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Introduction_____________________

Background
	 The Landscape Fire and Resource Management Plan-
ning Tools Prototype Project, or LANDFIRE Prototype 
Project, was conceived, in part, to identify areas across 
the nation where existing landscape conditions are 
markedly different from historical conditions (Keane 
and Rollins, Ch. 3). This objective arose from the rec-
ognition that over 100 years of land use and wildland 
fire suppression have dramatically affected wildfire 
characteristics and associated landscape composition, 
structure, and function (Turner and others 2001). Met-
rics were needed to describe the extent and distribution 
of highly departed landscapes to protect communities, 
ecosystems, firefighters, and public safety, as outlined 
in the National Fire Plan (USDA and USDI 2002; U.S. 
GAO 1999; http://www.fireplan.gov). Accordingly, the 
Departments of Agriculture and Interior were directed 
by Congress to develop a cohesive strategy for imple-
menting the National Fire Plan (Laverty and Williams 

2000), which resulted in the development of the “Fire 
Regime Condition Class” (FRCC) classification system 
for use as a key implementation measure. The FRCC 
classification is based on the concepts of historical ecol-
ogy and is intended to represent the departure of current 
landscapes from the range of variability of historical 
conditions. Fire Regime Condition Class is defined as: a 
descriptor of the amount of departure from the historical 
natural regimes, possibly resulting in alterations of key 
ecosystem components such as species composition, 
structural stage, stand age, canopy closure, and fuel 
loadings (Hann and Bunnell 2001).
	 The U.S. GAO (2002) further recommended the de-
velopment of consistent and comprehensive spatial data 
to identify landscapes at high risk of wildfires. Previ-
ous FRCC mapping efforts created coarse-scale (1-km) 
spatial data layers describing fire hazard and ecological 
status for the conterminous United States (Hardy and 
others 2001; Schmidt and others 2002; http://www.fs.fed.
us/fire/fuelman). However, the coarse spatial resolution 
made these maps useful only for national-scale assess-
ments. In addition, these maps were largely a product 
of expert systems, which limited the repeatability of 
the process for monitoring purposes. Finer-scale maps, 
compiled using consistent, quantitative methods, were 
needed for applications such as national forest plan re-
vision and implementation and assessments related to 
wildland fire management plans (Rollins and others, Ch. 
2). Our challenge in the LANDFIRE Prototype Project 
was to develop methods, applicable in a systematic and 
consistent manner across the U.S., which identify and 
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map – at a mid-scale spatial resolution – landscapes that 
have diverged substantially from historical conditions.

Overview_ ______________________
	 Broad-scale changes have occurred in many land-
scapes of the U.S., particularly over the last century, 
due to land management practices and other forms of 
human intervention. Fire exclusion and grazing have 
increased tree density and fuel accumulations in many 
forest communities, especially those adapted to frequent 
surface fires (Covington and others 1994; Leenhouts 
1998). These conditions favor diseases, insects, and 
high-intensity crown fires, which can kill old-growth 
trees and alter community structure (Moore and others 
1999). Invasions by non-native plant species have also 
profoundly altered many native plant communities and 
ecosystems (Gurevitch and Padilla 2004). Exotic insects 
and pathogens have accelerated the succession cycle by 
killing important seral tree species, converting mid-suc-
cessional stands to late-successional (Keane and others 
2002). In addition, increasing emissions of atmospheric 
concentrations of carbon dioxide and nitrogen have 
altered photosynthetic processes, species richness, and 
ecosystem function (Farquhar 1997; Jones and others 
1998; Stevens and others 2004).
	 We developed our methods for estimating such depar-
ture based on a set of ecological concepts used to detect 
changes in ecosystem properties and processes across 
landscapes at multiple scales. Species, ecological com-
munities, and ecosystems vary naturally across spatial 
and temporal scales in response to disturbances, biotic 
processes, and environmental constraints (Levin 1978). 
These biotic and abiotic agents of pattern formation 
interact over time to produce a range and variability in 
ecological structures and processes (Morgan and others 
1994; Swanson and others 1994). When the mechanisms 
driving ecological systems, such as disturbance, change 
dramatically, ecological processes and structures respond 
and shift that range and variability (Barnes and others 
1998). Landscapes experiencing extensive changes may 
become altered to the point that their ecological proper-
ties are well beyond their historical range and variability, 
especially in their species composition and structure.
	 The extent of change in any particular ecosystem may 
be assessed by comparing current vegetation conditions 
to the range and variability in historical compositions 
and structures of vegetation communities, or simply their 
“natural variability.” The focus of describing natural 
variability is not on a single condition, but rather on 
a range of conditions and the variability under which 

ecosystems were sustained in the past (Swetnam and 
others 1999). Characterization of these past ecosystems 
has been referred to as the “historical range of variabil-
ity” (Kaufmann and others 1994) or simply “reference 
conditions” (Moore and others 1999). Ideally, character-
ization of reference conditions considers all ecosystem 
components (organisms, structures, biogeochemical 
cycles, disturbance processes, and abiotic factors) and 
includes the appropriate time depth and spatial scales for 
the ecosystem components included in the assessment 
(Moore and others 1999). However, many of these factors 
are poorly understood or are difficult to measure (Moore 
and others 1999). Holling (1992) suggests that a small 
group of “keystone” or highly interactive organisms and 
abiotic processes may control ecological thresholds at 
certain scales. The potential list of important keystone 
variables may still be relatively long (Aronson and 
others 1993; Keddy and Drummond 1996), but experi-
ence and practical considerations have led researchers 
to select certain variables that reflect the evolutionary 
environment (Moore and others 1999; Swetnam and 
others 1999). For example, fire and autotrophic organ-
isms (trees, shrubs, and herbaceous plants) are used to 
describe ponderosa pine and sequoia ecosystems (Fulé 
and others 1999; Moore and others 1999; Stephenson 
1999). Other considerations include identifying the 
historical time period for describing natural variability, 
including the point in time when ecological systems 
were considered relatively unaffected by Euro-American 
settlement (Hunter 1996; Schrader-Frechette and McCoy 
1995). Moreover, characterization of past ecosystems 
should specify whether Native American influences on 
ecosystems are regarded as natural (Landres and others 
1999).
	 We adopted the natural variability concept to guide 
our methods for estimating landscape changes from 
past to present. Specifically, our goal was to describe 
deviations of current landscape conditions from condi-
tions between the years 1600 A.D. and 1900 A.D. and 
to describe them at a regional level with a mid-scale 
spatial resolution to help planning efforts address eco-
logical issues (Keane and Rollins, Ch. 3). We selected 
this time frame for our reference conditions as the ap-
propriate range to represent recent history because fire 
history reconstructions typically date back to at least 
1600 and because we determined that 1900 A.D. best 
approximates the start of significant Euro-American 
influences on western U.S. landscapes (Keane and oth-
ers 2002; Keane and Rollins, Ch. 3). Also, we assumed 
that the influence of Native Americans on landscapes 
was inherent in our depiction of reference conditions.
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	 To develop methods that estimate landscape changes 
from this historical time period, we needed to address a 
number of questions. What were the historical dynam-
ics of plant communities across the diverse ecosystems 
of the nation? How do we measure plant community 
change? At what point does the magnitude of change 
drive an ecosystem beyond its historical boundaries to 
some uncharacteristic condition and warrant ecosystem 
restoration? In this chapter, we outline several approaches 
to 1) addressing each of these questions within the 
ecological framework of plant community function in 
fire-adapted environments and 2) creating maps of eco-
logical departure over large regions. Our chief premise 
for the LANDFIRE Prototype Project was that fire and 
other disturbances regulate succession by regeneration, 
reproduction, and maintenance of plant species and 
assemblages. That is, fires kill existing stands and set 
the process of regeneration in motion for the next for-
est; fire as a selective force elicits asexual and sexual 
reproduction; and periodic surface fires reduce vegetation 
encroachment and competition for light, soil water, and 
nutrition and kill understory-tolerant seedlings (Barnes 
and others 1998). The frequency, intensity, extent, and 
timing of fires (in other words, fire regimes) are char-
acteristic of different regional and local ecosystems 
(Barnes and others 1998). We assumed that under each 
unique fire regime, plant communities approach some 
dynamic equilibrium in their composition and structure. 
When fire regime characteristics change, the character 
of a plant community shifts and distributions of pio-
neer, mid-successional, and late-successional species 
or assemblages become altered. The magnitude of this 
change can be used to prioritize, plan, and implement 
restorative treatments (Hann and others 2004).
	 Our general approach involved developing a historical 
spatial database that describes the natural variability 
of vegetation across landscapes over time and quan-
titatively compares that historical distribution to the 
current vegetation patterns for two large study areas in 
the western United States. For example, the current 
vegetation pattern on a landscape might have changed 
by 70 percent from vegetation distributions observed 
in historical records, indicating a strong divergence 
(fig. 1). To quantify landscape patterns, we chose 
the metric of landscape composition and delineated 
composition by classifying landscapes according 
to their potential vegetation type (PVT), cover type, 
and structural stage (Frescino and others, Ch. 7; Zhu 
and others, Ch. 8). The PVT map identified areas with 
similar climate, landform, and geomorphic processes 
(biophysical settings) where distinct plant communities 

