
no more than 1% for sample sizes larger 25. Assume that awell sorted (s = 0.5) lowland
stream requires a sample size of 25 particles for an acceptable error around the mean.
Sample size for the same mean particle size and the same acceptable error increases by a
factor of 4 to 100 particlesin amoderate to poorly sorted streambed (s = 1), and again by
afactor of 4 to 400 particlesin apoorly to very poorly sorted (s = 2) mountain gravel-bed
stream. Similarly, for the same particle-size distribution, an increase of acceptable error
from 10, to 20, to 40% decreases the sample-size requirement from 400, to 100, to 25
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particles, respectively. Either adoubling in sorting, or halving of the acceptable error
leadsto afourfold increase in sample size. These numerical examples demonstrate that
statements of sample-size requirements cannot be taken out of context, but must be
evaluated in light of streambed sorting and the acceptable error.

5.2.2.8 Influence of multiple operators on sampling accuracy

None of the sample-size recommendations presented so far account for errorsintroduced
by operators. Operator errors may be attributed to two main factors: (1) incorrect
measurement of particle size (Section 2.1.3.6), and (2) biased particle selection among
operators (Section 4.1.1.3 —4.1.1.6). Both factors increase the variability of the sample
(i.e., standard deviation) and consequently increase the sample-size requirement or reduce
the accuracy. In contrast to the statistical error, the operator error becomes relatively more
important as sample size increases. Thisis because the statistical error decreases with
sample size, but operator error isthe same for all sample sizes (Hey and Thorne 1983).
Since sampling accuracy is comprised of the errors made by all operators involved,
sampling accuracy decreases as more operators are involved in the sampling.

Prompted by observed operator errors, Marcus et al. (1995) compared results of five
replicate samples each obtained by eight different operators at two different sites with five
replicate samples each from a single operator. They found that when multiple operators
took the samples, the standard deviation around a given particle size increased at arate
about twice as high with particle size than standard deviations of replicate samples from a
single operator (Fig. 5.4). For aparticle size of 2 mm, samples collected by the single
operator had a standard deviation of +2.6 mm. Thisvalue increased to +4.2 mm when the
replicate samples were collected by several operators. Likewise, particles with a250 mm
diameter had a standard deviation of 30 mm for asingle operator. The value nearly
doubled to £54 mm for multiple operators. This difference showsthat it is more
problematic to detect a change in bed-material size over time or between sites when
several operators are involved.

As the standard deviation for multiple-operator samples exceeds the standard deviation for
samples from a single operator (Marcus et a. 1995) by afactor of 1.8, the sample size
needs to be larger by afactor of 1.8% = 3.2 when multiple operators are employed.
Conseguently, using two or more operatorsin the belief that the larger sample will provide
amore accurate estimate of the population characteristics has the opposite effect: it
increases the sampl e size necessary for the sample level of accuracy. The maximum
benefit of intensive sampling is achieved only if all samples are collected by asingle
operator, unless operator bias can be substantially reduced (e.g., by training and using a
sampling frame), or be eliminated atogether.
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Fig. 5.4: Relation of mean size of 10 percentiles (Dpn, Ds, D19, D25, Dsg, D75, Dga, Dgo, Dgs, Dinax) tO
standard deviation for replicate samples collected by one (m , O) and by multiple observers (0, +). m and O
refer to one sampling site, (1 and + to another. (Redrawn from Marcus et a. (1995), by permission of the
American Geophysical Union).

5.2.2.9 Computation of sample size and error in the field

A study site may not be close to the office, and it might be inconvenient, if not unfeasible,
to return to the study site at alater time to augment a sample size that istoo small. Thus,
it isrecommended to compute the relation between sample size and error around the mean
inthefield. A laptop computer is needed and a prepared spreadsheet that computes a
cumulative frequency distribution, the @ and @4, the Inman sorting coefficient, and the
absolute error around the mean for a given sample size (Fig. 5.5). The spreadsheet should
likewise be set up to compute the sample standard deviation using the moment method
(Section 2.1.5.4).

As particles are added to the frequency distribution of the sample (n;), sample size, the
particle size of the percentiles of interest, the sorting coefficient, and the currently
obtained absolute error are automatically updated. Particles need to be added to the
sample until the computed error is less than a specified value, for example £0.2 ¢
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Table of t-values for

D Q n; Nos >Ny, 95% confidence interval
n-1 t-g2n1
2 -1.0 4 1.6 0.0 1 12.701
28| -15 b 2,0 1.6 e = -2.82 2 4.303
.. | @a=-6.70
128 | -70 | 3 |12 | 9965, 120 1.98
180 -7.5 1 0.4 |100.0 o 1.96
n=246( 100
tiaiomna - S 1.96 - 1.94
€sqm = l”/zz/lﬁ L = e =0.24 ¢

Fig. 5.5 Schematic presentation of a spreadsheet that could be used to compute the absolute error around
the mean particle size in g-unitsdirectly in thefield.

5.2.3 Specified error for all percentiles

The equations presented in the previous sections determine the sample size required for
estimating the error between the sample and the population mean. However, the user
might need to know the error associated with specific percentiles or with all percentiles of
the distribution. A two-step sampling procedure (Section 5.2.3.1) can be used to compute
the relation between sample size and precision for the median or percentiles close to the
median. A binomial approach (Section 5.2.3.2) can be used for specific percentiles (e.g.,
D10, Do), while a multinomial approach (Section 5.2.3.3) is used for computing the
precision of the entire distribution. A bootstrapping approach (Section 5.2.3.4) can be
used compute the precision around specified percentiles through a resampling procedure.

5.2.3.1 Two-stage sampling approach (ISO 1992)

Two-stage sampling is a procedure for bed-material sampling proposed by the
International Organization of Standards (ISO 1992). Thefirst step of the procedure
involves collecting several subsamples (e.g., 5) each of equal size (e.g., 50 or 100 particles
each). The median or, a percentile close to it, is computed for al subsamples aswell as
the standard deviation. In the second step a common sample-size equation (e.g., EQ. 5.21in
Section 5.2.2.1) is used to determine the number of subsamples needed to ensure that the
difference between the computed median particle-size and the popul ation median particle-
size does not exceed a specified error value. The total number of sampled particlesisthe
number of subsamples times the number of particles per subsample.

Computation for particle sizesin mm

Following the general steps previously described, a number of subsamples (g) are taken
from a homogeneous deposit, each sample containing n particles. For each of theq
subsamples, the particle size of the median is determined, either graphically from
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cumulative distribution curves, or by logarithmic interpolation between percentiles
(Section 2.1.4.2). 1SO (1992) proposes to compute the Dsp in units of mm (although ¢
units are preferable, see below). It is assumed that the q values of Ds, are approximately
normal distributed. The standard deviation ssp of the g values of Dsg is determined from:

q
S (Dso - Dsom)”

o= \/ = ] (5.12)

where Dsom IS the arithmetic mean particle size in mm of the Ds, obtained from the g
subsamples.

The number of subsamples g, each with the same sample size n, required for a 5% chance
(if a=0.05) that the absolute difference (positive or negative) between the sampled
median Dsp and the population median (i.e., the mean median established from the
subsamples) islarger or equal to the acceptable absolute error e.psp is computed using Eq.
5.13. The sample size qislikely to be rather small, perhaps less than 10. The value for t
varies markedly with sample size aslong as samples sizes are small. It istherefore
important to use an appropriate value for ti.qq1 (Table 5.2). The appropriate value for t
isfound by iteratively solving Eq. 5.13 until g equals the subsample size g.

2
_ %1—::/2-9-1
q= €pso S@ (5.13)

The total number of particlesto be sampled is the number of particlesin each subsample
n, multiplied by the number of q subsamples.

Example 5.7:
Eq. 5.13 is solved iteratively because the number of subsamplesis

typically smaller than 30 in bed-material samples, and the value
for ti.a;,q1 varies especialy for small sample sizes. Assume that
five subsamples had Dsy particle sizes of 45, 64, 76, 90, and 108
mm, with amean Dsy of 77 mm, and a standard deviation Sso of
24.1 mm. The tolerable absolute error around the Dsp is+10 mm.
In the absence of an a priori estimate of the appropriate sample
sizefor a+10 mm error, avaue of q = 20 subsamplesis selected
in the first trial of solving EQ. 5.13 (any other value would have
been fine, too) and yields a subsample size of q = 26. The
estimated subsample size (g«=20) and the computed subsample
Size (Qcomp=26) do not match after the first trial. The second trial uses
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the estimated subsample size g = 26 to estimate the appropriate
value of t. The newly computed subsample sizeisq=25. Using
the t-value for g = 25, the value computed for qis25. Equivalence
is reached between the estimated and computed g for a subsample
size of 25 after the third trail.

Trid Cest Q-l tl—ulz;q—l qcomp
1 20 19 2.093 25.4 026.
2 26 25 2.060 24.7025
3 25 24 2.064 24.7 025.

A total of 1,250 particles, i.e., 25 subsamples of 50 particles each,
have to be sampled to ensure that the Ds particle size iswithin
+10 mm of the true Ds, particle size.

Computationsin unitsof ¢

It is recommended to apply the two-stage approach to particle-sizesin units of ¢, rather
than to units of mm. Theterm Dsp in Egs. 5.12 and 5.13 is then substituted by values of
@o. The advantage of computationsin gunitsis that the mediansin gobtained from
several subsamples approximate a normal distribution better than median values Dspin
mm. For anormal distribution, sample means will be normally distributed for any
subsample size n, whereas for lognormal or skewed distributions, sample means attain a
normal distribution only for subsample sizes of 30 and larger (Triola 1995, p. 252-257).

Example 5.8:
The @ particle sizes of four subsamples of 50 particles each are

-5.2,-5.1,-5.0,and -4.8 @ The standard deviation s of the four
values of @0 is0.171 @ For an acceptable absolute error of + 0.2
¢ Eqg. 5.13yields

182
gq= Og : 0.171% =7.408
g = 8 subsamples (of 50 particles each, = 400 particles total) are
required for an acceptable error around the ¢ of £0.2 @-units.

The two-step sampling method is most suitable when estimating the required sample size
for aspecified error around the median in the field. For sample sizes of 100 or 50, the
median particle size can be quickly calculated on paper. Sample standard deviationisa
preprogrammed function of many scientific calculators. Prepared forms or spreadsheets
may be hel pful when computing the sample size necessary for a specified error in the field.
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5.2.3.2 Binomial distribution approach (Fripp and Diplas 1993)

The one-step methods compute the absolute error in mm or ¢@-units, or the percentage error
around the mean, whereas the two-step methods compute the absolute or percent error
around a specified percentile. For both proceduresit was assumed that either the entire
distribution approximated a normal distribution, or that the percentile values from the
various subsamples approached normal distributions. A binomial and a multinomial
approach (Section 5.2.3.3) can be used for computing the error around a given percentile
in terms of a percentilerange. For example, a percentile error of £10% means that the
particle size of the D5 may be within the particle size range of the Dgs and Dgs of the
population. Binomial and multinomial approaches assume no specific underlying
distribution type.

The binomial approach presented by Fripp and Diplas (1993) is based on the binomial
probabilities of the percent finer or percent coarser cumulative particle-size distribution
(i.e., the grain-size curve). The approach is used for computing the percentile error around
agiven percentile e.,. The computed sample size n ensures that the particle size of a
given percentile p iswithin a specified error range between two percentiles that are +
some percentage larger and smaller than the percentile p. nis calculated from:

_ (Zad)® p- (1-p)
n= y
€sp

(5.14)

Z isthe standard normal deviate that cuts off (100 a/2) % of the upper tail of a standard
normal distribution. Z-valuesfor various values of 1-a/2 can be obtained from statistical
tables provided in general statistics books. The value of Z;.,, for the commonly chosen
95% confidence interval with a = 0.05is 1.96 (see Table 5.1 for the relation between
confidence interval, a-levels, and corresponding values for Z;.412). pisused asadecimal
value of the percentile of interest (i.e., 0.5 for Ds), and the subscript , refers to a specified
percentile.

Example 5.9:
The sample size required to remain below a+ 10% percentile error

around the D1, i.€., the D46 particle size is to be within the range
of the sample Dg to Dg, is

2
= 1.96° O.l(E)Si2 (1-0.16) 516052
Eq. 5.14 can be solved for the error term and be used to compute
the error associated with a given sample size. The error around the
50" percentile of adistribution of particle-sizesin mm (Dso) for a
samplesizeof n=100is
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05- (1-05

=0.098 = 9.8%

An error of e., = 10% indicates that the particle size of the sample
Dso iswithin the Dgy and the D4 of the population distribution

The binomial approach calculates independent confidence intervals, one at atime, for each
particle size-class and can therefore not be used to represent the entire distribution. A
multinomial approach is needed to compute error bands around an entire particle-size
distribution.

5.2.3.3 Multinomial distribution approach (Petrie and Diplas 2000)

To overcome the limitations of a binomial approach, Petrie and Diplas (2000) presented a
multinomial approach which can be used for placing confidence intervals around all
particle-size classes in a cumulative frequency distribution curve of a pebble count
sample. The population cumulative frequency distribution (i.e., the percent finer or
percent coarser curve) can then be expected to be within the confidence interval in a
specified percentage of al cases (e.g., in 90% of all casesfor a 90% confidence interval).
Similar to abinomia approach, a multinomia approach does not assume a specific
underlying distribution type.

Relation between sample size and error
The number of particles n necessary to ensure that a percentile of interest p iswithin an
alowable confidence interval, ex, (i.e., percentile error) is computed from:

hoEotD): (1-ep D) Xua (5.15)
€ep
e:p isthe error in percentage points around the percentile p of a particle-size distribution.
Anerror of +10 percent around the Dsp (€50 = 0.1), for example, means that the particle
size of the sample Dsy may be within the D4 and the Dgg of the population distribution.
Xanc1 s the upper (1-a/k) - 100 percentage point of the chi-square distribution for one
degree of freedom and can be obtained from standard statistical tables. a isthe
confidence coefficient and k is the number of size classes of the particle-size distribution.
If table values are not available, the value for x*ic1 can be approximated using a
regression function that relates published values of x?ui1 to alk and yields (r? = 0.99):

Xoncr = - 1.435 (- 1.755 - In (a/K)) (5.16)
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Example 5.10:
Dsg isthe percentile of interest p. The tolerable error e, between

the sample estimate of D5 and the confidence interval around the
Dso is+10 percent, i.e., e;, = 0.1. Thismeans that the particle size
of the sample D5, could be within the particle size of the D4, and
the D¢ Of the population distribution. The desired confidence
level is a = 0.05, and the distribution has 10 size classes so that a/k
=0.005. Thetable value of Xza/k;l for one degree of freedom and
a/k = 0.005is7.88. Eq. 5.16 computes x4, as 7.86. Using the
value 7.88, the necessary sample sizeis (Eg. 5.15)

(01+05)- (1-0.1-05)- 7.88

_06- 04- 7.88
a 0.01

= 189.1 [1190.