are assumed to develop in the absence of disturbance 
(Arno and others 1985; Steele and Geier-Hayes 1989). 
The cover type map depicted the existing dominant plant 
species or assemblages, and the structural stage map 
approximated the stages of vegetation development for 
the various cover types, ranging from stand initiation 
to old-growth, as described by height and percent cover 
(Zhu and others, Ch. 8). We integrated the cover type and 
structural stage maps such that each unique combination 
described a discrete stage along succession pathways, 
which we call a “succession class” (Long and others, Ch. 
9; see also Long and others, Ch. 6 and Zhu and others, 
Ch. 8 for descriptions of the cover types and structural 
stages used in the LANDFIRE Prototype Project). We 
then combined the succession class and PVT maps to 
describe landscape composition in a spatial context.
	 The collective area of each succession class in a PVT 
functions as our measure of the conditions of a land-
scape, which we refer to as the “vegetation composition.” 
We chose to use the combination of PVT and succes-
sion class as a descriptor of vegetation composition 
because it provided the finest classification resolution 
possible for evaluating landscape dynamics. That is, 
the PVT-succession class classification integrates the 
biophysical environment with existing vegetation, which 
discriminates between major site types. For example, 
we can differentiate ponderosa pine types occurring in 
a Douglas-fir PVT from ponderosa pines growing in 
a Ponderosa Pine PVT. Other landscape composition 
classifications are available, such as fuel models, cover 
types, and structural stages. However, we felt that clas-
sifying landscapes by PVT – succession class would 
be the most meaningful and useful depiction for the 
purposes of land managers, who typically use similar 
classification schemes for depicting landscape condition. 
It should be noted that landscape composition can also 
be described by measures other than area by vegetation 
class, including relative richness, diversity, dominance, 
and connectivity (Turner and others 2001). Similarly, 
landscape pattern can be described by landscape configu-
ration instead of landscape composition using measures 
such as contagion, patch-based metrics, and fractals. We 
chose not to use these landscape metrics and measures 
because they are not yet widely used in management or 
would have required prohibitively expensive computer 
resources. Vegetation composition, on the other hand, 
was far more feasible to map, comprehend, and imple-
ment in management applications.
	 Comprehensive and consistent spatial estimates of 
historical vegetation composition were used in the 
LANDFIRE Prototype to identify natural variability. We 
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Figure 1—Example of general approach for estimating departure in a 6th hydrologic unit code (HUC). Vegetation patterns 
(described here by succession classes) of historical sequences are quantitatively compared to those of the current landscape 
to estimate departure.  See table 7 for explanation of succession class codes.
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relied on simulation modeling to generate a time series of 
data for estimating the potential range and variability of 
historical vegetation for our large regional areas (Keane 
and Rollins, Ch. 3; Pratt and others, Ch. 10). We chose 
to use a moderately detailed simulation model, called 
LANDSUMv4, because it balanced the simulation of 
complex ecosystem processes with computational ef-
ficiency and thereby allowed for the acquisition of time 
series estimating historical conditions for large regions 
in a timely manner (Keane and others 2003; Keane and 
others 2006). The justification for simulation modeling 
and implementation of LANDSUMv4 to develop time 
series representing reference conditions are described in 
detail by Pratt and others, Ch. 10. Results from LAND-
SUMv4 simulation modeling do not represent actual 
historical records, but they are our best approximation 
of how vegetation responded to fire disturbances in the 
past.
	 We developed two methods to measure the extent of 
change, which we refer to as “departure,” between the 
simulated time series estimating historical vegetation 
composition and the current vegetation composition 
on landscapes. The purpose of the first method was to 
implement a field-based procedure, developed by Hann 
and others (2004), within a digital mapping context. 
Hann and others’ (2004) Interagency FRCC Guidebook 
(http://www.frcc.gov) details field-based protocols 
by which land managers can assess the departure of 
current vegetation composition from that of historical 
conditions to meet the objectives of the National Fire 
Plan and Healthy Forests Restoration Act (http://www.
fireplan.gov; http://www.healthyforests.gov) and also for 
reporting purposes, such as to the National Fire Plan 
Operations and Reporting System (http://www.nfpors.
gov). Our implementation of this method, which we 
refer to as the “FRCC Guidebook approach,” compares 
the current vegetation composition to the simulated 
historical time series; we do not, however, compare fire 
frequency and fire severity, as outlined in the FRCC 
Guidebook field procedures (Hann and others 2004), 
because contemporary conditions can be difficult to 
define, quantify, and depict spatially.
	 Calculations based on vegetation composition using the 
FRCC Guidebook approach require that the simulated 
historical time series data be summarized and distilled 
to represent one state or observation. As such, the FRCC 
Guidebook approach is very limited in its ability to 
characterize the full range and variability of vegetation 
reference conditions within the simulated historical 
data. We determined that a more statistically sound 
approach was needed to comprehensively account for 

patterns of temporal variation in the simulated historical 
landscapes (Steele and others, in preparation). Hence, 
we implemented a statistical method, which we refer to 
as the “Historical Range and Variability–Statistical” or 
“HRVStat” approach, to evaluate all states observed in 
the simulated historical time series and compares them to 
the current landscape to provide a complete assessment 
of departure. The HRVStat approach also measures the 
strength of evidence for the estimated departure value, 
which we call the “observed significance level” (Steele 
and others, in preparation).
	 Both the FRCC Guidebook and HRVStat approaches 
for describing vegetation change estimate departure on 
a continuous scale with values ranging from 0 to 100. 
However, the previous coarse-scale (1-km) map of FRCC 
(Hardy and others 2001; Schmidt and others 2002) and 
the FRCC Guidebook field procedures (Hann and others 
2004) describe departure simply in terms of three classes, 
including: FRCC 1 – minimal departure from the cen-
tral tendency of the natural disturbance regime, FRCC 
2 – moderate departure, and FRCC 3 – high departure. 
Using the FRCC Guidebook and HRVStat approaches, 
we likewise classified our departure estimates into three 
categories to be consistent with the FRCC Guidebook 
field procedures and to facilitate comparisons with the 
coarse-scale map of FRCC from Schmidt and others 
2002.
	 The development of methods for estimating depar-
ture was one of the most important objectives of the 
LANDFIRE Prototype Project. Documentation of these 
procedures is the purpose of this chapter and is presented 
below in detail. These procedures can serve as the 
foundation for estimating departure as the LANDFIRE 
Project is implemented across the entire United States 
(Keane and Rollins, Ch. 3). In the process of developing 
these protocols, we identified various areas in need of 
improvement and further research, which we outline 
as recommendations for developing departure indices 
at the national level. The methods described here may 
not necessarily reflect protocols followed when the 
LANDFIRE Project is implemented nationally, and 
results and specific findings may change as protocols are 
improved. We present results from our current methods 
to demonstrate their implementation and to compare 
procedures.

Methods________________________
	 The LANDFIRE Prototype Project involved many 
sequential steps, intermediate products, and interdepen-
dent processes. Please see appendix 2-A in Rollins and 
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others, Ch. 2 for a detailed outline of the procedures 
followed to create the entire suite of LANDFIRE Pro-
totype products. This chapter focuses specifically on the 
procedure followed in developing maps describing the 
departure of current from historical landscape condi-
tions, which served as important core data products of 
the LANDFIRE Prototype Project.
	 In this chapter, we describe: 1) the key spatial layers 
used for estimating departure and preliminary consid-
erations for identifying cover types for analyses; 2) the 
data sets for estimating departure; 3) the FRCC Guide-
book approach; 4) the HRVStat approach; 5) a detailed 
demonstration for estimating departure using these two 
approaches; and 6) a comparison of departure between 
areas with different simulated fire return intervals. We 
implemented the FRCC Guidebook and HRVStat ap-
proaches across two large regions in the western United 
States: one in the central Utah highlands and a second 
in the northern Rocky Mountains of Idaho and Montana 
(LANDFIRE mapping zones 16 and 19, respectively; 
see fig. 1 in Rollins and others, Ch. 2).

Key Spatial Layers and Preliminary 
Considerations
	 Key spatial layers—Of the four maps essential for 
estimating departure in both the FRCC Guidebook and 
HRVStat approaches, three described vegetation: the 
PVT, existing cover type, and existing structural stage maps 
(Frescino and others, Ch. 7; Zhu and others, Ch. 8), and 
the fourth partitioned each zone into smaller map areas 
or “landscape reporting units” (LRUs) so that departure 
could be estimated for each LRU (Pratt and others, Ch. 
10). The determination of appropriate units held great 
importance because, measurements of landscape change 
being scale-dependent, departure estimates vary with 
landscape size. (Gardner 1998).
	 In general, the most appropriate ecological scale for 
detecting change matches the scale at which key pro-
cesses affecting ecosystems (such as fire and succession) 
interact to limit landscape dynamics at a point in time 
(Parker and Pickett 1998). Identifying that scale is a 
challenging problem (Gardner 1998) but may be ac-
complished by evaluating the change in variance in a 
landscape metric with changes in spatial extent (Levin 
and Buttel 1986; O’Neill and others 1991) or by using 
more mathematically complex methods, such as the glid-
ing-box method (Gardner 1998). Due to time constraints, 
we did not conduct such analyses, but we expected that 
the appropriate ecological scales in Zones 16 and 19 
would vary depending on the dominant landscape fire 
and succession processes. For example, in landscapes 

subject to small, low intensity disturbances that kill 
vegetation in patches of only a few trees, the stand scale 
(about 1-10 ha) (Urban and others 1999) would likely be 
the most appropriate for measuring departure; however, 
departure may be better estimated at the landscape 
scale (103 to 106 ha) (Mladenoff and others 1993, 1994; 
Spies and others 1994) in areas subject to large, intense, 
stand-replacing disturbances that kill vegetation in big 
patches. Another consideration was the scale that would 
be most useful to management, which is often at a smaller 
spatial extent approaching the stand scale and at which 
subtle changes to cover type and structural stages, such 
as those caused by fuel treatment, can be detected (Keane 
and Rollins, Ch. 3).
	 Ultimately, we balanced our selection of LRU-scale 
based on both ecological and management considerations 
(see Pratt and others, Ch. 10 for additional details). We 
chose as reporting units uniform squares of 900-m by 
900-m (81 ha) but coded these squares so that they could 
be grouped and summarized at the sub-watershed level 
(average area of 6,450 ha). We determined that summariz-
ing departure to these 900-m by 900-m squares would 
capture stand-level processes and provide land managers 
with a sufficient data resolution. If a landscape-level 
measurement was desired, we included information that 
facilitates the aggregation of data over 6th level Hydro-
logic Unit Codes (HUCs). We are currently conducting 
additional analyses to systematically evaluate the ap-
propriate reporting unit size for estimating departure.
	 Identifying cover types for analyses—Certain cover 
types would skew departure estimates and provide little 
useful information for conservation and restoration of 
landscapes. Specifically, the cover types water, bar-
ren, and ice/snow change little over time and always 
contribute to low departure. Conversely, agriculture 
and urban areas always contribute to high departure 
since current conditions such as these did not exist in 
the majority of the U.S. during the reference period. If 
a large proportion of any of these five cover types oc-
cur within an LRU, they can overwhelm the departure 
estimate and mask the condition of vegetation types 
present. For example, suppose that an LRU composed 
almost entirely of barren rock contains a small amount 
of vegetation that historically was perennial grasslands 
but is now teeming with exotic weeds. If we included the 
barren cover type in our departure measurements, we 
would calculate a very low departure, and this LRU may 
go unnoticed by land managers. Alternatively, consider 
an LRU that is predominately urbanized but contains 
vegetation uncharacteristic of historical conditions hav-
ing missed numerous fire intervals. If we included the 
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urban cover type in our departure estimate, we would 
not know whether the high departure estimate was due 
to the urban or the vegetation component. Hence, land 
managers would have potentially ambiguous information 
for assessing that landscape.
	 The main purpose of assessing departure is to prioritize 
areas for management and to allow for assessments of 
management efforts aimed at lowering departure values. 
Because agriculture and urban areas typically cannot 
be managed nor departure in these areas reversed, we 
decided that it was best to exclude these land cover 
types from departure calculations. Similarly, since wa-
ter, barren, and snow/ice types may obscure the need 
for management in surrounding vegetation types, these 
also were excluded from departure estimates. It is im-
portant to note, however, that we made these decisions 
after completing the Zone 16 maps. Time constraints 
prevented us from rectifying this error, and water, ag-
riculture, barren, snow/ice, agriculture, and urban cover 
types were included in Zone 16 departure estimates. 
For Zone 19, on the other hand, we treated these cover 
types as effectively immutable and removed them from 
departure estimates.

Data Sets for Estimating Departure
	 Simulating historical reference conditions—Us-
ing the LANDSUMv4 simulation model, we created 
a historical reference data set to describe succession 
patterns continuously across broad regions and with 
temporal depth (Pratt and others, Ch. 10). The LAND-
SUMv4 model simulates disturbances (primarily fire, 
but also insect and disease infestations) spatially across 
landscapes and predicts the resulting effects of fire on 
vegetation using a framework of succession pathways 
(Keane and others 2006). The LANDSUMv4 output 
provided a time series describing vegetation dynamics 
in terms of succession classes within PVTs for all 30-m 
pixels in a mapping zone (see Pratt and others, Ch. 10). 
Specifically, the LANDSUMv4 output file described 
the total area (m2) for each of the succession classes 
occurring within the PVTs in each LRU across a zone 
at every time interval over the simulation period. Details 
of the LANDSUMv4 simulations pertinent to departure 
estimates are described here, additional information 
can be found in Pratt and others, Ch. 10, and a detailed 
description of succession pathway development is avail-
able in Long and others, Ch. 9.
	 Ideally, one simulation would have been conducted for 
an entire zone; however, because of computer limitations, 
we partitioned the zones into smaller units of 20,000-
ha and ran LANDSUMv4 separately for each of these 

landscapes, which we called “simulation landscapes.” 
Figure 2 shows Zone 16 (6-million ha) divided into 427 
simulation landscapes (20,000-ha each). Within each 
simulation landscape, we again partitioned the area 
into 256 LRUs of 81 ha each (fig. 2). LANDSUMv4 
simulated succession and disturbance across the entire 
20,000-ha landscape but reported only the composition 
of succession classes by PVTs contained within each 
LRU. For example, in figure 2, there are five PVTs 
distributed across the LRU. For each of the five PVTs 
and at every reporting interval, LANDSUMv4 reported 
the composition of succession classes summarized col-
lectively across all stands of the same PVT.
	 A key requirement for measuring departure through the 
HRVStat approach was the acquisition of a statistically 
valid number of temporally uncorrelated observations 
from the LANDSUMv4 time series. Early testing of 
HRVStat indicated that a minimum of 200 observations 
from a LANDSUMv4 time series at reporting intervals 
long enough to minimize temporal autocorrelation was 
needed. Because fire disturbance dynamics tend to occur 
at longer frequencies, short annual reporting intervals 
result in correlated observations, but succession class 
distributions become less correlated with longer report-
ing intervals (Pratt and others, Ch. 10). Initial tests 
indicated that intervals of 20-years or more showed 
relatively little autocorrelation, and, using this inter-
val, we executed the model for a 4,000-year simulation 
period to obtain 200 observations for Zone 16. Further 
examination, however, revealed that PVTs in Zone 16 
(except Aspen, Wetland Herbaceous, Cool Herbaceous, 
and Alpine) showed notable autocorrelation (fig. 3a). 
Based on the autocorrelation in Zone 16, we extended the 
reporting interval to 50 years for Zone 19 and executed 
the model for a 10,000-year simulation period to obtain 
200 observations. Although the autocorrelation in Zone 
19 was not as pervasive as that for Zone 16, it was still 
present to some degree for most PVTs. Several PVTs, 
particularly forest PVTs, had moderately high correlation 
coefficients, even with a 50-year time lag (fig. 3b). It was 
logistically impractical to further increase the reporting 
interval and the simulation time to the length necessary 
to minimize autocorrelation in all PVTs because the 
total simulation time would become prohibitively long, 
given our computing resources. Further research is be-
ing conducted to study the effect of autocorrelation and 
succession class trends on LANDSUMv4 output and 
the subsequent departure calculations. It is important 
to note that the FRCC Guidebook approach had less 
rigorous requirements for representing historical condi-
tions, requiring only one observation that describes the 
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Figure 2—Example of the hierarchical configuration of spatial reporting units used to estimate reference conditions from LAND-
SUMv4.  The broadest extent is the zone; followed by the 20,000-ha simulation landscape; and lastly, the landscape reporting 
unit which displays the spatial distribution of PVTs for this example in Zone 16. 