The relation between sample size and percentile errors around the Ds is plotted in Fg. 5.6
for different numbers of particle size-classesk. A pebble count particle-size distribution
from a coarse gravel or cobble-bed stream typically has 15 to 20 size classes when particle
sizes are measured in 0.5 @intervals. According to Eqg. 5.15, a 100-particle sample with15
Size classes has a percentile error e.pso of +16% and can only ensure that the D5, particle

1000 ;
*UE) t Percent error around the Ds; percentile
8 900 -+ ‘ ‘ €ps0 = 0.05
& 1
() 800
Is) 1
2 700 -
CCL 600 7 e%p50 = 0.06
n I
500 |- - -
% 200 e%p50 = 0.07
E Sp50 = 0.08
2 300, i
; 200 + eypso = 0.10
£E2 100 * - €ps0 = 0.15
g 0 ! ‘ ‘ ‘ €ypso = 0.20
0 5 10 15 20

Number of size classes

Fig. 5.6: Sample size necessary for various percentage errors around the Ds, for different numbers of particle
size-classes k of a particle-size distribution.
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size iswithin the range of the population D34 to Dgg. A 400-particle sample reduces this
error to about + 7%, narrowing the range of the Dsg particle size of the sample to within a
range between the D43 and the Ds; population particle-size.

Confidence bands
Confidence bands can be plotted around a distribution using the equation

etp=\/X2 act: B (D) (5.17)

The absolute percentile error around a given percentile varies only with the number of size
classes k and the selected a-value, and is the same for any particle-size distribution as
long asthe values of a and k areidentical. Fig. 5.7 plots error bands for a 95% confidence

Particle sizes in @units
-1 2 -3 -4 -5 -6 -7 -8 -9

100

90
80
70
60
50

Percent finer

40
30
20
10

1 10 100 1000
Particle size (mm)

— sample —n=50 —=—n=100 —~=—n=400 —— n=1,000

Fig. 5.7: Error bands (e+p) for a 95% confidence level around the example particle-size distribution given in

Section 2.1.4.1 with 15 size classes (a/k = 0.05/15 = 0.0033; x%wi1 = 8.57). Vertical linesindicate particle
size classesin 1.0 @-units.
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level around the example particle-size distribution with 15 size classes presented in
Section 2.1.4.1. Error bands are not entirely symmetrical around the distribution. For the
example distribution used in Fig. 5.7, a sample size of n = 100 produces a percentile error
around the Dgp of £11.7%, i.€., the Dgp particle size could fall between the Dg, and the Deg
particle size. The percentile error around the D4¢ is £10.5%, meaning that the D1 particle
size may fall between the Ds 5 and the D 5 population particle size.

5.2.3.4 Bootstrap approach: no assumed distribution type (Rice and Church
1996b)

Rice and Church (1996b) proposed a computer sampling, or “bootstrap” method for
determining the sample size required for a prespecified error (standard error or error in @
units) around a given percentile. Bootstrapping determines the relation between error and
sample size from repetitive computer sampling of a parent distribution that constitutes
several thousands of actually measured bed-material particle b-axes. Bootstrapping, like
the binomial and multinomial approaches (Section 5.2.3.2 and 5.2.3.3), does not require
assumptions about the underlying parent distribution type. Computations are therefore
free of any error introduced by assuming an inappropriate underlying distribution type and
have the advantage that the computed sample-size requirements are tailored to a specific
bed-material composition found at a specific sampling site.

Computation of the bootstrap percentile standard error and the absolute percentile
precision

A measurement of 3,500 particle b-axes provides a data base that is sufficiently large to be
agood approximation of the population distributions. A large number of replicate
samplesr, e.g., r = 200 is drawn, each with the sample size n (sampling without
replacement for each individual sample). A particle-size frequency distribution and a
probability density function are constructed for each sample, and all percentiles of interest
are determined. Thus, for each sample size n there are 200 repeated samples for a given
bootstrap percentile Dy, (subscript , refers to bootstrap analyses), e.g., 200 values of D1ep
established for a sample size of n =50, 100, 500, etc. particles. The 200 replicates define
adistribution of Dpy =200 - Values with an arithmetic mean Dymp,r=200 and a standard
deviation Spyor=200. The standard deviation is the bootstrap percentile standard error s, for
the bootstrap percentile Dy, and is computed from (Rice and Church 1996b):

r

Dop - Dpmb)?
o =2 =] pt) (5.18)

where Dynp 1S the mean particle size of a specified percentile p in the bootstrap analysis.
The procedure is repeated for each percentile of interest for various sample sizes. Once
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the bootstrap standard error around a given percentile is known for various sample sizes, a
power regression function can be established between s, and sample sizen

Sb=ay- on° (5.19)

for each percentile. oisthe population bed-material standard deviation, a, and c are
coefficients obtained from the regression function.

For aknown distribution, a percentile standard error s, can be computed from:

_ANp- (1-p o
R N (5.20)

Theindex , refersto the specified percentile, p is the decimal value of the percentile (i.e.,
0.5 for Dsp), Y is the ordinate (y-value) of the population probability density function at
the given percentile. Yy, is not known if the distribution is not known, which makes it
impossible to use Eq. 5.20 without prior knowledge of the particle-size frequency
distribution. However, the first term of Eq. 5.20

Np- (I-p)_ . _

Yo = a, = constant (5.21)
assumes a constant value a, for each percentile for all sample sizes. The value a, can be
obtained from the least-square regression function of the relation between standard error
and sample size (EQ. 5.19) computed from the bootstrap results. Substituting the first
term of Eq. 5.20 with a, allows the computation of the standard error around a percentile
in an unknown distribution:

$=ap- j‘; (5.22)

In order to adjust computer sampling without replacement to a finite population from
which the samples are drawn, a correction factor needs to be applied to the percentile
standard error for a preset sample size n and population size N. This adjustment modifies
Eqg. 5.20to
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(5.23)

The standard percentile error corrected for finite population size is then computed from
_. . O N-n
=% n \YN-1

For a population sample size N of 100 n or more, the last term approaches 1 and can be
omitted.

(5.24)

Rice and Church (1996b) used the bootstrap approach to compute the relation between
sample size and error for various particle-size percentiles of agravel-bed river in Canada
(Mamquam River, Fig. 5.8). The particle-size distribution has a standard deviation of s=
1.17 pand is slightly skewed towards atail of fine particles (Skarew = 0.165 (EQ. 2.61);
skirq = 0.55 (Eq. 2.70)), a characteristic common to many gravel beds. The graphs
showing the relationship between sample size and standard error (Fig. 5.10 and 5.11) are

. T ™ T T T
KEEEA Data
--g - Normal
0.20 ;D50 —e— Skew normal |
¥
075
02,56 %0,1
N
=N DB4
5 015 v SR
2 /o 55 B
@ @ /8 K]
2SR 5%
-] k) Ftel
Dis £ ] X% pa]
o 4 DS [650 Bie]
@ 010 A i
/ oy O] ey X0
— GO Kol [ KS bas
& ST [ Bt 15
L PR B B K
%0 K] K K
Ll o0 Ko R K
2o B Ry kel e
74508 oo R0 R e RS
D5 RS2 fsast s 15y
0.05 - bl o B B
q e s R ]
A5 ke ) Lsedd lsedd
s [ 5]
% kes) 1] 5] >
2 el
e
0.00 ol T %] hSe% M %ed (%)
0.5 1.5 25 3.5 4.5 5.5

@
1)
~
tn

[

tn

Grain size class (-¢

Fig. 5.8: Particle-size distribution for a sample from a bar head in the Mamquam River, British Columbig;
mean annual flood is 152 m%s. Dgs = 111 mm (-6.8¢), Dgs = 79 mm (-6.29¢, Dgo = 38 mm

(-5.25¢), D1 = 15 mm (-3.91¢), and D5 = 7.5 mm (-2.91¢); 0= 1.17¢, skewness = 0.165 (Sky,rew) OF 0.55
(Skirg). According to a Kolmogorov-Smirnov test thereis aless than 1% chance (a = 0.01) that the

distribution is Gaussian. (Reprinted from Rice and Church (1996b), by permission of the Society for
Sedimentary Geology).
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discussed in the following section where the statistical (bootstrap) bootstrap error will be
compared to statistical errors computed by assuming an underlying distribution type. The
standard error computed from EqQ. 5.24 can be converted into an absolute error in @-units

by

__ G

= andviceversa e.p=S - taazn 5 25
t(l—a/z,n-l) T SP (1-a/2,n-1) ( )

S

Values of ty.ai2n-1) fOr various samples sizes are listed in Table 5.2. Table 5.6 presents
absolute errors in @ obtained by converting the bootstrap standard errors for sample sizes
50, 100, 400, and 1000 particles and a 95% confidence level. Error valuesin Table 5.6
may be used as a general estimate of absolute errors expectable around various percentiles
for bed material that is dightly skewed towards atail of fine particles and that has a
sorting coefficient closeto 1.17.

Table 5.6: Absolute error e, in + @-units for a 95% confidence level for percentile
estimates of the Mamquam River, with a distribution slightly skewed towards a tail of fine
particles and a standard deviation of s= 1.17 ¢ (from Rice and Church 1996b).

Sample size Ds Dis Dx Dsg Dz Dg D
50 0.89 0.61 0.52 0.37 0.33 0.35 0.44
100 0.62 0.40 0.36 0.26 0.23 0.25 0.30
400 0.30 0.21 0.19 0.12 0.11 0.11 0.12
1000 0.19 0.13 0.12 0.07 0.07 0.06 0.07

Note that the computed bootstrap error is purely statistical. 1t does not include errors
stemming from unrepresentative sampling by operators. The (statistical) bootstrap error
around the seven percentiles between Ds and Dgs for a sample size of n =400 (gray
shaded box in Table 5.6) isplotted in Fig. 4.2 (Section 4.1.1.3) and compared to the total
error observed in parallel pebble countsin mountain streams.

Standard and absolute errors in @-units can be converted into percent errors in mm-units.
Fig. 5.9 may be used for these conversions.

Percentile standard errors: bootstrap computation versus computations with assumed
distribution types
In symmetrical Gaussian distributions, standard percentile errors s, and absolute errorsin

@-units e. g, around percentiles have two properties: (1) they are paired such that errors
around the @s and the ¢, and errors around the g4 and @6, €tc. are equal; and (2) thetails
of the distribution (s and gs) have higher errors than the mean (¢o).
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Fig. 5.9: Conversion of absolute and standard errors, in @-unitsto percent error in mm-units. ty.g 1, OF Zs.
a2 Were approximated by the numerical value of 2.

The distribution of bed-material particle sizesin gravel-bed riversisrarely symmetrical,
not even when large sample sizes with smooth frequency distributions are collected in
large streams (Fig. 5.8). Coarse gravel beds are usually slightly skewed towards atail of
fines particles. Therefore, standard or absolute errors are usually not paired, nor isthe
standard error of any percentile identical to the one computed when an underlying
Gaussian distribution is assumed. In bed-material size distributions that are skewed
towards afinetail, the computed bootstrap error around the ¢, is smaller than the error
around the Dg4 computed from an assumed symmetrical normal distribution (Fig. 5.10).
By contrast, the bootstrap error around the @6 is larger than the error around the @6
computed for an assumed Gaussian distribution. The more asymmetrical the particle-size
population, the larger the difference between the error of paired percentiles, e.g., the D1
and Dgg.

Similarly, the more asymmetrical the particle-size population the larger the difference
between the standard or absolute errors for given percentiles obtained by bootstrapping
compared to those obtained by assuming an underlying Gaussian distribution.

Note however, that the absolute error e, obtained from the bootstrap approach for the

Dso particle size at the Mamqguam River is similar to the absolute error around the mean
e.qm computed by the general sample-size equation (Eq. 5.2).
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Fig. 5.10: Percentile standard errors for various sample sizes obtained from bootstrapping and from
assuming an unskewed Gaussian distribution. (Reprinted from Rice and Church (1996b), by permission of
the Saciety for Sedimentary Geology).

Rice and Church (1996b) compared not only the bootstrap percentile errors with the
percentile errors computed for an assumed normal distribution, but also for a skewed
normal distribution. The question was whether fitting a skewed normal distribution to the
parent population would remove the difference between the bootstrap error and the error
computed analytically for a best-fit skewed normal distribution. The assumption of a
skewed normal distribution did not achieve a better agreement between bootstrap error
and analytical error (Fig. 5.11). Particularly disconcerting was the unreliability of the
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Fig. 5.11: Percentile standard errors for variable sample size obtained from bootstrapping and from
assuming a skewed normal distribution. (Reprinted from Rice and Church (1996b), by permission of the
Society for Sedimentary Geology).

improvements: while errors around some percentiles were well predicted when assuming a
underlying skewed normal distribution, errors around other percentiles were greatly over-
or underpredicted (Fig. 5.11). The only percentile for which thereisrelatively little
difference between sample-size requirements from a bootstrap approach and those
computed from assuming an underlying symmetrical or skewed Gaussian distribution is
the ¢xo. Thissimilarity indicates that bootstrapping is not necessary if the percentilein
guestion is the Do, or if apilot study indicates that surface bed-materia sizes could be
approximated by a Gaussian distribution. If the distribution does not approach a normal
distribution, and the percentile of interest is a high or low percentile, then bootstrapping or
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amultinomial approach should be used. Alternatively, atwo-step approach for percentiles
in @-units may be used (Section 5.2.3.1). Bootstrapping becomes particularly useful for
skewed and bimodal distributions, since the latter has no formal sample-size criteria (Rice
and Church 1996b).

Software that includes bootstrapping procedures is commercially available, such asthe
program “Resampling Stats” from Resampling Stats Inc*. which has an add-in version for
the spreadsheet program Microsoft Excel.

Collecting the large sample necessary for bootstrapping is problematic in mountain
streams

A thorough bootstrapping analysis requires taking alarge field sample to characterize the
parent population. Rice and Church (1996b) used a sample of more than 3,500 particles.
Sample sizes that large may be possible to obtain only in the beds of large streams that
have large areas of homogeneous particle-size mixtures. Sampling several thousand
particlesis aproblem in mountain gravel bed-rivers. If, for example, astreamis 10 m
wide, and four particles are sampled per 1-m section along a transect using the sampling
frame (Section 4.1.1.6), 40 particles can be sampled per transect. Almost 90 transects
would have to be sampled to obtain 3,500 particles such asin the study by Rice and
Church (1996b). If transects were spaced at about 2 m intervals, ahomogeneous reach
almost 200 m long would have to be sampled. Homogeneity over a 200 m stream segment
could perhaps be expected in a plane-bed stream, but not in ariffle-pool stream that, if 10
m wide, has about 4 riffle-pool sequences over a 200 m distance. However, even though a
bootstrap approach may not be feasible in a mountain gravel-bed river, the knowledge
gained from the bootstrap study by Rice and Church (1996b) about percentile errorsin
skewed distributions as opposed to symmetrical ones is quite valuable and should be
considered when estimating errors around high or low percentiles in skewed distributions.