central tendency of long-term natural dynamics (Hann 
and others 2004).
	 Depicting current vegetation conditions—Whereas 
succession class distributions by PVT were simulated 
by LANDSUMv4 to estimate reference conditions, cur-
rent vegetation was described using existing cover type 
and structural stage maps derived from recent satellite 
imagery (Zhu and others, Ch. 8). Excepting classes with 
non-native or exotic cover types (Long and others, Ch. 9) 
established over the last (twentieth) century — which we 
considered a recent invasion to plant communities — we 
classified existing cover type and structural stage maps 
into the same set of succession classes used for the his-
torical simulation modeling. The dominance of an exotic 
species in current succession class maps represented a 
distinct change from the simulated historical conditions. 
We then spatially combined the PVT, existing cover 
type, existing structural stage, and LRU layers such that 
all unique combinations of spatial input variables were 

tabulated. The result of this process depicted the areal 
extent for each of the succession classes within each 
PVT occurring within every LRU across the zone.
	 Compiling the final data sets for estimating 
departure—We combined the data set for existing 
vegetation with the time series from LANDSUMv4 
to develop data sets for estimating departure. That is, 
the departure data sets from the LANDSUMv4 output 
summarized the total area in each PVT-succession class 
combination within an LRU for the current time period 
and for each reporting interval (20 or 50 years, in this 
effort). In these data sets, current vegetation was depicted 
by only one instance in time for each PVT-succession 
class, whereas the simulated historical conditions were 
represented by 200 observations sampled from the 
LANDSUMv4 simulations for each PVT-succession 
class.
	 Departure was estimated by comparing the succes-
sion class distributions for the five PVTs contained in 
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Figure 3—Box and whiskers plots showing the mean autocorrelation coefficient across PVTs in (A) Zone 16 with 
a 20-year lag and (B) Zone 19 with a 50-year lag. A correlation coefficient of zero represents no autocorrelation.  
See appendix 11-A for key to PVT codes.
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the example LRU as simulated by the LANDSUMv4 
model (with 200 observations possible for each unique 
succession class within each PVT) to succession class 
distributions for the same five PVTs in the current land-
scape (with only one observation for each PVT-succession 
class) (see, for example, figure 2). Put another way, the 
spatial arrangement of PVTs did not change between 
LANDSUMv4 simulations and the current landscape, but 
succession class distributions within PVTs did vary – and 
that change was the basis for measuring departure.

Implementing the FRCC Guidebook 
Approach
	 In implementing the FRCC Guidebook approach, we 
explored a number of options for representing reference 
conditions and estimating departure and applied them 
to Zone 16, as will be described below. Based on these 
and additional analyses, we developed a final method, 
which was applied to Zone 19.
	 One of the main challenges for this approach was 
distilling the time series of LANDSUMv4 model out-
put with 200 observations for each PVT-succession 
class (within an LRU) down to a single observation for 
that PVT-succession class, as required by the FRCC 
Guidebook field procedures (Hann and others 2004). 
That is, the calculations of departure outlined in the 
FRCC Guidebook field procedures (described below) 
require a single value for each succession class within 
a PVT (within an LRU) for comparisons to the current 
conditions. In Zone 16, we evaluated two ways to reduce 
the LANDSUMv4 model output. In the first method, 
termed the “temporal snapshot,” we elected simply to 
use conditions from one reporting interval across the 
entire time series of the LANDSUMv4 output, and we 
chose year-1,000. This approach provided a “snapshot” 
of the simulated historical landscape. In other words, the 
total area that a succession class occupied within a given 
PVT (of a LRU) in year-1,000 of the LANDSUMv4 time 
series was used to represent its reference conditions.
	 In the second method, termed “multi–temporal,” we 
aimed to capture temporal variation in the simulated 
historical succession class distributions but with the 
inherent constraint of using a single value for each 
PVT-succession class combination (within an LRU) 
among the 200 values in the LANDSUMv4 time series. 
Various metrics were possible — such as the maximum, 
median, mean, and the minimum — with a succes-
sion class distribution (n = 200) showing values for 
the median and various percentiles of the percent area 
observed for that succession class across the simulated 
time series (fig. 4). Metrics emphasizing the maximum 

or minimum ranges of succession class distribution 
can capture variability to some extent. For example, 
consider two succession class distributions with the 
same mean, but one has low variability and the other 
high variability. The maximum value for each of these 
distributions will be different, and the distribution with 
low variability will have a smaller maximum value than 
the distribution with high variability. For Zone 16, we 
chose to use 90 percent of the maximum area for each 
succession class within a PVT (within an LRU) in an 
effort to portray the variability in the upper end of the 
distributions for succession classes; for simplicity, we 
term this metric the “90 percent of maximum.” For 
Zone 19, we chose to use the 90th percentile of the area 
(in other words, the value that is as large as 90 percent 
of all values in the data set and smaller than 10 percent 
of all values) for each PVT-succession class (within an 
LRU) to, again, capture the upper range of the succes-
sion class distributions. But using the 90th percentile, we 
more effectively eliminated inordinately high outliers. 
We term this metric the “90th percentile.”
	 Determining the 90 percent of maximum and 90th per-
centiles from the LANDSUMv4 output was a straight-
forward process. We searched the LANDSUMv4 
output and extracted the appropriate value for each 
PVT-succession class found in each LRU. For example, 
if the 90th percentile was used to represent reference 
conditions, the value that was as large as 90 percent of 
all values in the pool of LANDSUMv4 observations was 
chosen to represent reference conditions. The extracted 
values for each succession class were then converted 
from area to percent of the PVT that they occupied.
	 After choosing the metric to represent reference condi-
tions, a second key decision involved determining the 
appropriate extent or spatial domain for summarizing 
the LANDSUMv4 time series data. Choosing the cor-
rect spatial domain was problematic because different 
spatial domains leads to different estimates of reference 
conditions for any given succession class. For example, 
if reference conditions were summarized across wa-
tersheds, then each PVT-succession class combination 
would be assigned the same reference conditions across 
an entire watershed, regardless of any spatial variability 
within that landscape.
	 In Zone 16, we evaluated three spatial domains for 
calculating reference conditions to describe the 90 per-
cent of maximum for each PVT-succession class over 
the time series: 1) mapping zones (6 to 10 million ha), 
2) simulation landscapes (approximately 20,000 ha), 
and 3) individual LRUs (81 ha) (fig. 3). For Zone 19, we 
evaluated only the LRU-level to focus the spatial domain 
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Figure 4—Empirical probability density distributions fitted to the frequency of observed percent area occupied by a slightly 
departed succession class (Aspen – Birch High Cover, High Height) in the LANDSUMv4 time series data (n=200).  The 75th and 
95th percentiles (in the percent area observed for that succession class across the simulated time series) occur in 14.1 percent 
and 15.8 percent of the PVT; the current conditions (CC) data point is at 12.7 percent and corresponds reasonably well to the 
median of the simulated reference conditions distribution but is relatively distant from the 75th and 95th percentile measure-
ments.  Data for each succession class was taken from a 20,000-ha spatial unit within Zone 16 dominated by the Spruce – Fir 
/ Spruce – Fir / Lodgepole Pine PVT containing that succession class.

on local variability (and used the 90th percentile metric). 
The process of aggregating the LANDSUMv4 time series 
to the various spatial domains was a straightforward 
process. First the LANDSUMv4 output was examined 
across a given spatial domain, and all instances of a 
given PVT-succession class were identified. Second, for 
each occurrence of a PVT-succession class combination 
across the spatial domain, the desired reference condi-
tions (such as the 90th percentile) were identified from 
the pool (n = 200) of LANDSUMv4 output.

	 Current conditions were easily calculated by convert-
ing area to the percent that a succession class occupied 
for each PVT across an LRU. For example, table 1 
demonstrates that the PVT-succession class combina-
tion of the Pinyon–Juniper / Mountain Big Sagebrush / 
South PVT with the Juniper–High Cover, High Height 
succession class occupied 38.71 percent of the total area 
in the example LRU.
	 Comparing current to simulated historical vegetation 
conditions enabled the calculation of departure, which 
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was then classified to represent FRCC. The measure 
of departure relied on the computation of “similarity,” 
discussed in depth by Hann and others (2004). We cal-
culated this simple metric by comparing current and 
reference conditions in the same LRU for a given PVT. 
The percent composition of each succession class in the 
current condition map was compared with that of the 
reference conditions for each PVT within an LRU, and 
the lesser of the two was termed “similarity.” Across 
each PVT, the similarity values were totaled throughout 
the entire LRU. Departure was subsequently calculated 
for each PVT as:

	 Departure = 100 – Similarity	 (1)
where Similarity is the summation of individual similar-
ity values for each of the PVTs across an entire LRU, 
given as:

	 Similarity i
i

SClasses
( )

=
∑

0
	 (2)

where Similarity is computed as the smaller area of either 
current vegetation or that of the reference conditions for 
each succession class encountered in a PVT. Aggregation 
of estimated Similarity values from individual PVTs 
to the LRU was performed on an area-weighted basis. 
We conducted this process in two steps. First, the area 
and departure of each PVT within a given LRU were 
computed (table 2). In the second step, we computed 
the final departure estimate by weighting each PVT-
based departure by its respective area and summing 
these values across the entire LRU (table 3). For visual 
simplification and to allow for identification of areas 
with low, moderate, or high departure, we classified de-
parture for Zone 16 using the following threshold values 
from the FRCC Guidebook field procedures (Hann and 
others 2004): departure < 33; 33 ≤ departure < 67; and 
departure ≥ 67, which correspond to FRCC 1, 2, and 3, 
respectively. For Zone 19, we used FRCC classification 
thresholds that were different from those used for Zone 
16 to match values subsequently modified by managers 
implementing the FRCC Guidebook procedures in the 
field; these were: departure < 5, 5 ≤ departure < 52.5, 
and departure ≥ 52.5, which correspond to FRCC 1, 2, 
and 3, respectively (Hann, personal communication).

Implementing the HRVStat Approach
	 In developing and implementing the HRVStat ap-
proach, we wanted to employ a statistical test that could 
detect whether a single observation of current vegetation 
was unusual compared to a set of observations repre-

senting historical vegetation composition. That is, we 
wanted to consider every observation in the simulated 
historical record for all succession classes in a PVT and 
compare this set to the current conditions. This approach 
was fundamentally different from the FRCC Guidebook 
method, which measures departure using only one value 
to represent the time series of simulated historical con-
ditions for any PVT-succession class combination.
	 To estimate departure using a range of historical con-
ditions, Steele and others (in preparation) developed a 
new statistical technique based on measuring the extent 
that a suspected outlier (in our case, the current obser-
vation) can be estimated from the simulated historical 
observations. This multivariate statistical approach 
uses concepts from matrix algebra to compute linear 
approximations and measurements of approximation 
error (Leon 2002). Essentially, this method computes the 
best possible approximation of the current observation 
that can be formed as a linear function of the simulated 
historical data. Usually, there is some error in the ap-
proximation, and the square root of that error is the 
estimated departure value using the HRVStat method. 
More specifically, departure is calculated as the square 
root of the error sum-of-squares after normalizing the 
current observation vector. If the measured error (that 
is, departure) is small, the current observation is similar 
to the simulated historical data. Conversely, a current 
observation inconsistent with historical patterns will be 
poorly approximated, and the error will be relatively 
large, as will the estimated departure value. Steele and 
others (in preparation) considered other approaches to 
identifying whether an observation is dissimilar from 
other observations in a data set. Some of these methods 
are based on the measure of the distance of a single 
observation from measures of central tendency (for ex-
ample, the mean), such as Mahalanobis distance. More 
commonly, these methods concentrate on measuring 
distance along particular eigenvector axes extracted from 
the sample variance matrix. A simulation study showed 
that the HRVStat approach is far better at detecting un-
usual observations and particularly effective for use with 
our highly-dimensional (in other words, having numer-
ous categories of PVT–succession class combinations) 
data sets comprised of count data (Steele and others, 
in preparation). We adopted this new method, termed 
herein as the “best linear approximation,” to measure 
the extent to which current vegetation composition in an 
LRU differs from simulated historical vegetation com-
position – which we call the “observed departure.”
	 We also wanted a measure that expressed the strength 
of evidence for a given observed departure estimate, or 
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Table 3—Second step in computing departure for example landscape reporting unit using the FRCC Guidebook method.  Departure 
is calculated as 100 – similarity.  The final estimate of departure is computed by weighting the departure for the 12 PVTs across 
the entire landscape reporting unit (LRU) by their respective areas.  All 12 PVTs are shown here.

		  Sum of similarity	 Departure for		  Weighted
	 PVT	 for PVT	 PVT	 Area of PVT	 departure

Douglas-fir / Douglas-fir	 14.20	 85.80	 1.44	 1.24
Grand Fir – White Fir	 16.72	 83.28	 0.67	 0.56
Grand Fir – White fir / Maple	 0.82	 99.18	 0.11	 0.11
Mountain Big Sagebrush	13 .86	 86.14	 0.11	 0.10
Pinyon – Juniper / Gambel Oak	 21.55	 78.45	 15.89	 12.47
Pinyon – Juniper / Mountain Big Sagebrush / South	 18.52	 81.48	 72.33	 58.94
Pinyon – Juniper / Mountain Mahogany	 1.12	 98.88	 0.22	 0.22
Pinyon – Juniper / Wy.– Basin Big Sagebrush / South	 25.70	 74.30	 3.78	 2.81
Ponderosa Pine	3 2.51	 67.49	1 .89	1 .27
Riparian Hardwood	 20.57	 79.43	 0.22	 0.18
Spruce – Fir / Blue Spruce / Lodgepole Pine	 5.94	 94.06	 0.22	 0.21
Wyoming – Basin Big Sagebrush	 21.02	 78.98	 3.11	 2.46
Departure for entire LRU				    80.55

an “observed significance level.” The observed signifi-
cance level is similar to a p-value measurement, which 
estimates the probability that a type I error (rejecting 
a true null hypothesis) occurred. However, this formal 
interpretation requires independent observations from 
LANDSUMv4 simulations within an LRU – a condi-
tion which could not necessarily be met due to possible 
autocorrelation across time and space. As previously 
discussed, we observed evidence of temporal autocor-
relation using a 20-year reporting interval and, to some 
extent, a 50-year reporting interval. LRUs may also be 
spatially correlated because areas close in space tend to 
have similar vegetation and fire disturbances. Moreover, 
if we conducted formal tests for each of the tens of thou-
sands of LRUs across a mapping zone, we may obtain 
a significant result by chance alone, and adjustments 
would be needed to avoid such type I errors. Hence, 
the observed significance values reported here are used 
only to provide a quantitative measure of the evidence 
of departure for comparisons between LRUs, and not 
for formal testing (Steele and others, in preparation).
	 To determine the observed significance level of a 
departure estimate, we first constructed an empirical 
distribution using the current and simulated historical 
observations for each LRU (Steele and others, in prepara-
tion). That is, after calculating the observed departure, 
as described above, we next calculated the departure for 
each observation within the simulated historical data of 
an LRU, using the best linear approximation calcula-
tions. We used the term “divergence” to describe the 
best linear approximations of the simulated historical 
time series – to avoid confusion with the “observed 

departure” term used to estimate differences between 
the current and simulated historical time series. We 
calculated divergence within the simulated historical 
data set by removing each observation from the data 
set and computing its divergence from the remaining 
data (for example, we measured the divergence between 
year-20 and years 40 to 4,000 in the LANDSUMv4 
data set for Zone 16). We then combined the divergence 
estimates (n = 200) with the observed departure (n = 
1) to produce the empirical distribution for each LRU. 
Finally, we computed the observed significance level 
by calculating the proportion of divergence values in 
the distribution that are at least as large as the observed 
departure (Steele and others, in preparation).
	 To help illustrate the statistical procedures in the 
HRVStat approach, we provide a simplified example in 
figure 5. Consider two LRUs that contain only one PVT 
with one succession class, the same mean area over time 
for reference conditions (percent of the area is 0.2 in 
fig. 5A), and the same observed area for current condi-
tions (percent of the area is 0.8 in fig. 5A). However, 
LRU-A has lower variability in the percent areas of the 
succession class than LRU-B. In figure 5B, we show the 
distribution of the divergence estimates and the observed 
departure. The divergence estimates similarly show that 
LRU-A has less variability for divergence estimates and 
a lower mean divergence than LRU-B, whereas observed 
departures are the same for both LRUs (fig. 5B). In 
figure 5C’s empirical distributions of the divergence, 
we show the observed significance level for each LRU 
as the proportion of values greater than or equal to the 
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Figure 5—Hypothetical, simplified example demonstrating HRVStat for two landscape reporting units (LRU-
A and LRU-B) that contain only one PVT with one succession class under current and reference conditions.  
Set A shows that LRU-A and LRU-B have the same current percent area for that succession class (current 
succession class) and that the reference conditions have similar mean percent areas ( X ), but LRU-A has less 
variability than LRU-B.  Set B shows estimates for observed departure from and divergence within reference 
conditions.  LRU-A and LRU-B have identical observed departures, but LRU-A has a lower mean divergence 
( X ) and variability than LRU-B for reference conditions.  Set C shows the probability distributions of diver-
gence, where the area under the curve above the observed departure represents the observed significance 
level.  Observed significance level is less in LRU-A than LRU-B because LRU-A has less variability in the 
reference conditions.
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observed departure, where the observed significance 
value is higher in LRU-B than LRU-A. In summary, we 
have the same estimate of observed departure for LRU-
A and LRU-B, but evidence for that observed departure 
is greater in LRU-A because of less variability in the 
distribution of the succession class in the historical 
time series. In reality, calculations in an actual LRU 
from Zone 16 or Zone 19 would be far more intensive 
because of the large number of PVT-succession class 
combinations (up to 220).
	 Creating maps for comparing departure esti-
mates—Our last task was classifying HRVStat results 
to make comparisons with the 1-km coarse-scale 
FRCC maps (Schmidt and others 2002) and the FRCC 
Guidebook approach maps, which classify departure as 
low (FRCC 1), moderate (FRCC 2) and high departure 
(FRCC 3). We determined that the most informative 
classification scheme integrates both the departure and 
observed significance level estimates from HRVStat 
to describe not only the degree of departure in a land-
scape but also the evidence supporting the departure 
estimate.
	 Both departure and observed significance level values 
ranged from 0 to 1.0. We classified these parameters 
into three groupings by choosing two thresholds for 
partitioning values (table 4). For observed significance 