5.2.3.5 Summary: the relation between sample size and error

Beneficial effect of sampling tapers off for large sample sizes
Sampling precision increases as the reciprocal of the square root of sample sizen

(standard error s, = 1/\/|_1 ). Thus, sampling precision improves dramatically as n increases
at small values of n, but the improvement becomes insignificant for high values of n. For
the bed material of the Mamquam River with 0= 1.17 ¢, Rice and Church (1996b)
determined the cutoff point beyond which further sampling does not significantly improve
sampling precision is at a sample size of 400 particles.

Relation between sample size, sorting, and error
The relation between sample size, sorting, and error n = (t - s/e)? is such that halving the
acceptable error margin e, or doubling of bed-material sorting s leads to approximately a

! Resampling Stats, Inc., 612 N/ Jackson St., Arlington, VA 22101; Web-page: http://www.resample.com;
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fourfold increase in sample size n, and a doubling in sorting doubles the error for agiven
sample size (Section 5.2.2.7). The relation between sample size, sorting, and error around
themeanisvisiblein Fig. 5.2. A 400-particle surface sample in moderately-sorted bed
materia (s=1 ¢ yields an approximate absolute error of £ 0.1 garound the mean,
whereas sampling only 100 particles increases the absolute error margin to approximately
+0.2 ¢. In more poorly sorted bed material with s= 2 ¢ sampling 400 particles |eads to an
absolute error around the mean of +0.2 ¢, and 100 particles to an error of £0.4 @

Comparison: one-step and bootstrap approach

The relation between sample size, sorting, and error around the mean is similar to the
relation between sample size, sorting, and error around the D established by Rice and
Church (1996b) in a bootstrap approach. For the Mamquam River with a standard
deviation of 1.17 ¢, a sample size of 400 particles resulted in an absolute error around the
Dsp of £0.122 ¢ whereas an absolute error of £0.115 @ around the mean particle size ¢,
was computed for a 400-particle sample by the general sample size equation (Eq. 5.2).

For percentiles other than the Ds, results from the bootstrap approach and an assumed
normal distribution differ and the difference increases towards the tails of the distribution.
The bootstrap approach indicates that for distributions skewed towards atail of fine
particles, sample error is significantly lower for high percentiles than for low percentiles.
Conseguently, it takes a considerably larger sample size to accurately characterize low
percentiles (Ds, D16) than high percentiles (Dga, Dgs) in distributions skewed towards a
finetail. Percentiles between Dso and Dgs require nearly the same sample size for agiven
precision (Table 5.6 and Fig. 4.2 in Section 4.1.1.3).

The poor precision of low percentiles for a given sample size in distributions skewed
towards afinetail results from the relative scarcity of fine gravel particlesin coarse gravel
and cobble-bed streams. In a 100-particle pebble count from a coarse gravel bed, the
number of counts per size classtypically varies between 0 and 5 for each of the finest 5 or
8 size classes (excluding sand). However, each of the coarsest 4 or 5 size classes (except
the very largest size class) might have 10 or 20 counts. The addition of one more count in
any of the fine size classes cause more change in the percentile particle size of that size
class than the addition of one more count to a coarse size class that has already 10 or 20
counts. Thisresultsin more uncertainty in the quantification of the low percentiles.

Comparison: bootstrap and empirical results

Results from the bootstrap analysis compare well with results from empirical studies
conducted in mountain gravel-bed streams (Section 4.1.1.3, Fig. 4.2) with distributions
skewed towards fines and sorting coefficients of = 1.2 ¢. When a sampling frame (Section
4.1.1.6) was used to reduce operator bias in particle selection in pebble counts, repeated
pebble counts on rifflesin various streams had total absolute errorse,,, of +0.1to £0.15 ¢
around all percentiles between the Dsg and Dgs. This range of total absolute errorsis quite
similar to the bootstrap errors established for the dightly skewed distribution from the
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Mamguam River and suggests when sampling large gravel and cobbles, operator errors do
not significantly contribute to the total error.

The absolute error of £0.42 @obtained for the Ds particle size of pebble countsin mountain
streams exceeded the bootstrap error around the Ds of £0.30 ¢ The poor accuracy for
samples of small particlesin pebble countsis attributable to the (inconsistent) operator bias
against small particles and should be disconcerting for studies concerned with the amount
of surface fines. Sampling accuracy for small particles requires not only larger sample
sizes than are required for large percentiles, but requires sample sizes even larger than
predicted from appropriate sample-size statistics to account for operator bias against fines.

Comparison: One-step and bootstrap with multinomial approach

Fig. 5.7 illustrates error bands computed around the example distribution presented in
Section 2.1.4.1 (= 1.94 @, Skarew = 0.17, Skirq = 0.72) for various sample sizes using the
multinomial approach. An absolute error in mm around a given percentile can be obtained
from Fig. 5.7 as the horizontal distance between the error band and the sample distribution.
The absolute error around the Dsg is approximately +0.4 @units for a sample size of 400
and increases to nearly 0.8 @for a sample size of 100. Therefore, the absolute error
predicted for the Dso from the multinomial approach is approximately twice as large as the
absolute error around the mean computed from the one-step approach (Eg. 5.2).

The error bands computed with the multinomial approach for the skewed distribution
described in Section 2.1.4.1 indicate a larger absolute error for small percentiles than for
large percentiles. Thesefigures are similar to the bootstrap results for the skewed
distribution from the Mamguam River.

5.2.4 Detectability of change in percent fines (Bevenger and King 1995)

Natural or anthropogenic disturbances in the watershed or the riparian area may lead to
elevated amounts of fine sediment in a streambed. The amount of fine sediment that
impairs aguatic habitat depends on the species of concern, the benthic community, and
bed-material properties. Monitoring fine sediment can be used to observe and evaluate
the effects of change in the natural conditions of the watershed or in watershed
management.

Fine sediment supplied to a mountain gravel-bed stream accumulates primarily in the
interstitial spaces of the subsurface sediment and in backwater areas. Accumulations of
finesin the surface sediment of the general streambed are relatively scarce. Taking
volumetric samples of the subsurface istime and labor consuming, however. To ssimplify
and accel erate the sampling process, Bevenger and King (1995) proposed sampling and
analyzing the amount of surface finesin the bed using a (zigzag®) pebble-count procedure.

2 The operator walks a zigzag course from bank to bank picking pebbles from the streambed at intervals spaced about 7
feet apart, and covers about a hundred meters of stream section (Bevenger and King 1995), (Section 6.2.2.1). The 7-foot
interval was chosen to reduce serial correlation in the samples particles and more closely adhere to the statistical
independence assumptions of the analysis.
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The statistical error associated with small percentilesis usualy relatively large (Section
4.1.1.3). Bevenger and King (1995) therefore specified the sample size necessary for
detecting differences in the percent fines obtained from two pebble countsusinga 2 x 2
contingency table analysis. One of the pebble countsis carried out in areference reach,
which means before the reach was impaired or in an unimpaired reference reach that
serves as “background”. The second pebble count is performed in the study reach, which
means in the reach in which the percent fines may have changed over time. The sample
Size necessary to detect a change in the percent fines of the study reach depends on four
factors:

» Samplesize at the reference site
Sample size at the study site hasto be larger if the sample size a the reference site is
small, and can be smaller, if alarge sample was taken at the reference site.

» Percent of fines at the reference site
A larger sample must be taken at the study reach if the reference reach has ahigh
percentage of fines (i.e., sandy gravel-bed streams). A smaller sample can be taken
when the percent fines at the reference siteissmall (i.e., gravel beds with little sand).

» The minimum difference in the percent fines to be detected between the reference and
study site
Detecting a small difference in the percent fines between study and reference sites
requires alarger sample size than is needed to detect a larger change in the percent
fines.

» Acceptablerisk levelsin terms of Type | and Type |l error
Type | error isthe risk of falsely concluding a significant difference between the two
samplesand istypically set at a = 0.05. Typell error istherisk of falsely concluding
that thereis no difference and istypically set to S =4a =0.20. Typel and Typell
errors are inversely proportional for agiven sample size. That is, adecreasein one
necessarily resultsin an increase of the other. If the occurrence of adifferencein the
grain-size distribution is as important as the occurrence of no difference, then both a
and (3 are set to 0.05.

5.2.4.1 Sample-size determination from diagrams

The required sample size depends on combinations of the four factors mentioned above.
Thus, Bevenger and King (1995) provided multiple plots with several curves each (Figs.
5.12 and 5.13) to specify the sample size at the study site for different values of the four
factors. The following five steps are taken to determine sample size from the diagrams:

1. Determinetherisk levelsfor Typel and Type Il error and select the appropriate figure
(Fig. 5.12 or 5.13).
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2. Determine the percent fines at the reference site and select the appropriate plot from
Fig. 5.12 or 5.13. For 10% fines at the reference site (p; = 0.10), select the plot “10%
fines a reference site” in Fig. 5.12 or 5.13.

3. Determine the detrimental percent fines at the study site. For example, 19% fines at
the study site (ps = 0.19) may be athreshold value for impairing aquatic habitat. The
necessary minimum detectable difference between study and reference site must then
be ps- pr=0.19 - 0.1 = 0.09 or 9%.

4. Determine the sample size taken or to be taken at the reference site and select the
corresponding graph for 100, 150, 300, 450, or 600 particles on the diagram.

5. On the appropriate diagram in Figs. 5.12 or 5.13 locate a minimum detectable
difference of 0.09 on the vertical axis, and determine the sample size at the study-site
at the intersection of a minimum detectable difference of 0.09 with the respective
graph for reference-site sample size.

For example, the plot for 10% fines at the reference site in Fig. 5.12 indicates that a 300-
particle sample (stippled line) at the reference site requires another 160 particlesto be
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Fig. 5.12: Sample size necessary at the study site to detect a minimum difference in percent fines between
the study and the reference site ps - p; for various reference-site sample sizesand risk levels. Risk levelsfor
typel and typell errorsare set to o = 0.05 and 3= 0.20. (Reprinted from Bevenger and King (1995)).
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collected at the study site. A 600- particle sample at the reference site reduces the sample
Size at the study siteto 120. Likewise, if 150-particle had been sampled at the reference
site, alittle over 300 particles have to be sampled at the study site.

If the tolerable percent fines at the study site was 12% (ps = 0.12), and the reference site
had 5% fines, the required minimum percent difference that needs to be detectable
between study and reference siteisps - pr = 0.07. In this case, the plot for 5% fines at the
reference sitein Fig. 5.12 indicates that at 300-particle sample at the reference site
requires at least 170 particles to be sampled at the study site.

Fig. 5.13 isused if both the Typel and Type |l error are set to a confidence level of 95%
(aand B=0.05). If there are 10% fines at the reference site, and the tolerable percent
fines at the study site is 20%, the minimum difference to be detected isps - pr = 0.10. The
plot for 10% fines at the reference site in Fig. 5.13 indicates that about 290 particles need
to be sampled at the study site, if 300 particles had been sampled at the reference site.
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Fig. 5.13: Sample size necessary at the study site to detect a minimum difference in the percent fines
between the study and the reference site ps - p, for various reference-site sample sizes and risk levels. Risk
levelsfor Typel and Typell errorsare set to a = 0.05 and 8= 0.05. (Reprinted from Bevenger and King
(1995)).
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Thisyields atotal sampling effort of 590 particles. If 600 particles had been collected at
the reference site, 195 particles would have to be collected at the study site, and this
increases the total sample sizeto 795 particles. If 100 particles were sampled at the
reference site, an extrapolation of the graph for 100 particles would intersect the line for a
minimum detectable difference of 0.1 at more than 1,000 particles for the study site and
result in atotal sample size of more than 1,100. Little information about a changein the
percent finesis gained when small samples are collected both at the reference and the
study site. If 100 particles were sampled at each site, the minimum detectable difference
isonly 0.18. Given 9% fines at the reference site, a 100-particle pebble count can at best
detect a doubling of the percent fines at the study site (Potyondy and Hardy 1994; King
and Potyondy 1993).

The total sampling effort can be minimized if the same number of particles are sampled at
both sites. Table 5.7 indicates, for a and 8 = 0.05, that sampling 293 particles at both
sites results in the smallest total sample size (586 particles). In order to optimize the study
effort and to find the smallest total sample size that will detect a given difference pilot
studies should be conducted to estimate the percent fines at both the reference and the
study sites. The result can then be used for estimating the optimum sample size.

Table 5.7: Equal and unequal sample sizesfor p, = 0.10 and ps = 0.20, and preselected values
of a and S (from Bevenger and King 1995).

Equal sample Size Unequal sample Size
a a
0.01 0.05 0.10 0.01 0.05 0.10
B N, Ns NN Ny, Ns N ns n, N n, N
0.01 566 417 347 848 424 635 318 534 267
0.05 419 293 236 617 309 439 220 357 179
0.10 349 236 185 510 255 350 175 278 139
0.20 275 177 134 394 197 257 129 197 99

5.2.4.2 Sample-size computation

The statistical background for the procedure presented by Bevenger and King (1995) is
provided by Fleiss (1981). Sample size for atolerablerisk level isbased on the
acceptance or rejection of the null hypotheses that the difference between the proportion
of the percent fines at the reference site p; and the study site psis either O (no difference),
or >0 (i.e, thereisadifference). Minimum sample size ns for the pebble count at the
study site can be calculated from Equations 5.26 and 5.27 (Fleiss 1981). If sample size at
the reference site n; is negotiable, and if there is no reason for different sample sizes
between the two sites, an equal sample size should be selected for the reference and study
sites asit results in the smallest combined sample size ns + n,. The smallest sample size
for both the study and reference site can be computed from:
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where z, and z,.g refer to the ordinates of the standard normal distribution, and the
subscripts a and S refer to therisk levels of the error Typel and I1l. Commonly used
values for z, and z,.g are:

aorf : 0.01 0.05 0.10 0.20

Z (neg.values); z,.z (pos.values): (-) 2.327 (-) 1.645 (-) 1.282 (-) 0.842

Example 5.11:
If the reference site has 10% fines < 8 mm (pr = 0.10), and it is

desirable to detect an increase in the percent finesto 20% or more
at the study site (ps = 0.20), with acceptable risk levelsof a = 0.05
and 8= 0.20, sample size at the study site is computed from Eq.
5.26 and 5.27:

0.1+0.2
@1.645\/0.“ 0.2 @ > @ 0.842- 4/0.1- (1-0.1)+0.2- (1-0.2)@
(0.2 - 0.1)°

_(1645- \[03- 085 0842 01 09+02. 0.8)°
- 0.1°

. [r0.831-04217% _

and
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_157 @* 14 4 ﬁ
Ms="4 - 157 - [0.2- 0.1

ne=39.2- (1++/1.255)% =177

Modified forms of Egs. 5.26 and 5.27 are used if the sample size for the reference and
study site are different; however, the ratio of sample size at the reference site and the study
site needs to be known prior to the computation. The reader is referred to the source
literature by Bevenger and King (1995) and Fleiss (1981) for this case.