level, we chose thresholds of 0.01 and 0.1 to describe 
high, moderate, and low observed significance within 
our departure estimate, based on value limits commonly 
used in statistics to assess significance. To partition de-
parture into classes, we chose threshold values of 0.33 
and 0.67, as recommended in the FRCC Guidebook field 
methods (Hann and others 2004) and also used in the 
FRCC Guidebook approach for Zone 16. We call the 
three classes “classified HRVStat departure” estimates, 
instead of FRCC, to avoid confusion with the classified 
departure values from the FRCC Guidebook approach. 
Accordingly, the classified HRVStat departure values of 
Class 1, Class 2, and Class 3 correspond to the catego-
ries of FRCC 1, FRCC 2, and FRCC 3. We determined 
that managers would be most interested in areas where 
the strength of evidence (observed significance) for a 
departure estimate was highest, and we assigned those 
areas relatively higher classification values. For example, 
an LRU may have a relatively low departure estimate 
(less than 0.33), but if the observed significance value 
was less than <0.01, we assigned a Class 2 value to the 
unit. Conversely, we gave lower classification values to 
areas where evidence in the departure estimate was low; 
for example, an LRU with a high departure estimate 
(≥ 0.67) and a high observed significance (≥ 0.1) would 
be assigned a Class 1 value.

Table 4—Classified HRVStat departure as assigned to each departure/observed significance 
grouping and the percent of each zone in these categories for zones 16 and 19.

	 obs. sign. < 0.01	 0.01 ≤ obs. sign. < 0.1	 obs. sign. ≥ 0.1

Classified HRVStat departure: 
d < 0.33	 2	1	1 
0.33 ≤ d < 0.67	3	  2	1
d ≥ 0.67	3	3	   2

Percent area of zone:
Zone 16			 
d < 0.33	 60.34%	 22.27%	 9.96%
0.33 ≤ d < 0.67	 5.69%	 0.01%	 0
d ≥ 0.67	1 .73%	 0	 0

Zone 19
d < 0.33	 61.42%	 6.88%	 6.12%
0.33 ≤ d < 0.67	1 2.67%	 0.03%	 0.00%
d ≥ 0.67	11 .99%	 0.90%	 0.00%
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	 Operational process for HRVStat—The steps for 
developing the departure, observed significance level, and 
classified HRVStat departure map layers were three-fold 
(fig. 6). First, we extracted the relevant fields from the 
LANDSUMv4 database, including reporting interval, 
LRU, PVT, succession class, and area, and combined 
these data with the associated current landscape data to 
create the input file. Next, we ran the HRVStat program 
using GAUSS software (Aptech Systems, Inc. 2004) in 
addition to an independent platform of the HRVStat 
program. The HRVStat program produced output files 
containing departure, observed significance level, and 
classified HRVStat departure values for each LRU. We 
then linked the HRVStat output files to the LRU map, 
and created maps of departure, observed significance 
level, and classified HRVStat departure.

Detailed Demonstration of Departure 
Estimates using the HRVStat and FRCC 
Guidebook Approaches
	 For illustration purposes, we provide a detailed dem-
onstration of departure calculations for a selection of 
LRUs using both the FRCC Guidebook and HRVStat 
approaches. We chose three LRUs in Zone 16 with classi-
fied HRVStat departure and FRCC estimates of 1, 2 and 
3. To demonstrate the FRCC Guidebook approach, we 
present a detailed description of estimation procedures 
for only one LRU (FRCC 3) because we determined 
one example was sufficient, given the simplicity of the 
calculations. Because the HRVStat approach is less easily 
comprehended, we provide examples for all three LRUs. 
Specifically, we present the distributions of succession 

Figure 6—The flow diagram for 
developing the departure, observed 
significance level, and classified 
HRVStat departure maps using the 
HRVStat method. Data from LAND-
SUMv4 simulations are combined 
with current landscape data to build 
input files containing the attributes 
of landscape reporting unit (LRU), 
PVT, succession class, and area 
(m2). HRVStat calculates departure 
statistics for each LRU and produces 
an output file with departure, ob-
served significance, and classified 
HRVStat departure estimates for 
each LRU. Departure statistics are 
linked to the LRU spatial layer to 
build maps of departure, observed 
significance level, and classified 
HRVStat departure.
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classes by PVT and qualitatively describe the succession 
classes contributing most to departure for individual 
LRUs. We also present the empirical distributions of 
divergence and observed departure estimates, from 
which observed significance values are derived.

Departure Estimates by Fire Return 
Intervals
	 The national coarse-scale project evaluated the re-
lationship of estimated FRCCs on current landscapes 
to estimates of historical fire return intervals (Schmidt 
and others 2002), and the LANDFIRE Prototype Proj-
ect conducted similar analyses for comparison. One 
of the map layers created by the LANDSUMv4 model 
described fire return intervals (the number of years 
between successive fires for each pixel in the mapping 
zone), which was classified into four categories to be 
compatible with the fire regime maps developed for the 
national coarse-scale project, including: 0-35 year fre-
quency, 36-100 year frequency, 101-200 year frequency, 
and 201+ year frequency (Pratt and others, Ch. 10). We 
compared the departure indices estimated by the FRCC 
Guidebook and HRVStat approaches to the classified 
fire return interval layer to evaluate whether departure 
becomes higher in areas where more fire is observed 
under simulated historical conditions.

Results_________________________
	 We present maps and other results from the explor-
atory stages in our method development for Zone 16; 
for Zone 19, we present our resultant recommended 
method for estimating departure. However, even for 
Zone 19, results reflect a work in progress, and more 
analysis and research is needed to further improve the 
FRCC Guidebook and HRVStat approaches. Hence, the 
specific findings presented here should be considered 
primarily as a demonstration of method development and 
as a comparison of approaches to estimating departure. 
Maps and computed values for departure statistics may 
change as these procedures are refined for the national 
implementation of the LANDFIRE Project.

FRCC Guidebook Approach
	 A comparison of the temporal snapshot and multi-
temporal methods for deriving reference conditions 
revealed that the snapshot approach produced the highest 
zone-wide estimates of departure, with a zonal mean of 73 
(fig. 7A) compared to means ranging from 23 to 63 using 
the multi-temporal method (fig. 7B-7D). We expected this 

result because many of the currently present succession 
classes did not exist in the year-1,000 LANDSUMv4 
output. Simply stated, if reference conditions for a suc-
cession class are 0 (the succession class, by chance, did 
not occur in year-1,000 LANDSUMv4 output) then there 
would be no similarity and thus, complete departure. 
Once we recognized the ineffectiveness of the snapshot 
method for deriving reference conditions, we focused 
our efforts on the multi-temporal approach.
	 Using the multi-temporal approach for deriving refer-
ence conditions, we discovered that for Zone 16, each 
progressively smaller spatial domain (fig. 2) produced 
noticeably lower estimates of departure (fig. 7B-7D), with 
a zonal mean of 63 using the zone as the spatial domain, 
45 using the simulation landscape, and 23 using the LRU 
as the spatial domain; furthermore, the proportions of 
the zone belonging to FRCC 3 were highest using the 
zonal-spatial domain (41 percent) and lowest using the 
LRU-spatial domain (1 percent) (table 5). For all three 
spatial domains, departure and FRCC were higher in 
the area surrounding the Uinta Mountains and in the 
southern portions of the mapping zone (figs. 7B-7D and 
8). Examining the LRU-spatial domain alone, the de-
parture estimates for Zone 16 ranged from 0 to 96 with 
a mode of 11 (fig. 9A). For Zone 19, we evaluated only 
the LRU-spatial domain to derive reference conditions 
and observed a zonal departure mean of 42, mode of 
43, and a range of 0 to 100 (fig. 9B); in addition, most 
(74 percent) of Zone 19 belonged to FRCC 2 (table 
5). Departure and FRCC were generally higher in the 
northern portions of the zone and in scattered clusters in 
the central and eastern portions of the zone (fig. 10).
	 To assess how the various vegetation types contributed 
to departure, we also evaluated the mean departures for 
each PVT across the mapping zones by constructing 
simple spatial overlays of departure and PVT maps for 
each zone (appendices 11-B and 11-C). For Zone 16, 
using all three spatial domains for computing reference 
conditions, the highest departure was estimated to oc-
cur in the Douglas-fir / Timberline Pine PVT (appendix 
11-B), but this PVT occupied only a small fraction (0.47 
percent) of the zone. The Pinyon-Juniper / Mountain Big 
Sagebrush / South PVT had the second highest estimate 
of departure across all three spatial domains (appendix 
11-B) and was the most abundant PVT (17 percent) in 
the zone. In Zone 19, the Bluebunch Wheatgrass PVT 
had the highest estimated departure (62), followed by 
the Dry Shrub PVT (58) (appendix 11-C), but they oc-
cupied relatively small portions of the zone (six and one 
percent, respectively). The most abundant PVTs were 
Wyoming – Basin Big Sagebrush Complex (15 percent 
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Figure 7—Departure estimates using FRCC Guidebook approach for Zone 16 based on reference conditions derived 
from:  (A) LANDSUMv4 output at simulation year-1000 and 90 percent of the maximum percent area observed for 
each succession class in a PVT across the simulated time series for three spatial domains (the areal extent for 
summarizing the LANDSUMv4 time series data) including: (B) the entire zone, (C) individual simulation landscapes, 
and (D) individual landscape reporting units.  
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Table 5—Proportion of each mapping zone in the three classes describing (1) classified HRVStat departure, (2) FRCC using the 
FRCC Guidebook approach for each of the three spatial domains of mapping zone, simulation landscape (SL), and landscape 
reporting unit (LRU) in Zone 16 and for the LRU spatial domain only in Zone 19, and (3) FRCC from Schmidt and others 2002. 

	 Classified	 FRCC Guidebook	 FRCC Guidebook	 FRCC Guidebook
	 HRVStat	 approach using 	 approach using	 approach using	 Schmidt and
Class	 departure	 zonal spatial domain	 SL spatial domain	 LRU spatial domain	 others 2002

Zone 16
	1	3  2%	 5%	 24%	 77%	 62%
	 2	 60%	 54%	 67%	 22%	34 %
	3	  8%	41 %	 9%	1 %	4 %

Zone 19
	1	13  %	 n/a	 n/a	1 %	3 7%
	 2	 70%	 n/a	 n/a	 74%	4 0%
	3	1  7%	 n/a	 n/a	 25%	 23%

Figure 8—Fire regime condition class (FRCC) for Zone 16 using the FRCC Guidebook approach and based on reference condi-
tions derived from 90 percent of the maximum percent area observed for each succession class in a PVT across the simulated 
time series for three spatial domains (the areal extent for summarizing the LANDSUMv4 time series data) including: (A) the entire 
zone, (B) individual simulation landscapes, and (C) individual landscape reporting units.  
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Figure 9—Frequency distribution of departure estimates using the HRVStat and FRCC Guidebook approaches for (A) Zone 
16 and (B) Zone 19.  Departure values from HRVStat were rescaled from 0-1.0 to 0-100 to match the scale of the FRCC 
Guidebook values.  FRCC Guidebook estimates use the LRU as the spatial domain.
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of zone) and Douglas-fir / Douglas-fir (11 percent), 
and they had relatively low departures of 39 and 34, 
respectively.
	 It should be recognized that these results do not pre-
cisely estimate the degree to which each vegetation class 
contributed to departure. That is, the results presented 
were produced through simple overlays (for example, a 
departure layer overlaid on a PVT layer), and the amount 
that any of these vegetation classes contributed to the 
measured departure within LRUs could not be precisely 
measured. For example, an LRU with a high departure 
estimate may be composed of 90 percent Douglas-fir 
PVT and 10 percent Cool Herbaceous PVT. In these 
simple spatial overlays, both PVTs would be reported 
as having high departure. However, the Douglas-fir PVT 
would likely be the dominant contributor to the high 
departure estimate. The Cool Herbaceous PVT may 
be only slightly departed, but we would not observe its 
true value given our overlay methods. More extensive 
programming and analysis are needed to more precisely 
describe departure by vegetation class.

HRVStat Approach
	 The final products using the HRVStat method were 
sets of three maps representing departure, observed 
significance level, and classified HRVStat departure 
(figs. 11 and 12). In Zone 16, departure estimates were 
generally higher in the southern portion of the map-
ping zone, and correspondingly, most occurrences of 
high classified HRVStat departure (Class 3) were in the 
southern area, as well. Departure and classified HRVStat 
departure in Zone 19 were generally higher in the central 
and eastern portions of the zone. Overall, estimates of 
departure were lower in Zone 16 (0.086) than in Zone 
19 (0.285), but observed significance values were similar 
(0.039 and 0.014 in zones 16 and 19, respectively). Most 
departure estimates for individual LRUs were less than 
0.1 in Zone 16 and less than 0.3 in Zone 19 (fig. 9), and 
observed significance levels for individual LRUs were 
generally less than 0.1 in both zones. The proportions 
of each mapping zone belonging to the three classified 
HRVStat departure categories were similar between 
zones, with the majority (60-70 percent) belonging to 
Class 2 (table 5).
	 To obtain an overall sense of the extent to which each 
of the vegetation classes contributed to estimated de-
parture, we also evaluated departure estimates by PVT 
using simple spatial overlays of departure, observed sig-
nificance, and classified HRVStat departure layers with 
the PVT layer (appendices 11-D and 11-E). The highest 
departure (mean values greater than 0.1) observed in Zone 

16 occurred primarily in non-forest PVTs (pinyon-juniper 
types and the Salt Desert Shrub PVT), had relatively 
low observed significance (mean values of 0.01 to 0.03), 
and comprised 28 percent of the mapping zone; some 
forest PVTs (Ponderosa Pine, Douglas-fir / Timberline 
Pine, and Douglas-fir / Douglas-fir) had similarly high 
departure and low observed significance and comprised 
6 percent of the mapping zone (appendix 11-D). Results 
for the distributions of classified HRVStat departure by 
PVT were similar. Of those areas in Zone 16 categorized 
as Class 3, the most prevalent were non-forest PVTs, 
including: Pinyon – Juniper / Mountain Big Sagebrush 
/ South PVT (comprising approximately 26 percent of 
the zone), Pinyon – Juniper / Wyoming – Basin Big 
Sagebrush / South (24 percent), and Salt Desert Shrub 
(9 percent).
	 In Zone 19, the PVTs with the relatively highest de-
parture estimates (>0.5) and low observed significance 
(<0.01) were also non-forest (bluebunch wheatgrass types, 
the Dry Shrub PVT, and Fescue Grasslands PVT) and 
encompassed about 10 percent of the mapping zone. 
PVTs with relatively moderate departure (<0.5 and 
>0.3) were a mixture of forest and non-forest types and 
comprised approximately 6 percent of the zone (appen-
dix 11-E). The lowest departure (<0.3) observed in the 
mapping zone occurred mainly in forest PVTs (about 
55 percent of the zone) but also occurred in sagebrush-
related PVTs (about 20 percent). It should be noted that 
approximately 10 percent of Zone 19 was composed 
of water, agriculture, and non-vegetated areas, which 
were omitted from departure estimates. Of the areas 
in Zone 19 categorized as Class 3, the most abundant 
PVTs were a mixture of grass, shrub, and forest: Blue-
bunch Wheatgrass (14 percent of the mapping zone), 
Wyoming – Basin Big Sagebrush Complex (19 percent), 
and Douglas-fir / Douglas–fir (8 percent).
	 When evaluating the extent to which a landscape 
has diverged from simulated historical conditions, we 
can also examine which current succession classes 
within a given PVT contribute the most to departure. 
A complete presentation of departure estimates by all 
PVTs and succession classes for each mapping zone is 
beyond the scope of this report; however, we present an 
example from Zone 16 for illustration purposes (table 
6). Succession classes within the Pinyon – Juniper / 
Mountain Big Sagebrush / South PVT with the highest 
mean departure indices across Zone 16 were Juniper 
High Cover, High Height (0.45) and Pinyon – Juniper 
High Cover, High Height (0.37) (table 6). Both of these 
succession classes are late-seral classes that were less 
prevalent under reference conditions perhaps because 
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fires were simulated with higher frequencies than oc-
curs in current landscapes. Exotic Forbs (High Cover, 
Low Height) within this PVT also had relatively high 
mean departure estimates (0.17) (table 6). Users of the 
spatial data layers can easily perform similar analyses 
with the HRVStat data sets for estimating departure.