5.2.4.3 Operator error in the percent fines adds to the statistical error

Statistical computations of sample size, including the computation of sample size by
(Bevenger and King 1995) refer to the statistical error associated with a certain sample.
Computation of sample size, including the computation of sample size by Bevenger and
King (1995) only refer to the sample size needed to avoid a statistical error. However,
the user must keep in mind that operators introduce further sampling errors that are not
included in the computed statistical sampling error but nevertheless add to it. Operators
commonly bias against fine particles (Section 4.1.1.3), because fine particles may be
partially hidden between large particles, and because large particles are more likely to be
touched and selected in a pebble count than fine particles. Fine particles also tend to
accumulate in locations of the streambed that are poorly accessible, such asin pools or
under overhanging branches near the banks. Inaccessibility makes fine particleslesslikely
to be included in a pebble count. Operator errors and bias against fines are not included in
a computed relation between sample size and statistically detectable error in the percent
fines. The actua minimum detectable error in the percent finesis therefore smaller than
computed from the statistical analysis. To account for this neglect, a sample size larger
than predicted is required to detect a given change in the percent fines. Operator bias
against fines aswell as the variability of sampling results between operators can be
reduced by using a sampling frame (Bunte and Abt 2001) (Section 4.1.1.6). Sampling the
streambed in a systematic pattern along even-spaced transects spanning the full bankfull
width of the stream further assists in reducing operator errors with respect to sampling
fines.

5.3 Areal sampling: area-based sample-size recommendations

In contrast to pebble counts or grid samples that collect a predetermined number of
particles from atransect or agrid, areal samples collect all surface particles contained in a
specified (small) sampling area (Section 4.1.3). Thus, sample size may be described in
terms of the size of the area that needs to be sampled. The size of the sampling area may
be based on geometrical consideration, such as a multiple of the area covered by the Dpax
particle size. Alternatively, atwo-stage sampling approach may be applied to specify the
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number of subsamples needed from a homogeneous deposit to attain a specified sampling
precision for the median particle size (Section 5.3.2). A multinomial approach may be
used to compute the percentile error for the entire distribution (Section 5.3.3)

5.3.1 Dnax and geometrical considerations

Diplas (1992a) and Diplas and Fripp (1992) suggested that an areal sample should cover a
sampling area equal to at least 100 times the area of the D particle size in order to
provide arelatively high precision for all percentiles. Fripp and Diplas (1993) increased
this sample-size recommendation to 400 time the area of the Dy particle. Thisincrease
ensured that the volume of the sample would satisfy De Vries (1970) “low precision”
criterion with arelative error of 10% (Sect. 5.4.1.1).

The area of oneindividual areal sampleis usually small (about 0.1 m?) and several
individual areal samples need to be combined for the total sample. Thetotal sampling
area A can be estimated from a multiple of the exposed area of the largest particle(s)

Aot = 400 Diray’ (5.28)

Example 5.12:
The Dnox particle size of adeposit is estimated at 40 mm, the

upper range of particle sizes suitable for adhesive sampling
(Section 4.1.3.2). If aspherical particle shape is assumed, the area
covered by an individual particle A, with a40 mm b-axis sizeis

Ay =TI- %ﬁ:n. %’m%ﬁzo.omzamz

If an ellipsoidal particle shape with the a-axis 1.5 times the b-axis
is assumed, the area covered by one particle increases to

Ap=Tr ﬁ‘“Tbﬁz . ﬁ)'% s 0.04 m%: 0.00189 m?

An intermediate particle area of 0.00160 m? is obtained if a square
particle shape is assumed with A, = b”. Using A, = b?, the total
sampling area Ay = 400 - 0.0016 m* = 0.64 m?, which is an area
of 0.8 by 0.8 m.

If one areal sample covers approximately 0.1 m?, Eq. 5.28 suggests that 6 — 7 of those
areal samples should be collected in order to sample an area of sufficient size and to gain
sufficient material for a particle-size analysis.
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5.3.2 Two-stage sampling: specified error around the median

SO (1992) proposes a two-stage approach for defining the minimum sampling area. 1SO
(1992) advises that the minimum sampling areafor each individual sample As must be
larger than 8 times the area of the D particle size in order to avoid bias towards the
largest particles. For a Dy particle size of 40 mm, each individual areal sample should
be at least 0.11 by 0.12 m = 0.013 m? in size.

Computation in mm units

A two-stage approach can be used to determine the relation between sample size and
absolute error around central percentiles of the distribution (Section 5.2.3.1). A number of
g areal subsamples are collected, and the median particle size is computed for each of the
g subsamples, either graphically from cumulative distribution curves, or by linear
interpolation between percentiles (Section 2.1.4.2). 1SO (1992) suggests using the median
particle size Dsp in units of mm, assuming that the q values of D5, are approximately
normally distributed. This guideline document recommend using the median particle size
@o in units of @ (see below).

The sample standard deviation s of the g values for Dy is determined from

i(Dso - Dsom)?
$= = o1 (5.29)

Dsom is the arithmetic mean particle size in mm of the Dsp values obtained from the g
samples. An appropriate value for ti.q/2,4.1 is Selected from Table 5.2. Eq. 5.30 can then
be used to calculate the number of subsamples q so that there is only a 5% chance (at a =
0.05) that the absolute difference (positive or negative) between the estimated val ues of
the percentile in question D5 and the true population Dsg is larger or equal to the
acceptable absolute error ewpso. The absolute error is the difference (in mm) between the
sample and the population Dsg. Note that Eq. 5.30 may have to be solved iteratively (see
Example 5.13)

q= Pléfsol : Ssog (5.30)

The total sampling areafor one complete areal sampleis At =As- Q.
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Example 5.13:
Drax IS estimated as 40 mm and Dsxg is the percentile of interest.

Sample area As required for avoiding bias against large particles in
asubsampleis8 - 0.04°m?=0.0128 m°. Five subsampleswere
collected with five closely-spaced values for Dsg of 22, 25, 27, 30,
and 32 mm. From Eg. 5.29, the sample standard deviation s for
the Dsp percentile is computed to be 3.96 mm. The acceptable
error around the Dsg particle sizeis5 mm.

Eg. 5.30 needs to be solved iteratively when t-statistics are used.
An arbitrary sample size of 10 subsamplesis selected in the first
trial of Eq. 5.30 and yields a sample size of 3.2. Estimated and
computed subsample size g do not yet correspond. After four
subsequent trails, correspondence is reached for a subsample size

of 5.
Trid Cest Q-l tl—ulz;q—l qcomp
1 10 9 2.262 3204
2 4 3 3.182 64 07
3 7 6 2447 3704
4 5 4 2.776 48 05

Taking 5 subsamples from atotal areaof At =5- 0.013m? =
0.065 m? (about 0.25 by 0.26 m) provides a 95% probability that
the sample Dgg size iswithin £ 5 mm of the population Dso. This
isasampling area about 10 times less than predicted from Eq.
5.28.

If the 5 subsamples were more different and had Dsg sizes of 14,
19, 27, 33 and 39 mm, and a standard deviation of 10.139, the
iterative solution of Eq. 5.30 yields (2.101 - 10.139/5)* = 18.15
whichisrounded up to 19. The total area covered by the
subsamplesis As= 19 - 0.013 m? = 0.247 m? (about 0.49 m by
0.50 m). Thetotal sampling areain this example is much larger
than in the previous exampl e because the spread (variance) of the
5 values of Dspis much larger. Nevertheless, the sampling area
computed from Egs. 5.29 and 5.30 is still less than half the total
sampling area computed from Eq. 5.28.

Note that the two-stage approach computes only the precision for the particular set of
subsamples used in the computation. The precision associated with agiven sample size
would have to be computed numerous times, each time with anewly collected set of
subsamples, in order to compute the mean precision associated with a specified subsample
sizein aspecified sampling area. Thistopic is discussed in more detail in Section 5.4.2.1.
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Computationsin unitsof ¢

It is recommended to apply the two-stage approach to median particle-sizesin units of ¢
rather than the median in mm, because values of ¢, from several subsamples approximate
anormal distribution better than the values of Dsg (Triola 1995; Section 5.2.3.1). Dspin
Eq. 5.29 is then substituted by values of @.

5.3.3 Multinominal approach

Sample sizes computed from simple geometric approximations such as sampling area A =
100 or 400 Dy’ (Eq. 5.28) yield relatively large sample sizes in order to provide a
relatively high precision for all percentiles. However, a concrete relation between sample
size and error around a given percentile and selected confidence level is not obtained from
Eq. 5.28. In order to specify arelation between sample size and error, Petrie and Diplas
(2000) suggest a multinomial approach to compute the size of the sampling area. The
multinomial approach is applied in two steps. The first step computes the number of
particles needed for a grid sample (Section 5.2.3.3). The second step converts this number
of particlesto the size of asampling area. A factor is needed for this conversion, and its
numerical value depends on the packing of surface particles and the proportion of surface
voids. For avoidless surface, the Kellerhals and Bray (1971) conversion coefficients
(Section 4.3.1), may be used. Other conversion factors may be needed for other surface
conditions (Sections 4.3.2 and 4.3.3). Thereader isreferred to the origina literature by
Petrie and Diplas (2000) for details.
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5.4 Volumetric sampling: mass-based sample-size recommendations

Sample mass required for representative volumetric samples can be computed by three
methods:

* Asanempirical function of the Dy particle size,
* By computing the number of subsamples required (two-stage approach), and
» By analytica means based on an assumed underlying distribution type.

A large number of empirical equations exist in which sample massis expressed as a
function of the Dy particle size (Sect. 5.4.1). These equations are simple to apply, but
different equations predict greatly different sample sizes. Sample-mass recommendations
based on the D« particle size do not require assumptions about an underlying frequency
distribution type. Sample sizes predicted from empirical functions of Dnux are generally
large, but they do not provide information about the relationship between sample mass
and error. Therefore, the precision of a sample remains unknown.

If the precision of a sample needs to be known, sample-mass equations should be
employed that provide information on the relation between sample mass and precision.
One possibility is atwo-stage sampling approach in which a number of subsamplesis
collected (Section 5.4.2.1). Based on the central limit theorem, the precision of any
percentile® in adistribution can be computed for various samples sizes. However, the
precision obtained for a specific sample size, e.g., three subsamples, is not the same for
any set of three subsamples from a deposit because each subsample is (slightly) different.
Therefore, many sets of three subsamples would have to be collected to obtain the mean
precision for a subsample size of three. The requirement for collecting a specified number
of subsamples repeatedly can be bypassed by plotting the precision for various
(unrepeated) subsample sizes. The datawill scatter, but fitting a power- or exponential
function through data points provides a surrogate relation between sample size and
precision for a given percentile in a given deposit (Section 5.4.2.2).

A large physical sampling effort can be reduced by using a bootstrap procedure.
Bootstrapping is a technique that collects repeated samples (by computer) from a parent
population. The parent distribution might be generated by a computer based on
specifications of the actual deposits (standard deviation and mean) that are obtained from
apilot study and an assumed distribution type (Section 5.4.3). The computational effort
of bootstrapping is rather large and may require using a resampling program. The main
drawback is that the computer-generated sample cannot be a perfect surrogate for alarge
sample from adistinct parent distribution. Bootstrapping may also be applied to a parent
distribution of an actual bed-material sample (5.2.3.4) that is entered into the computer.
The sample needs to be (usually prohibitively) large in order to accurately describe the
parent population and all particles must be collected independently of each other.

3 Two-stage approach is better suited for central percentiles. Peripheral percentiles require a larger sample size to reach
normality.
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5.4.1 Sample mass as a function of largest particle size

Why use the Do particle size?

Sample-size statistics that assume an underlying normal distribution indicate that alarger
sample size is required to accurately describe the distribution tails than the central parts of
the distribution. Consequently, a sample size that is sufficiently large to describe the
distribution tails will also suffice to accurately describe the entire particle-size
distribution.

The coarse tails of bed-material samples from gravel- and cobble bed streams are
comprised of only afew large particles per size class which nevertheless contribute a
rather large proportion of the total sample weight. Presence or absence of one or afew
large particlesin the distribution tail influences not only the percentiles of the coarsetail,
but central and fine percentiles aswell. Therefore, a volumetric sample needs to be
sufficiently large so that coarse particles are representatively included in the sample.
Because representatively sampling the coarse tail ensures accuracy for the entire
distribution, sample mass is determined as a function of the D particle size. Because
particle massis afunction of the third power of particle size, sample-size equations for
volumetric samples are (usually) afunction of the third power of Dy, i.€., D

Defining the Do particle size

The Dy particle size used for determining the mass of volumetric samples does not
necessarily have to be the largest particle found in the sampling reach, but should be the
size of the largest particlesto be represented in the sample. The largest particle sizesto be
represented in a sample depend on the study objective. When determining the Ds, or
another percentile for computations of bedload transport ratesin a given streambed,
untransportably large particles, e.g., boulders: unearthed from glacial deposits, or supplied
from rock fall, should not be included in the sample. If the study objective isto compute
the stream roughness, untransportably large boulders should be included in the analysis.

The largest particle size of concern that should be representatively included in bed-
material samples for bedload studies is often the dominant, large particle size Dgom. In
mountain streams with occasional supply of non-fluvial supply of large particles, the
particle size of Dgom is roughly equivalent to the Dy particle size. Dyom IS @pproximately
the largest particle size transportable during frequently occurring large floods (e.g.,
bankfull flow or aflood with atwo-year recurrence interval). The size of Dgyom Can be
estimated from the mean b-axis size of about 30 large (except the very largest) particles
deposited on the upstream end of gravel bars or on other fresh depositional surfaces that
are not affected by backwater or wake hydraulics. Absence of alga cover and negligible
embeddedness may be interpreted as signs of recent transport. Those indicators can be
misleading and indicate particle sizes too large for Dgom, If the last flood greatly exceeded
the commonly largest bankfull or biennial flood and deposited either extraordinarily large
clasts, or buried the streambed with finer sediment. In this case, atractive force diagram
(Lane 1955; Leopold 1992, p. 194) may be used to estimate the size of Dgom for flow
properties of commonly occurring floods.

289



In uncoupled streams, the D particle size may be transportable during the floods of
concern. Sample-mass. equations may then be based on the center of class of the largest
fluvially transported size class Dy, OF the Dgs particle size. Theterm Dy IS used asthe
largest transportable size class in the discussion of sample massin the following section,
and not as the absolute largest particle size found in areach.

5.4.1.1 Sample mass as cubic functions of Dmax

Several sample-mass recommendations are available that predict sample massas a
function of Dy, (€.9., 1SO (1977) following De Vries (1970), Neumann-Mahlkau 1967),
Church et a. (1987), Diplas (1992a), Diplas and Fripp (1992), Fripp and Diplas (1993).
However, these cubic sample-mass equations are based on different criteria which include:

» Effect that adding or omitting the largest particle(s) has on the total sample mass,

» Error acceptable for the particle size of alarge size fraction,

» Constant coefficient of variation for the sizes of individual particles within asize class
over neighboring large size classes,

* Number of particles that should be contained in the largest size class, and

» Feadhility of obtaining a statistically required sample volume.

The different criteria produce different cubic sample-mass equations. To facilitate a better
comparison of the numerical results, all cubic sample-mass equations are expressed in the
same form of

mg=a- Dmax3' Ps= b- Dmax3 (5.31)

where my is sample mass and usually expressed in units of kg unless otherwise specified.
a and b are coefficients, and ps is the particle density. The unit of the Do particle sizeis
in meters for the equationsin Section 5.4.1.1, however in Fig. 5.14, Dyex iSindicated in
units of mm for familiarity. For ssimplicity, al particles are assumed to be spheres or
ellipsoids®, and the term 776 is incorporated in the a coefficient. A particle density ps of
2,650 kg/m?® is assumed for particles and the numerical valueisincorporated into the b
coefficient. All cubic sample-mass equations are plotted in Fig. 5.14 (the numbers on
graphs refer to equation numbersin Section 5) and listed in Table 5.8. Sample masses
predicted by these equations for a specified Dy particle size range over three orders of
magnitude, i.e., the percentage weight of the D« particle size of total sample mass ranges
between roughly 0.01 and 10%.

% The volume of an ellipsoid with an axis ratio a:b:c of 3/2:1:2/3 is equal to the volume of a sphere with a diameter of 1.
See Eq. 5.64 in Section 5.4.5.
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Percent error in total sample massincurred by the largest particle

One of the criteria used to establish an appropriate sample mass is the amount of error
produced by the unrepresentative presence or absence of the largest particle in the total
sample mass. In small samples from poorly sorted deposits, the largest particle can
account for a substantial fraction of the total sample weight. The arbitrary presence or
absence of the largest particle thus substantially affects the weight of the total sample
mass. If the resulting error in sample massis not to exceed 1%, sample mass must be
larger than 100 times the mass of the D« particle. A regression function fitted to the
graph provided by Neumann-Mahlkau (1967) determined the relationship between sample
mass and D« particle size to be

ms = 138,000 Dy e (5.32)

where Dy, max 1S the nominal diameter (in m) of the D« particle size (Section 2.1.2), and m
issample mass (in kg). For spheres, or ellipsoidal particles with axesratios of a=3/2 b,

b = Dyax, and ¢ = 2/3 b, the particle weight of Dmax iS equal to the weight of a particle with
anominal diameter of Dyux (Dmymax). I the potential error introduced by the largest
particleis allowed to increase to 10% (i.e., the Dnux particle size is allowed to assume
10% of the total sample mass), the regression function becomes (same units as above)

mMs = 13,800 D max” (5.33)
Both functions are plotted in Fig. 5.14 and labeled 32 and 33.

Relative error
The sample-mass recommendation by De Vries (1970) is based on an analysis of the
relative error ey, of theith size fraction. The relation can be computed from:

D3. B- p
Spi- = Ipi- - ) (5.34)

where p; is the probability by mass of the ith size fraction and isaconstant. Laboratory
experiments using sand and small gravel < 14 mm estimated amean value of 3=0.8. De
Vries (1970) considered the Dg, as characteristic of the large particle-size fraction. Thus,
sample mass ms as a function of the Dg, particle size can be computed from:
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_Dg’- 08 ps
ms= e%piz_ o (5.35)

De Vries (1970) suggests setting p; = 10%. For arelative error ey of 1% (“high
precision”), the denominator in Eq. 5.35 is 10°. The sample size for various degrees of
precision is

Dg’- 08 ps  Dgd’- 08 ps
0.01°- 0.1 ~ 10°

=08 10°- Dg’- ps (5.36)

with unitsin meters and kg. The exponent x equals 5 for a“high” precision of 1%, 4 for a
“normal” precision of 3%, and 3 for a“low” precision of 10%.

Percentage sample mass contained
in one D particle:
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Fig. 5.14: Comparison of various sample-mass recommendations (kg) for gravel and cobble bed material
based on cubic functions of D, The numbers on the graphs refer to the equation numbersin Section 5.
The four lineslabeled 0.01, 0.1, 1 and 10 refer to the percent sample mass contained in the mass of the Dy
particle.
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The sample-mass recommendations by De Vries (1970) were devel oped for sand and fine
gravel. If De Vries recommendations are applied to medium and large gravel particles
and cobbles, the sample mass becomes very large. The International Organization of
Standardization (1SO 1977) adopted the De Vries (1970) sample-size recommendations.

In order to compare the sample-mass recommendations by De Vries (1970) and 1ISO
(1977) that use the Dg, particle size with those that are based on Dy, the
recommendations based on the Dg,4 needs to be modified. If the Dy particle sizeis
assumed to be equal to the Dy; 7, and the sample standard deviation is 1.0 ¢, then the Dg7 7
particle size is approximately 1.0¢-units larger than the Dg, (i.e., twice aslarge) (Fig. 2.19
in Section 2.1.5.4). The sample massrequired for a Dg, particle 8 mmin sizein the
original plot by De Vries (1970) is therefore assigned to a Dg7 7 Or Dy particle size of 16
mm in Fig. 5.14. The sample mass (kg) for high, normal, and low, precision
recommended by De Vries (1970) (Eg. 5.36) can then be expressed as cubic functions of
the Dgy 7 particle size (m)

ms = 26,500,000 Dg77°  for “high precision” (5.37)
ms = 2,650,000 Dg;;>  for “normal precision” (5.38)
ms = 265,000 Dg7.7°> for “low precision” (5.39)

Constant variability of particle sizes per size class over all size classes

Church et a. (1987) presented a sample-mass criterion that is independent of an assumed
underlying distribution type. Church et a. (1987) found that the coefficient of variation
CV of particle sizeswithin a0.5 ¢-size classis approximately 10% if the size class
contains more than 100 particles. To ensure a constant CV of 10% for all sizes classes
including the largest, Church et al. (1987) empirically determined that the mass of the
largest particle in the sample should not exceed 0.1% of the total sample mass.
Conseguently, the sample mass ms (kg) should be 1,000 times the mass of the D yax
particle size. Thisrecommendation can be mathematically expressed as

M.=1000g D’ Ps =524+ Dpa’- ps = 1,388,000 Dya’ (5.40)

with Direx in m, and a particle density ps of 2,650 kg/m? (see graph labeled 40 in Fig.
5.14). Similar to the “normal” precision criterion by De Vries (1970), Eq. 5.40 yields
unmanageably large sample masses when applied to particle sizes larger than 32 mm. For
coarse gravel with a Dy Of 32 to 128 mm, Church et al. (1987) therefore suggest aless
stringent criterion in which the mass of a Dy particle accounts for 1% of the total sample
mass. This can be expressed by:
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ms = 1oogDmax3- Os =524 Dma’- ps = 138,000 Dy (5.41)

Equation 5.41 (graph 41 in Fig. 5.14) isidentical to the sample-mass equation by
Neumann-Mahlkau (1967) for the 1% precision criterion (Eq. 5.33, graph 33 in Fig. 5.14).
As particle sizes exceed 128 mm, sample masses again become so large that Church et al.
(1987) lowered the criterion to Dyax = 5% of the total sample weight.

ms = 20% Diex - Ps =10.47 - Dmac - Ps = 27,751 Dy (5.42)

The three sample-mass criteria by Church et a. (1987) plot as parallel graphsin Fig. 5.14.
In order to obtain one function applicable to all particle sizes, the three functions can be
united by a staircase function which, in a second step, can be smoothed by a power
regression function that isfitted through the corner points of the staircase functions. This
procedure and the resulting sample-mass equation is discussed further under “ Canadian
standards’ in Section 5.4.1.2.

Volumetric considerations

Diplas (1992a) and Diplas and Fripp (1992) based their sample-mass recommendation for
volumetric samples on the following considerations: If 100 particles are sufficient for a
line or agrid sample, and if a particle with the diameter D occupies an area larger than D?,
then the minimum area for an areal sampleis Anin =100 - D2 For an entire particle-size
distribution, total sampling area could be defined as A = 100 Dy, |f the minimum
depth of avolumetric sample is set to 2 Doy (Sect. 4.2.2.2), sample mass m (kg) becomes

Ms = 200 Dimc - o= 460,000 Dy (5.43)

where Dy isin meters and py, is the sediment bulk density assumed to be 2,300 kg/m®
(Table 2.16 in Section 2.5). Subsequent computations of precision and sample size
prompted Fripp and Diplas (1993) to increase the minimum number of particlesfor a
pebble count to 200 - 400 particles. Total sample area A then increases to 200 or 400
Dmax (EQ. 5.28), with a sample mass of

ms = 400 t0 800 Dy - Po = 1,380,000 Dy (5.44)
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if amultiplier of 600 is selected. Note that sample-mass recommendationsin Eg. 5.44 are
nearly identical to those proposed by Church et al. (1987) in their 0.1% criterion (Eq. 5.40).

Sampling until 5 Do particles are contained in the sample

A simplefield criterion for estimating the necessary sample mass that does not require
monitoring sample weight is proposed by Ibbeken (1974). He suggests continuing to
sample until at least 5 particles of the Dy Size class are contained in the sample. This
approach implies that the spatial distribution of Dux particles within a sediment deposit is
truly random, and that there is no user bias towards or against sampling large clasts. In
order to compare Ibbeken's criterion with those discussed above, a percentage weight
needs to be assumed for Dy particlesin the total deposit. If the percentageis set to 1%,
and the Dpx particle-size class is 180 mm with an average D particle weight of 8 kg,
Ibbeken's sample-mass criterion yields5 - 8 kg - 100 =4,000 kg. In thissample of 4
metric tons, the mass of one D,y particle mpmax comprises 0.2% of the total sample
weight. Interms of the notations used above, |bbeken's sample-mass criterion can be
rewritten as.

Me=2000 - Momax = 2000 - =Dy’ - ps = 2775,073 Dira’ (5.45)
6

If it isassumed that Dy particles make up 5% of the deposit, Ibbeken's sample-mass
criterionyields5 - 8kg- 20 =800 kg and the mass of one D, particle mpmax would
comprise 1% of the total sample weight. Thisresult isidentical to the sample mass
criterionin Eq. 5.41.

5.4.1.2 National standards: non-cubic functions of Dmax particle size

It is conceptually evident that sample mass should increase as a cubic function of particle
size. Nevertheless, the resulting steep increase of sample mass with particle size leads to
large and often unmanageable sample sizes for cobble-sized bed material. Most national
standards therefore propose sample-mass recommendations that require arelatively high
sample mass for small Dy SiZes, but the increase of sample mass with particle size then
continues at alesser rate than it does with a cubic function. Regression functions fitted to
the relations between sample mass and particle size yield either power functions with
exponents between 1 and 1.5, or linear functions. Note that these relations are empirical
and units on both sides of the equations do not necessarily match.

British, German, and American table value standards

Some of the national sample-mass recommendations are provided as table values only.
Examples are the British BS 812, | standards (cited by Mosley and Tindale 1985), the
German recommendations (DVWK 1988), and the American ASTM D75-71 standards
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(cited by Mosley and Tindale (1985)). The British and German sample-mass
recommendations are limited to particle sizes smaller than 60 mm, whereas the American
ASTM D75-71 standards apply to particles smaller than 90 mm. For avisua comparison
of sample mass, tabulated values and computed sample mass are plotted in Fig. 5.15.
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Fig. 5.15: Empirical sample-mass recommendations for gravel and cobbles expressed as power and linear
functions of D, (combined from various sources). The four lines indicate the percentages of 0.01, 0.0, 1,
and 10 % of the total sample mass comprised in the mass of the D, particle size (see Fig. 5.14).

American standards
Sample mass (kg) recommended by the ASTM D75-71 standards for particles smaller
than 90 mm can be expressed by alinear regression equation

Ms = 2,069 Dyyex - 6.7 (5.46)

with Dyex expressed in units of m (Fig, 5.15). The American ASTM C136-71 standard
(cited by Church et a. 1987) has no restriction on particle size and determines sample
mass m (kg) as
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1.5
Ms = 2,596 D max (5-47)

where Dy, max (in M) isthe nominal diameter (Section 2.1.2) of the particles retained on the
largest sieve size (Fig. 5.15).

German standards

Sample-mass recommendations published by the Deutscher Verband fir Wasserbau und
Kulturtechnik (DVWK 1988) extend to particle sizes up to 60 mm and can be expressed
by a power regression function (with min kg, and Dpax in m; Fig. 5.15)

My = 712.4 Dy (5.48)

Swiss standards
The empirical Swiss recommendations for sample mass in gravel-bed rivers are based on
sample volume (V) (Anastasi 1984; Fehr 1987)

Vs = 2.5 Dyrax (5.49)

with Vin m® and Diex in m. The mass of sediment contained in this sample volume varies
with the bulk density p, which is affected by the sorting and packing of the particlesin the
sample. Bulk density for gravel deposits ranges between 1,700 and 2,600 kg/m* (Table
2.16 in Section 2.5). For comparison with other sample-mass equations, p, was set to
2,300 kg/m?*, avalue proposed for gravel-sand mixtures by Carling and Reader (1982).
Sample mass (m) in kg isthen

My=25Dmax: M = 5,750 Diax (5.50)

Canadian standards

Church et a. (1987) proposed using three sample-mass criteria depending on the Dy
particle size (Section 5.4.1.1). However, use of three criteria can lead to confusion in
samples-mass estimates. Sample-mass requirements for particles of 32 mmis 45 kg if the
0.1% criterion is applied (Eg. 5.40), whereas sample mass for 45 mm particlesisonly 13
kg, if aless stringent criterion of 1% is used (Eq. 5.41) (Fig. 5.14). The Canadian
standards described by Y uzyk (1986), Y uzyk and Winkler (1991), and Zrymiak (in press)
fitted a staircase function through the three graphs by Church et al. (1987) to unite the
three criteriain a monotonic function. Another possibility to unite the three sample-mass
criteriain one strictly monotonic function is to fit a power regression function through the

297



corner points of the staircase function (Fig. 4.20 in Section 4.2.3.2), yielding the sample-
mass equation (r°=0.999):

My = 2,881.6 Dy - 47.56 (5.51)

with min kg, and Dyax in m. The adjusted sample-mass equation for Church et al. (1987)
falls midway between the range of the other non-cubic sample-mass equations (Fig. 5.15).

Summary

Sample-mass recommendations that are based on the size of the D« particle vary over
several orders of magnitude for a specified Dy particle size (Fig. 5.14. and 5.15). This
variability is shown in Table 5.8 that presents cubic and non-cubic regression equations
for sample-mass recommendations and compares sample-mass requirements for D
particle sizes of 16 and 180 mm.

None of these recommendations have been formally adopted as the standard for sampling
bed material in gravel-bed streamsin the United States. The empirical sample-mass
recommendations most frequently used and referenced are those by Church et al. (1987).
The adjusted and strict-monotonic sample-mass equation for Church et al. (1987)
describes the center of the range proposed by cubic and non-cubic sample-mass equations.

5.4.1.3 Error of the entire particle-size distribution due to the presence or
absence of particles from the largest size class

Presence or absence of large particles not only affects total sample mass, but also aters
the particle-size distribution in general. The presence of a statistically non-representative
large particleisless likely than an absence, but has a disproportionate effect on the
sampled particle-size distribution. The presence of an unrepresentative large D ax
particle, that comprises alarge percentage of the total sample mass, considerably coarsens
the entire particle-size distribution compared to a parent population in which large
particles are not overrepresented. This can beillustrated with Fig. 5.16, which is
described in adifferent context below. Assuming the heavy black linein Fig. 5.16
represents the parent particle-size distribution of the deposit, the line termed “ biased”
indicates a sample distribution in which the largest particle comprises 30% of the total
mass. Compared to the parent population, the Dsg particle size is more than doubled, and
the D5 size is even quadrupled in the sample in which large particles are overrepresented.

Chance absence of particles from the largest size class causes a sample particle-size
distribution that is finer than the parent population. This effect isless pronounced than a
chance overrepresentation, but it occurs statistically more often. The effect of chance
absence of the Do particle on the sample particle-size distribution is discussed in more
detail in Section 5.4.1.4.
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Table 5.8: Comparison of cubic and non-cubic regression functions for sample mass as a function of the
Dnax particle size (sample mass in kg and D, particles sizein m). Sample mass in parentheses indicates
that the Do particle size is beyond the intended range of the equation. See text for assumptions and units.

Regression Function ~ Author, Criterion Equation  Sample Mass (kg) for D,y Of:
Number 16 mm 180 mm
Cubic sample-mass equations:
Ms = 26,500,000 Dy De Vries (1970), 1SO (1977), high prec.. 5.37 108 (154,550)
Ms= 2,775,073 Dy’  Ibbeken (1974), 5 Dy particles 5.45 114 16,180
Ms= 2,650,000 Dyee  De Vries (1970), 1SO (1977), norm. prec. 5.38 10.9 (15,450)
ms= 1,388,000 Dy Church et al. (1987), Dy = 0.1% ms  5.40 5.7 8,090
ms= 1,380,000 Dyw  Fripp and Diplas (1993), 400 particles  5.44 5.7 8,050
mMs= 460,000 D, Diplasand Fripp (1992) , 100 particles  5.43 19 2,680
Ms= 265,000 Dyee De Vries (1970), 1SO (1977), low prec.  5.39 11 (1,550)
ms= 138,800 Dy’ Church et al. (1987), Dyx = 1% my 5.41 (0.60) 810
mMs= 138,000 Dy Neumann-Mahlkau (1967), my=100D, 5.32 0.57 805
Ms= 27,751 Dy’ Church et al. (1987), Dy = 5% My 5.42 (0.11) 160
ms = 13,800 Dy Neumann-Mahlkau (1967), ms =10 D, 5.33 0.06 80
Non-cubic sample-mass equations:
Ms= 5,750 Dyax Anastasi (1984); Fehr (1987) 5.50 (92) 1030
ms = 2,069 Dy - 6.7 ASTM D75-71 5.46 26 (370)
Ms= 2,882 Dy - 47.6 Church et al. (1987), adjusted 551 1.1 472
Ms= 2596 Dm'®>  ASTM C136-71 5.47 5.2 200
Ms=  7124Dpec®  DVWK (1988) 5.48 1.9 (61)

5.4.1.4 Sample-mass reduction: truncation and readjustment at the coarse end

All cubic, and even some of the non-cubic sample-mass equations recommend sample
masses ranging from several metric tons to several hundreds of metric tons for bed
material containing large cobbles and boulders. Such sample masses are not only
unmanageably large, but would severely disturb the streambed as a consequence of their

collection.
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Church et a. (1987) recommend truncating volumetric samplesin coarse beds and
excluding from the sample particles larger than 256 mm, which typically weigh more than
about 23 kg apiece. Particleslarger than 256 mm are difficult, if not unsafe, to pick up
for most persons and are therefore not likely to be representatively included in a
volumetric sample, anyway. However, the presence of particles larger than the largest
sampled size-class in the streambed should be recorded in the field notes. Any
inadvertently collected large particle may then be discarded and only sufficient sediment is
retained for an unbiased sample of the largest particle size present in the truncated sample.

The truncation and readjustment method of estimating the coarsest part of acumulative
frequency distribution is based on the assumption that the percent frequency of the largest
one or two particles size classesistypically smal in very large and representative samples
from coarse gravel-bed streams. To obtain a smooth shape of the upper end of the
cumulative distribution curve, the truncated sample needs to be extended to its relevant or
full (pre-truncation) particle-size spectrum. Thisis accomplished by assigning small
percentage frequencies to the truncated size classes (Fig. 5.16). The added percentages
decrease for consecutively larger particle sizes. Estimates for those small percentages can
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Fig. 5.16: Example of a biased sample from a deposit with a D Size class of 256 mm. The sample was
truncated by two size classes at 128 mm and then readjusted to its original D, particle-size class of 256
mm.
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be obtained by handfitting a smooth upper part of the cumulative distribution curve. The
total percent frequency needs to be reset to 100% to compute the new cumulative
frequency distribution.

If the assumption that large particles in unbiased samples account for only a small
percentage of the total distribution massisvalid for a given sampling situation, truncation
and readjustment can provide a more accurate approximation of the true bed-material size
distribution than in small samplesin which 20% or more of the sample weight isdueto a
single large particle, or in which the largest particles are not accounted for at all.

Truncation and readjustment is not applicable if there is reason to believe that the paucity
or abundance of large particlesin the sample is aresult of fluvial processes, for example, a
recent change in the local sediment budget. An abundance of large particlesin subsurface
sediment, or ascarcity of large particles in the surface sediment, may result from the

burial of aformer armor surface by alocal deposition of mid-sized particles.

5.4.2 Sample mass as a function of acceptable percentile errors

Sample-mass considerations in previous sections are primarily aimed at avoiding bias due
to the unrepresentative presence or absence of asingle large particle. The resulting
empirical sample mass equations do not provide information regarding sampling
precision. If arelationship between sample mass and sampling precision is needed, it may
be computed from a two-step approach. A two-step approach computes the number of
subsamples necessary for a specified sampling precision around the median particle size
based on the central limit theorem. The particle size of the means or medians (or of
percentiles close to the median) in subsamples are approximately normal distributed).
Sections 5.2.3.1 and 5.3.2 described two-stage sampling for pebble counts with number-
based sample-size statistics and for areal samples. Section 5.4.2.1 describes how atwo-
stage approach is used to estimate the precision of volumetric weight-based samples.

5.4.2.1 Two-stage sampling approach (ISO 1992)

Individual volumetric samples taken with one of the sampling devices described in
Section 4.2.3 are not likely to contain sufficient sediment for an acceptable level of
precision in asize-distribution analysis. Therefore, 1SO (1992) suggests collecting several
subsamples. The mass of the largest particle Diax (in m) per subsample should be less
than 3% of the subsample mass mg in order to avoid sample bias towards the larger
fraction. This criterion for subsample mass ms (in kg) can be expressed by the function:

n

5 Drac - Ps = 46,205 Dyyec (5.52)

M = 33.3

where ps is particle density of 2,650 kg/m°.
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Computation in units of mm

Similar to the two-stage sampling approaches proposed by 1SO (1992) for grid and areal
sampling (Sections 5.2.3.1 and 5.3.2), a number (q) of volumetric samples are collected
from a homogeneous deposit. For each individual sample, the particle size of the median
or apercentile close to it is computed, either graphically from cumulative distribution
curves or by logarithmic interpolation between percentiles (Section 2.1.4.2). 1SO (1992)
proposes to compute the median Dsg in units of mm. It is assumed that the g values of Dsg
are approximately normally distributed. This guideline document recommends
performing the computations in @-units (see below).

The sample standard deviation s, of the q values of Ds is determined from:

g 2
> (Dso - Dsom)
i=1

g-1

S50 = (5.53)

Dsom is the arithmetic mean particle size in mm of the median D5, obtained from the q
samples. Equation 5.53 for sample standard deviation is preprogrammed in most
scientific pocket calculators and spreadsheet programs. For two subsamples, S IS
computed by

Dy -Ds2
2

Ss0 = \/—

(5.54)

Eq. 5.55 can be used to determine the number of weight-based subsamples q required to
remain below a 5% chance (a = 0.05) that the absolute difference (positive or negative)
between the estimated values of the D5y and the true population Dsg is larger than or equal
to the acceptable absolute error e.psp . The absolute error is the difference (in mm)
between the D5 in the sample and in the population. Using an appropriate value for
Student’st from Table 5.2, the number of subsamplesqis

q= ﬁ%’;so L. %oﬁ (5.55)

Total sample mass my; is the mass contained in each subsample ms multiplied by the
number of q subsamples.
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Example 5.14.
The Dnox particle size of adeposit is estimated as 64 mm. Sample

size m for each subsampleis 12 kg according to Eq. 5.52. Five
subsamples were collected and have Ds particle sizes of 23, 29, 32,
38, and 44 mm. From Eq. 5.53, the standard deviation s, for the
Dsois8.1 mm. An absolute error of e.psg = 5 mm around the Dsg
particle size is considered acceptable. Eq. 5.55 needs to be solved
iteratively when t-statistics are used (see Table 5.2 in Section 5.2.1
for t-values). An arbitrary sample size of 20 subsamplesis selected
inthefirst trial of EQ. 5.55. The subsample size geg = 20 iS not
equal to the computed subsample size geomp = 12 after the first trial.

Trid Oest Q-l tl—ulz;q—l qcomp
1 20 19 2.093 115012
2 12 11 2.201 12.7013
3 13 12 2179 12.5013.

After the third trial, the subsample size ges for which the t-value
was selected has converged with the computed subsample Size geony
= 13. Thetotal sample mass of 13 subsamples of 12 kg each = 156
kg has a 95% probability that the sample Dsy Size is approximately
within £ 5 mm of the size of the population Dso.

Note that one physical sample, i.e., the amount of sediment that is collected by using a
sampling device once, might not have a sufficient mass for an unbiased representation of
large particles. For Dy particle sizes larger than 90 mm, the 3% criterion in Eq. 5.52
requires a subsample mass of 34 kg. Therefore, for large Dnux SiZes, it may be necessary
to combine several physical samplesinto one subsample in order to reduce bias incurred
by the statistically unrepresentative presence or absence of large particles. Combined
subsamples are then used for the two-stage sampling approach.

Computationsin unitsof ¢

It is recommended applying the two-stage approach to median particle sizesin units of ¢
rather than to units of mm. Values of ¢, from several subsamples are expected to
approximate a normal distribution better than the values of Dsg (in mm) and should
therefore be preferred over computations in units of mm (Triola 1995) (Section 5.2.3.1).
Dso in Egs. 5.53 and 5.54 is then substituted by values of @s.

Precision from two-stage approach is not general but refersto analyzed samples only
Each set of subsamples has a unique precision. For example, one set of three subsamples
may have three D5y particle sizes of 45, 50, and 55 mm, while another set of three
subsamples has the three D5y sizes of 43, 49, and 54 mm. Sample standard deviations will
be dlightly different for each set of subsamples, e.g., 5.0 in the first set of subsamples, and
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5.5in the second. Consequently, the computed sampling error (or precision) is different
aswell, yielding an absolute error of 12.4 mm around the Ds, for the first, and of 13.7 mm
for the second set of three subsamples.

The variability between individual subsamples increases due to bed-material heterogeneity
in the sampling area or due to operator errors. The mean precision for a specified number
of subsamples within a sampling area (e.g., three subsamples) is obtained if sets of three
subsamples are collected repeatedly and precision is computed for each set. The precision
isthen averaged over all subsets of three samples and the result is the mean precision
expected for a sample size of three. The same procedure is repeated for all sample sizes.
The resulting data provide a description of the relationship between sample size and
precision for a given percentile in agiven deposit. The precision of this relationship
increases with the number of subsamples over which precision is averaged for each
subsample size. However, the repeated computation of precision for alarge number of
samples of the same sample sizeis a (prohibitively) large sampling effort.

Sampling efforts can be reduced by two procedures. Oneis using aregression function to
determine the relationship between sample size and precision in a scatter plot. The second
is a computer re-sampling procedure from a parent distribution for which the measured
particle sizes are entered into a computer. Hogan et al. (1993) combined both procedures
and developed a computerized two-stage sampling methodol ogy (Section 5.4.2.2).

5.4.2.2 Computerized two-stage sampling (Hogan et al. 1993)

The first step for computerized two-stage sampling is to obtain alarge bed-material
sample (parent sample) that may be derived from combining several subsamples taken
from within a homogeneous deposit. The parent sample serves as a population surrogate
and should be as large as possible, because the larger the mass of the parent sample, the
more accurate the surrogate. The sampleis sieved, and the sizes of all particles are
entered into a computer data file. No assumptions about the distribution type of the parent
population need to be made. The computer then sel ects random particles from the parent
distribution with replacement to create subsamples to which particles are added until a
specified mass (e.g., ms = 50 kg) is exceeded. The subsample mass needs to be large
enough to avoid bias against or towards large particles in the sample (sample size for bias
avoidance: Section 5.4.2.1, Eq. 5.52, and Section 5.4.3.1, Eq. 5.60 and Fig. 5.20).

Sampling with no replication

The smallest subsample size (q = 2) collected from the parent population consists of two
subsamples, each with a sample mass of ms = 50 kg and a total sample mass of 2 mg >
100 kg. The largest sample size might comprise 30 subsamples (q = 30) with amass of 30
Ms = 1,500 kg. The particle sizes of all percentiles of concern D, are computed for each
subsample, for example the seven percentiles Ds, D1g, D25, Dso, D75, Dgs, @and Dgs. The
smallest subsample comprises two values for each percentile Dy, whereas the largest
subsample comprises 30 values for each Dp. Although Hogan et al. (1993) used mm-units,
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these guidelines recommend that the analyses be performed in units of ¢, because
percentilesin @approach normality better than percentilesin mm.

The next step in the two-stage procedure is to compute the sample standard deviation Sy
for the q percentile values Dy, assuming that the g values for the percentile particle size D,
approximate a normal distribution. Either Eq. 5.53 or a preprogrammed function in a
spreadsheet program may be used to compute the sample standard deviation. The absolute
error e:pp (in mm) around a percentile Dy is computed from:

t1-ar2:g-
_Lgizgl (5.56)

€:Dp;gq = \/a * Spg

which isthe general sample-size equation Eq. 5.55 or 5.2 solved for the error term. Table
5.2 provides values of Student’st. Alternatively, the absolute error e:p, added or
subtracted from the population percentile value Dy, could be computed. If the study
requires aresult in terms a percent error, the percent error eyp, around a percentile Dy is
computed from

eypp = D;pf . 100 (5.57)

Best-fit regression function for visualizing the data trend

For all percentiles of concern, the error computed for each sample size (Eq. 5.56) is
plotted against that sample size. Data plotted from these computations may scatter
considerably (due to the lack of sample replications, Section 5.4.2.1). An example of such
scatter can be observed in Fig. 6.18 (Section 6.4.3.1). In order to visualize the trend of the
data, a best-fit regression function isfitted through the points (Fig. 5.17). Knowing that

the trend of the curves describes a decrease of sampling error e with 1/\/5] , the regression
function may havetheformof e=a- %

The resulting graphs for positive, as well as negative errors, approach the x-axis
asymptotically from both sides (“trumpet curve’) (Fig, 5.17). Graphs as these can be
established for al percentiles of concern. Graphical visualization of the relationship
between sample size and error is useful when determining where to make the compromise
between tolerable error, sample size, and expendabl e effort and costs. Note, however, that
the smoothed graphs imply an unduly high precision of the computed relationship between
sample size and precision. A further caveat of this methodology is that two-stage
approach used for the computations is not designed to determine errors around low and
high percentiles, which may not approach normality for low sample sizes. Thus, the true
precision may differ from the computed precision. However, the computations are
relatively easy and may suit as afirst approximation of sampling precision.
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Fig. 5.17: Results of two-stage computer sampling with no replications for a bed-material sample from the
Cache la Poudre River, Colorado. Relation between absolute error (in mm) around percentile particle sizes
of the Ds, D3g, Dgg, @nd Dg, (top), and D;q, Dsp, and Dgs (bottom) added and subtracted from the population
percentile particle-size and sample mass. The error curves have been smoothed by fitting a regression
function (from Hogan et al. 1993).
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Error-curves

The error is at amaximum when sample size is small (or massin this case) and becomes
smaller as sample size increases. At some point, afurther increase in sample size
contributes only insignificantly to a further decrease in sampling error (see aso Figs. 5.10
and 5.11 in Section 5.2.3.4). The absolute error around a percentile in units of mm for a
given sample sizeis smallest for small percentiles and increases for larger percentiles (Fig.
5.17). However, amore interesting result from the study by Hogan et al. (1993) isthat the
percent error for a specified sample size is not symmetrically distributed around paired
percentiles. For afixed sample size, the percent error islargest around the Ds, strongly
decreases towards the Dy, is lowest for the Dgy and increases slightly for the Dgs. This
result can be expected for the bed-material from the South Fork Cache la Poudre which is
acoarse gravel or cobble distribution dightly skewed towards fines. Thisfindingisaso
in agreement with the results obtained by Rice and Church (1996b) for their bootstrap
analysis of alarge sample from the Mamquam River (Section 5.2.3.4).

For the bed-material sample analyzed in Fig. 5.17, a sample mass of 200 kg determines
the Dy particle size to within £ 5 mm of the population Dy, particle size of 38 mm. More
than 500 kg are needed to define the D5 to the same absolute precision of + 5 mm. The
increase in the absolute error for higher percentiles for a given sample size (or mass) isa
result of using mm-units for the analysis. It isrecommended that the analysis be
performed in @-units if the underlying distribution approaches normality in g-units. The
error would then be highest for low and high percentiles and lowest around central
percentiles. The distribution of errors around low and high percentiles for a specified
sample size is discussed in Section 5.4.4.

Replicate sampling

Scatter in the data points can be reduced if precision is computed repeatedly for different
sets of samples of the same subsample size, and if the mean precision for agiven
subsample sizeis plotted. The more sets of subsamples collected and analyzed, the higher
the precision of the relationship between sample size and certainty of the result.

Replicate sampling reduces the scatter in the plots of sampling precision versus sample
size. The number of replicates needed to produce smooth error curves increases as the
sorting of the parent distribution becomes poorer, and as subsamples with smaller mass
aretaken. Rice and Church (1996b) recommend that about 200 replicates be performed
for each sample size. Ferguson and Paola (1997) even used 500 replicates. Because this
might exceed the capacity of user-devel oped spreadsheets, the use of commercially
available bootstrapping programs may be required (e.g., Resampling Stats, available as an
add-in program to Microsoft Excel, Section 5.2.3.4).

For 200 replications, each sample size g is represented by 200 replicatesry, ro, ... 200
Each of the 200 replicates has a dightly different composition of particle sizes. Thus, the
particle size of the Dsp and all other percentilesis dightly different for each of the 200
replicates constituting the sample size q. The variability is reduced when the Dsy particle
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Size associated with the sample size g is taken as the arithmetic mean of the 200
individually computed Ds particle sizes (Dsg g200). Likewise, the Dgs particle size
computed for the sample size q = 3 is the arithmetic mean of al the Dg, values obtained
from 200 repetitions with a sample size 3 (Dga 3 200)-

The actual two-stage sampling procedure is the same as described in Section 5.4.2.1, with
the exception that each particle-size percentile represents the arithmetic mean of 200
replicates. A diagram explaining the resampling procedure for two-stage sampling is
provided in Fig. 5.18, for a preset subsample mass of 50 kg, two subsample sizesq = 2
with my=100 kg, and g = 3 and mz=150 kg, and with D14 as the percentile of concern.

5.4.3 Analytical computation of sample mass (Ferguson and Paola 1997)

Sample size necessary to obtain a specified precision isinfluenced by avariety of factors
(Section 5.1), but volumetric sample-size equations discussed thus far have not addressed
many of those factors. The empirical recommendations that determine sample mass as a
function of Dk Were devel oped for various sampling goals and physical settings. Thus,
sample-mass requirements vary widely between different equations (Section 5.4.1). None
of the Dnux-based sample-mass recommendations provides information on percentile
errors. The two-stage approach (Section 5.4.2.1) can be used to indicate the error around
the sample mean or median for a specific set of subsamples. A computerized two-stage re-
sampling approach provides a surrogate for percentile errors (Section 5.4.2.2). A bootstrap
approach that re-samples alarge parent distribution repeatedly (e.g., 200 times) can
reliably quantify percentile errors (Section 5.2.3.4) once alarge sampleis collected.

However, a methodology is heeded that allows the user to make areliable estimate of the
sample mass required for atolerable error around a specified percentile for a given stream
setting before the sample is collected, and to compute the sampling precision for a
collected sample. With thistask in mind, Ferguson and Paola (1997) devel oped sample-
mass equations with the following properties: the equations (1) allow the user to compute
the sample mass necessary for avoiding bias; (2) are suitable for computing the
relationship between sample-size and error for any percentile(s) of concern, and (3) can be
applied to bed-material of any standard deviation or sorting coefficient. However, apilot
study is needed to estimate the bed material D5 and the standard deviation (sorting). A
drawback of the approach is that the computations are based on an assumed normal
distribution, and results are correct only if an underlying normal distribution in ¢-units can
be assumed for the deposit, which strictly speaking is rarely the case.

The sample-mass equations determined by Ferguson and Paola (1997) were derived from
three large computer-generated particle-size populations with standard deviations or
sorting coefficients of 0.5, 1.0, and 1.5 . The samples were generated based on an
underlying lognormal distribution of particle mass per size class for particle sizesin mm-
units (equivalent to anormal distribution in terms of @-units). Random samples with
replacement were drawn by computer from these parent populations until samples of
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Large bed-material sample to
represent parent distribution

Take g subsamples, each with a subsample mass of mgs = 50 kg. Take r replicates for
each subsample.

Forg=2,mgx=3- 50kg =100

Forq=3,mg=3 - 50kg=150

g1 g2 Mss =
mss = 50 50 kg

[°f%
mss = 50 kg

(o[
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mean D16,1
for all r

mean Dis2
forall r

mean D16,1
for all r
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for all r
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forall r

S16,2
for q=2
for all r
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forallr
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Fig. 5.18: Diagram explaining a resampling procedure with replicates for the example of a preset subsample
mass of 50 kg, with subsample sizes q = 2 and m,=100 kg, and g = 3 and mz=150 kg, and with D14 being
the percentile of concern. sy, and ;63 are the standard deviation of the D44 particle sizes of the 2 or 3
subsamples, respectively.
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specified volumes were reached. Each sample size was represented by 500 replicate
samplesto ensure a high precision of the computed relationship between sample size and
error.

Computation of relative sample volume and absolute sample mass

In order to develop graphs that are applicableto all particle sizes, Ferguson and Paola
(1997) expressed sample size as the ratio of the total sample volume V and the volume of
the Dsp particle size Vsp. A spherical or ellipsoidal Dsg particle of 32 mm, for example has
avolume of 176 Dso® = 17.16 cm®. A relative sample volume of V/Vs = 1 corresponds to
avolume of 17.16 cm®, and asamplemassof V- ps=17.16 cm*®- 2.65g/cm® =45 g or
0.045 kg, where ps isthe particle density. Similarly, relative sample volumes (V/Vsg) of
10, 100, 1,000, and 10,000 correspond to absolute sample masses of 0.45, 4.5, 45, and 455
kg, respectively. For aDs particle of 16 mm, the corresponding sample masses are 0.006,
0.057, 0.57, 5.7, and 57 kg, respectively (see Figs. 5.19 a-c, 5.21 a-c and 5.22 a-c). Thus,
to compute sample mass in absolute terms, the D5 particle size needs to be known.

Estimation of the Ds, particle size from one other percentile and the distribution sorting
If the only percentile known from a distribution is the Dg,, for example, then the user can
determine the respective Ds, particle size if the distribution sorting is known, and if a
normal distribution in terms of @-units can be assumed. The Ds particle size can then be
determined graphically (Fig. 2.19 in Section 2.1.5.4) or analytically. Fig. 2.19 can be used
to identify the Dy if the distribution sorting s is closeto the values of 0.5, 1, or 1.5. The
curve with the appropriate sorting coefficient is shifted to the right or left until the curve
passes through the one known percentile value, e.g., Dgs = -6.5 @ The D particle size
can then be read from the shifted curve. The ¢, percentile particle size can be estimated
analytically if the sample standard deviation and one other percentile size is known
(Gilbert 1987):

@Go= @+ (L 5 forg>@o (5.58)

or

®o= ®-(L- 9 for @ < @o (5.59)

where @, is the particle size of the known percentile, and Z, indicates the distance between
the percentile p and the median (i.e., @) in terms of standard deviation. Z, can be
obtained from standard statistics tables (e.g., Gilbert 1987, p. 254, Table A1). Vauesfor
Z, for frequently used percentiles are provided in Tables 5.9 and 5.1.
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Table5.9: Valuesfor Z, for various percentiles (See Table 5.1 for more values)

Percentiles: 50 65 75 84 90 95 975 99
35 25 16 10 5 25 1
Z, 0 0.38 0675 0.995 1282  1.645 1.96 2.327
Example 5.15:

From a previous study it is known that the D;s = 68 mm, and the
sample sorting s = 1.67. Convert the D75 percentile size into ¢
units: @ =-3.3219 log(68) = -6.09 ¢ Compute @, using Eq.
558 @o=-6.09+(0.675- 1.67) =-6.09+1.13 =-4.96 @
Converting back to mm yields: Dso = 2*% =31.1 mm

5.4.3.1 Sample mass for bias avoidance

The analysis by Ferguson and Paola (1997) indicated that small samples are systematically
biased towards the fine fraction (Fig. 5.19 a-c). This becomes evident as the number of
large particlesis relatively small in agiven sample volume. Thus, thereis alessthan
average chance for large particles to be included in asmall sample. Consequently, the
sample particle-size distribution is finer than the population size distribution. Bias dueto
the chance presence of an overly large particle in an individual sampleis not addressed in
this computation, because particles larger than the parent distribution cannot be drawn
from the parent population by the computer. But the occurrence of biasin an individual
sample may introduce a pronounced error into the resulting particle-size distribution (Sect.
5.4.1.4).

Figs. 5.19 a-c indicate that bias is more pronounced for poorly sorted rather than for well
sorted sediment. Fig. 5.15 aso shows that the relative sample mass required for avoiding
bias for the Dgs particle size is approximately two orders of magnitude larger than the
sample mass for avoiding biasin the Dsp. On the basis of these results, Ferguson and
Paola (1997) propose a dimensionless equation for determining the bias-avoiding sample
volume V, . Vyisareative sample volume scaled by the volume of the Dsg particle Vso:

log @%@: 13+log(0)+090- Z, (5.60)

Z,, describes the distance between the percentile p and the median in terms of the standard
deviation of anormal distribution (Table 5.9). Eq. 5.60 can be used for any percentile.
The percentile for which biasis avoided is specified through the selection of an
appropriate value of Z,. To apply to the Dgs, Z,, is selected as 0.995 from Table 5.9 or
Table5.1.
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Fig. 5.19 a-c: Relation between biasin terms of ¢-units (Ay,) and relative sample volume V/Vs, for given
percentiles between Dsy and Dge, and standard deviation of 0= 0.5 ¢(a), 0= 1.0 ¢(b), and o= 1.5 @(c).
Numbers on the curves indicate percentiles. Biasis the difference
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between the sample mean particle size of a given percentilein @-units, averaged over 500 replicate samples,
and the particle size of that percentile in the population. A negative difference indicates the sample
percentile is finer than the population percentile. Sample size is a multiple of the volume Vs, of the
population median particle-diameter. (Reprinted from Ferguson and Paola (1997), by permission of John
Wiley and Sons, Ltd.). Discrete values of sample mass (kg) are given for various Ds, particle sizes (mm) at
the bottom of the plot. The numbers on the bottom of the plots indicate sample mass valuesin kg for 10*,
107 103, 10 10°, and 10° V/Vs, for various Ds, particle sizes.

Example 5.16:
Assume the bed-material sample in @-units approaches a normal

distribution and has a standard deviation of s=1.5 ¢ Relative
sample volume V/Vs for avoiding bias in the estimation of the
Dg, particle size is computed from Eqg. 5.60:

% = 1QL3+l0g(15)+09- 15 0.995)
50

For aDg, particle size of 90 mm, and a sorting of s=1.5 ¢ Dgp is
32 mm (see Fig. 2.19 or Eqg. 5.58). Sample volume without pore
spaceis

Vb =659 (776) - Dso® =659 17.16 cm® = 11,307 cm®

Multiplication by particle density ps =2.65 g/cm® provides sample
mass

m, = 11,307 - 2.65=29,963 g = 30 kg

Dividing by an assumed bulk density of 1,500 kg/m? for shoveled
gravel gives the sample volume of 0.02 m* which is about 2
household buckets of 10 liters each.

Relative sample volume in terms of V/Vx, for bias avoidance was computed with Eq. 5.60
and plotted against sediment standard deviation o for various percentiles between D5, and
Dy inFig. 5.20. Fig. 5.20 indicates that a relative sample volume of V/Vso=30is
required for avoiding bias in the Ds particle size in adistribution with a standard
deviation of 1.5 0. The numbers on the side of the plot present the absolute sample mass
in kg for relative sample volumes of 10, 100, 1,000, etc. If the Ds, particle size of the
deposit was 32 mm, the column under 32 mm is used to interpolate between 4.5 and 45
kg. A relative sample volume of 659 V/Vsy is approximately 6.6 - 4.5 kg = 30 kg.
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Sample mass for bias avoidance can become very large for high percentilesin poorly
sorted river beds. A relative sample volume of 35,000 V/Vs is needed to avoid bias
around the Dgs in a poorly sorted distribution with s=2 ¢@. If the distribution has a Dsg
particle size of 64 mm, an absolute sample massof 3.5 3640 kg = 12.7 metric tonsis
needed.

The widely used sample-mass requirements by Church et al. (1987) suggest that the mass
of aparticle of the Dnux Size should comprise 0.1, 1, and 10% of the sample mass (Section
5.4.1.1). For comparison, these criteriaare also plotted in Fig. 5.20. Fig. 5.20 shows that
even thel0% criterion suffices to prevent bias in all but the 99th percentile.

Sample mass (kg) and metric tons (t)
for Dgg of (mm)

113 16 224 32 45 64

Bias avoidance

1,000,000 D 2t 57t 16t 46t 126t 364t
/ 99
/
//
100,000 / 200 570 16t 46t 126t 364t
/// // D95
//
10,000 / / 20 57 160 455 13t 36t
3 / / Doo
pd
> / / 74
; 10.1% // pd Dgs
1,000 S fe ,,// 2 57 16 455 126 364
/ D7s
/ /
/ 7 /-
1% S Des
/
100 / /{ i ~ 02 06 16 45 126 364
///éj D
:10%//’/ P 50
10- e — | 002 006 016 045 13 36
0 0.5 1 15 2

Standard deviation or sorting

Fig. 5.20: Relation between relative sample volume (V/Vsp) for bias avoidance and sediment sorting for
various percentiles between Dsy and Dgg. Sample sizes for paired percentiles (e.g., D1o and Dg) are
identical. The numbers on the right side of the plot indicate sample-mass values in kg and metric tons for
10 103, 10 10°, 10°, and 10" V/Vs, for various particle sizes of Ds,. (Modified from Ferguson and Paola
(1997), by permission of John Wiley and Sons, Ltd.).

314



5.4.3.2 Sample mass for specified acceptable error

Sampling precision can be quantified by means of the percentile standard error s, in ¢
units between replicate samples. In unbiased samples, s, is computed from Eq. 5.53. The
percentile standard error s, relates to the absol ute error e. g, around a percentile in @-units
by

€ =L1az" S (5.61)

where Z;.412 1S 1.96 for a 95% confidence limit (Table 5.1). Thus, a percentile standard
error s, of £0.15 @-unitsis equivalent to an absolute error e.q, of almost + 0.3 ¢-units,
which, in turn, corresponds to a percentage error in mm-units eyp,, of -18 to +23%, and a
percentage standard error in mm-units S, op of -9 to +12% (Fig. 5.8 in Section 5.2.3.4).

The results of the bootstrap procedure by Ferguson and Paola (1997) in Fig. 5.21 a-c
illustrate a similar trend to the results by Rice and Church (1996b; Figs. 5.10 and 5.11)
and by Hogan et a. (1993; Fig. 5.17). The error decreases with sample size or sample
volume as afunction of 1A/n or 1A/V, respectively. For volume-based sampling, it
appears that the error decreases only after a threshold sample volume has been exceeded,
but this phenomenon may be due to the logarithmic scale of sample size along the x-axis.

Results by Ferguson and Paola (1997) clearly show the relationship between standard
deviation, sample mass, and sampling error. Sample mass for a specified standard error is
orders of magnitude larger for poorly sorted sediment than for well-sorted sediment.
Sample mass for a specified error is aso larger for the Dgs percentile size than for the Dsy.
On the basis of this analysis, Ferguson and Paola (1997) developed a dimensionless
equation that facilitates computing sample volume Vy necessary to obtain a specified
percentile standard error s, when sampling a population with a standard deviation o:

log %j(@: 14+4.2l0g(0) +090- Z, -210g (s) (5.62)

where Z, is the pth percentile variate of the unit normal distribution (Tables 5.9 and 5.1).
For a preset percentile standard error s, = 0.15 @-units, the last term in Eq. 5.62 yields the
numerical value of -1.65 and simplifiesto

log %@: 30+42l0g(0)+090- Z, (5.63)
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Fig. 5.21 a-c: Results from the bootstrap analysis: Relation between percentile standard error s, and relative
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If the error around the Ds is of concern, the last term of Eq. 5.63 can be omitted since the
numerical value of Z, becomes 0.

Example 5.17:
For adeposit that can be assumed to approach a normal

distribution and has a sorting of s= 1.2, the relative sample
volume Vy/Vso required for estimating the Dgs particle size to
within a standard error of £0.15 g@-unitsis (Eq. 5.62) is

Mo _ 10(L4+4210g(12) +09- 12 1645-210g(015))
Vso

— 10(1.4+0.33 +1.78 - (-1.65)) — 105.16 — 144,544

If the bed material Dgs particle sizeis 200 mm, the Dsg particle
size can be computed from Fig. 2.19, or Egs. 5.58 and 5.59 and is
50.9 mm. The absolute sample volume Vs can then be computed
from

Ve=144,544 - (116) - Dso° = 144,544 - 69.05cm®
=9,980,494 cm® = 10 m°.

Multiplication by particle density ps =2650 kg/m? provides the
sample mass

ms=10m® - 2650 kg/m® = 26,500 kg = 26.5 metric tons.

Dividing by abulk density of 1.5 kg/m* for shoveled gravel,
sample bulk volume is 17.7 m® (approximately the volume of a
small office).

Relative sample volume in terms of V/Vs, for sample precision of £0.1, £0.15, and +0.2 ¢
standard errors was computed with Eq. 5.63 and plotted versus the sediment sorting for
various percentiles between Dsp and Dgg in Figs. 5.22 a-c. The graphs indicate that
relative sample volume, and thus sample mass, strongly increases with sediment sorting
and with an increase in the percentile size being addressed. Because the parent
distribution was Gaussian in terms of @-units, sample mass for a preset error and sorting
are symmetrically distributed around the mean, and thus identical for paired percentiles
such as the Do and the Dgy.

Fig. 5.22 isused similar to Fig. 5.20. Thefirst step isto select the plot with the
appropriate error (plot a b, or ¢). If, for example, the task isto estimate the sample size
necessary to remain below an absolute error of £0.2 @around the D5 in agravel bed with
astandard deviation of s= 1.5 ¢, select Fig. 5.22 a. A relative sample volume of V/Vg, =
12,000 is obtained from the graph for D75 in Fig. 5.22 a. If the bed-material D particle
size is 64 mm, the absolute sample mass may be read on the right side of the plot as 1.2 -

317



36.4 t = 43.5 metric tons. This example is somewhat extreme because the accurate
determination of the Dgs subsurface particle-size in gravel-bed streams is usually not the
task of volumetric sampling. Sample massis orders of magnitude smaller if the Dsp isthe
percentile of interest, and if the bed-materia is better sorted. A relative sample volume of
VIVso = 2,500 suffices for estimating the Dsg to within an absolute error of £0.2 @if the
bed material sortingis 1@ For aDsg particle size of 22.6 mm, sample mass on the right
side of the plot can beread as2.5 - 16 kg = 40 kg.

The user may be frequently surprised by the large sample sizes necessary for volumetric
samplesin coarse gravel and cobble-bed streams. Sample masses larger than afew 100 kg
are usually not feasible to collect in mountain streams. It may become necessary to reduce
the tolerable error for the study, or to restrict precision requirements to central percentiles.
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Fig. 5.22 a-c: Relative sample volume V/Vsg, as afunction of sediment sorting for various percentiles
between Dsy and Dgg for specified standard errors of £ 0.1 g-units (b), *+ 0.15 @-units(c), and of £ 0.2 ¢
units (d). Absolute sample massis a multiple of the volume Vs, of the median-sized particle. The 0.1, 1,
and 10% sample-mass criteria by Church et al. (1987) are included for comparison. (Modified from
Ferguson and Paola (1997), by permission of John Wiley and Sons, Ltd.). The numbers on the right side of
the plots indicate sample mass values in kg and metric tons for 107, 10°, 10%, 10°, 10°, and 10" V/Vs, or

various sizes of Dx. (continued on next page)

318



Sample mass (kg) and metric tons (t) for Dsg (Mmm)

b. Sandard error of + 0.15 ¢
Absolute error of £ 0.3 @ Dgs  Dgs 113 16 224 32 4 64
1E7 7 20t 57t 160t 455t 1260t 3640t
// /, Deo
// J // 5
84
1E6 i . 2t 57t 16t 46t 126t 364t
/. // //I //I
/ yawaw 4 + D
/// S i
o 1ES L~/ S S S Des200 570 16t 46t 126t 36.4t
>LO i 4 y4 D
YAy Sy Av/ 4 y 4
Z / /A AN/
[ /)7 S/
~ /4
1E4 LIS S S 20 57 160 455 13t 36t
Il II/II /I /I
117/, /.~
Yot IS
1000 ////// / 2 57 16 455 126 364
1/
1111//.7
ot /e
0 J 0,
100 ‘//////‘ 51‘04): P by 11102 06 16 45 126 364
0 0.5 1 15 2

Standard deviation or sorting

Sample mass (kg) and metric tons (t) for Dgg (mm)

C. Sandard error of £ 0.2
Absolute error of £ 0.4 ¢ Dgg  Dgs 113 16 224 32 45 64
1E7 7 // 20t 57t 160t 455t 1260t 3640t
/ / / D90
1E6- [ LS 2t 57t 16t 46t 126t 364t

//
] // D7s
1E5 /// / 200 570 16t 46t 126t 364t
3 / / 7 D65 ]

] // /.
1E4 - / 4,// Dso | 20 57 160 455 13t 36t

_ Ly
1000 ;0'1% //////,/

V[ Vs
~~

2 57 16 455 126 364

T1% / 7/ 10%
100 f+——+ i L+ 1102 06 16 45 126 364

0 0.5 1 1.5 2
Standard deviation or sorting

319



The widely used sample-mass criteria by Church et al. (1987), i.e., the mass of a particle
of the Dynax Size comprises 0.1, 1, and 10% of the sample mass (Fig. 5.14, Section 5.4.1.1)
are plotted in Fig. 5.22 for comparison. The 1% criterion (Dpyex <1% of sample mass) is
sufficient to determine the Dg4 and all smaller percentiles with an absolute error of £0.3 ¢
unitsin bed material with a sorting coefficient between 1 and 2. In fact, the sample
requirement could be an order of magnitude or two less than the 1% criterion for
determining the Dsg particle size to within an acceptable absolute error of £0.3 @-units.
However, the 0.1 % criterion needs to be applied for large percentiles > Dgy, or if more
stringent error criteria are used.

5.4.4 Comparison of error curves for low, central, and higher percentiles

The general shape of the error curve, i.e., the relationship between precision and sample
size e=f (1A/n) issimilar for all percentiles, irrespective of the manner in which the
error was computed, and irrespective of any assumptions made about the parent
distribution. However, sampling error is not automatically smallest for the smallest
percentile (e.g., the Ds), but is controlled by the way in which the sampling error was
computed. The error can be lowest for either the Ds, Dsg, or the Dgs within a specified
gravel population depending on whether the error was computed:

e asabsolute or percent error,
* intermsof mm or gunits, and
» from an assumed symmetrical, or asymmetrical underlying size distribution.

Conseguently, comparisons of errors around different percentiles need to specify exactly

how the error was computed and which assumptions were made about the underlying
distributions.

5.4.4.1 Symmetrical parent distributions

Absolute error in units of gand mm

In symmetrical, unskewed parent distributions, absolute errorsin ¢-unitsfor agiven
sample size are paired around the mean. Thus, error curves are identical for the g and @s
percentiles, and the g and @4 percentiles. The errors are highest for the distribution
tails, i.e., the @ and @s percentiles, and lowest for the go. The error curvesfor a
theoretical Gaussian distribution provided by Rice and Church (1996b) in Fig. 5.10 are an
example for the systematical distribution of errors. If the same degree of precisionis
desired for each percentile, a smaller sample size suffices to determine the error around
the mean or some central percentile than for the fine or the coarsetail. If the error analysis
is performed in mm-units, the absolute mm-errors are highest around high percentiles
(e.g., Dgs), and lowest around small percentiles (Ds). The error curves by Hogan et al.
(1993) in Fig. 5.17 are an example. The relative positions of error curves are sketched for
particle sizesin ¢ and mm-units, absolute and relative errors, for symmetrical, unskewed,
aswell asfor asymmetrical, skewed distributionsin Fig. 5.23.
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Percent error in units of gand mm

The percent error around percentiles in @-unitsis lowest for the ¢o, higher for the g5, and
significantly higher for the g. The relative error around percentilesin mm-unitsis paired,
with the lowest error for the Dsp, and equally high errors for the Ds and Dgs (Fig. 5.23).

5.4.4.2 Asymmetrical parent distributions skewed towards a fine talil

Absolute error in units of gand mm

Particle-size distributions, even when analyzed in @-units, are rarely symmetrical in coarse
gravel-bed streams, but are often positively skewed towards atail of fine particles. The
position of the error curves for the ¢, @so, and @os is different for symmetrical and
asymmetrical parent distributions.

For asymmetrical parent distributions that are skewed towards a fine tail, absolute errors
around percentilesin ¢g-units for a given sample size are highest around the ¢, lowest for
the @0, and only dlightly higher around the s than around the ¢5. The error curves
provided by Rice and Church (1996b) for the bootstrap analysisin Fig. 5.11 are an
example. If the same degree of precision isdesired for each percentile, nearly the same
sample size that suffices to determine the Dsg of the distribution is sufficient for the Dgs as
well. However, a huge sample massis required to estimate the D5 to within the same
precision. An error analysisin mm-units results in absolute mm-errors being highest
around the Dgs, and lowest around the Ds. See the error curves by Hogan et al. (1993) in
Figs. 5.17 aand b for an example. Fig. 5.23 b compares error curves for absolute and
relative errorsin gand mm for skewed distributions. The position of the ¢ and @s curves
are switched if the distributions are negatively skewed towards atail of coarse particles
(e.g., beds comprising mostly sand and afew larger gravel particles).

Percent error for unitsin gand mm

The percent error around percentiles in ¢@-unitsis approximately equally low for the Ds
and the Dgs, and highest for the Ds. The relative error around percentilesin mm-unitsis
lowest for the Dso, higher for the Dgs, and highest for the Ds (Fig. 5.23 b).

322