Detailed Demonstration of Departure 
Estimates using the HRVStat and FRCC 
Guidebook Approaches
	 We demonstrate the process for computing FRCC 
through the FRCC Guidebook method using an LRU 
with an estimated FRCC of 3 that was located in the 
southern portion of Zone 16 (tables 2 and 3; fig. 13). 
We provide just one example because it is a simple 
calculation relative to that required using the HRVStat 
approach. We estimated departure for the example LRU 
in two steps. First, we computed the departure for each 
PVT within the LRU of interest (table 2). Although there 
are 12 PVTs in the LRU examined in table 2, for brev-
ity, we present only the calculations for the five most 
dominant PVTs in the LRU (table 10). Note that there is 
one overall departure calculation for a given PVT, but 
each succession class within a PVT also has a unique 
departure value. This reflects the fact that the similarity 
values for each succession class are summed across the 
PVT in which they reside. Once the overall departure 
is calculated for each PVT, the first step is complete. In 

the second step, we computed the area of each PVT in 
the LRU (table 3). These data were then used to scale 
departure measures for every PVT on an area-weighted 
basis (table 3). This process is accomplished by multiply-
ing the proportion of each PVT within an LRU by its 
respective departure estimate and summing these values 
for the entire LRU. In our example calculation (tables 2 
and 3), the Pinyon – Juniper / Mountain Big Sagebrush / 
South PVT had the highest departure (81.48). This high 
departure greatly affected the final departure estimate for 
the entire LRU because the Pinyon – Juniper / Mountain 
Big Sagebrush / South PVT also occupied the largest 
area (72%).
	 To demonstrate the characteristics of LRUs with depar-
ture estimates derived through the HRVStat approach, we 
present three examples of LRUs with classified HRVStat 
departures of 1, 2, and 3. Our example of a Class 3 LRU 
was composed primarily of two PVTs: the Pinyon – Juni-
per / Mountain Big Sagebrush / South PVT (72 percent) 
and the Pinyon – Juniper / Gambel Oak PVT (16 per-
cent) (fig. 13). For the Pinyon – Juniper / Mountain Big 
Sagebrush / South PVT, current distributions of succes-
sion classes were very different from those of simulated 
historical conditions, which lead to a high departure 
estimate. The dominant succession classes under simu-
lated historical conditions were low shrub and grassland 
types, whereas the pinyon and juniper succession classes 
dominated the current vegetation (fig. 14A; table 7). The 
second and more minor component of this LRU was the 

Table 6—Mean departure estimates and observed significance, using HRVStat methods, for each succession 
class in the Pinyon – Juniper / Mountain Big Sagebrush / South PVT, as well as the percent by area of each 
succession class for the PVT in Zone 16. See table 5 for definitions of structural stage codes in succession 
class names.

			   Mean observed
	 Succession class	 Mean departure 	 significance	 Percent of PVT in zone

Juniper HHW	 0.45	 0.004	14 .27%
Pinyon – Juniper HHW	 0.37	 0.004	 12.74%
Juniper  LHW	 0.33	 0.004	1 .68%
Pinyon – Juniper LHW	 0.31	 0.005	 1.03%
Juniper  LLW	 0.26	 0.006	 26.92%
Mountain Deciduous Shrub LHW	 0.26	 0.006	 9.15%
Pinyon – Juniper LLW	 0.22	 0.006	 24.42%
Cool Season Grasses HLH	 0.21	 0.006	 0.08%
Dry Deciduous Shrub HLS	 0.19	 0.007	 0.16%
Mountain Deciduous Shrub HHS	 0.18	 0.008	 5.84%
Exotic Forbs  HLH	 0.17	 0.006	 0.01%
Mountain Big Sagebrush Complex HLS	 0.14	 0.010	3 .06%
Mountain Big Sagebrush Complex LLS	 0.12	 0.012	 0.53%
Dry Deciduous Shrub LLS	 0.07	 0.019	 0.12%
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Figure 13—Three LRUs in Zone 16 assigned by the FRCC Guidebook and HRVStat methods to three classes (described here 
as FRCC 1, 2, and 3) and the spatial distribution of PVTs within each of these LRUs.   

Pinyon – Juniper / Gambel Oak PVT, which also showed 
considerable differences between historical and current 
succession class distributions. Under simulated historical 
conditions, this PVT was composed mainly of low shrub 
and grassland-related succession classes, whereas the cur-
rent landscape contains mainly pinyon and juniper type 
succession classes (fig. 14B; table 7). Figure 15 shows that 
the observed departure estimate (0.74) is much greater 
than the distribution of divergence estimates, resulting 
from the dissimilarities in succession class distributions 
between current and reference conditions; moreover, these 
dissimilarities lead to a low estimate for the observed 
significance level (0.005).
	 To illustrate the characteristics of a Class 2 LRU 
derived using the HRVStat approach, we chose a unit 
with an estimated moderately low departure index (0.25) 

but high observed significance value (0.005) (table 4). 
The LRU contained mostly the Grand Fir – White Fir 
PVT (53 percent) but also a substantial amount of the 
Pinyon – Juniper / Mountain Big Sagebrush / South 
PVT (32 percent) (fig. 13). For the more abundant Grand 
Fir – White Fir PVT, succession class distributions were 
only moderately dissimilar between current and simu-
lated historical conditions, contributing to a relatively 
low departure estimate. Simulated historical conditions 
contained numerous succession classes (27), which 
consisted primarily of the Douglas-fir and Aspen-Birch 
types. The current landscape also contains a substan-
tial amount of Aspen-Birch in addition to a dominant 
Grand Fir succession class and various others (fig. 16A, 
table 7). The second PVT revealed greater differences 
in succession class distributions between current and 
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Figure 14—Distribution of succession classes in the two dominant PVTs, for reference and current condi-
tions, in a landscape reporting unit with a classified HRVStat departure of 3 (departure index = 0.74 and 
observed significance level = 0.005) in Zone 16:  (A) Pinyon – Juniper / Mountain Big Sagebrush / South 
covers 72 percent of the landscape reporting unit and (B) Pinyon – Juniper / Gambel Oak covers 16 percent 
of the landscape reporting units.  See table 7 for explanation of succession class codes. 
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Table 7—Succession classes for PVTs in landscape reporting units 
demonstrating classified HRVStat departure in figures 14, 16, 18 and 
22 – using the HRVStat approach. Codes defining succession class 
are described first by cover type and then by structural stage.

Cover type code	 Cover type

Forest types
AB	 Aspen − Birch
DF	 Douglas-fir
GF	 Grand Fir−White Fir
LP	 Lodgepole Pine
PP	 Ponderosa Pine
SF	 Spruce − Fir
TP	 Timberline Pines
WH	 Western Hemlock

Woodland  types
J	 Juniper
PJ	 Pinyon – Juniper

Shrub & Grassland types
CG	 Cool Season Grasses
DDS	 Dry Deciduous Shrub
ES	 Montane Evergreen Shrubs
MBS	 Mountain Big Sagebrush Complex
MDS	 Mountain Deciduous Shrub
NF	 Native Forbs

Structural stage code	 Structural stage

LLF	 Low Cover, Low Height Forest
HLF	 High Cover, Low Height Forest
LHF	 Low Cover, High Height Forest
HHF	 High Cover, High Height Forest

LHW	 Low Cover, High Height Woodland
HHW	 High Cover, High Height Woodland
LHW	 Low Cover, High Height Woodland

LLS	 Low Cover, Low Height Shrubland
HLS	 High Cover, Low Height Shrubland
LHS	 Low Cover, High Height Shrubland
HHS	 High Cover, High Height Shrubland

LLH	 Low Cover, Low Height Herbaceous
HLH	 High Cover, Low Height Herbaceous

simulated historical conditions. Specifically, the most 
frequent succession classes under simulated historical 
conditions were rare to absent under current conditions, 
and vice versa (fig. 16B). Figure 17 demonstrates that 
the observed departure estimate (0.25) is greater than 
the distribution of divergence estimates for the simu-
lated historical conditions, resulting in a low observed 
significance value (0.005).
	 The unit chosen to demonstrate the characteristics of 
a Class 1 LRU had a low departure estimate (0.002), 

a relatively high observed significance (0.2475), and 
was composed almost entirely of one PVT: 99 percent 
Spruce-Fir / Spruce-Fir / Lodgepole Pine (fig. 13). 
Most of the succession classes were relatively rare in 
the simulated historical data sets (fig. 18; table 7), and 
the current conditions’ dominant class of Aspen-Birch 
Low Cover / High Height was relatively abundant in 
the historical data. Figure 19 shows that the observed 
departure estimate (0.002) was similar to the median 
(0.001) of the divergence estimates from the simulated 
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Figure 15—Frequency distributions for divergence estimates in the example landscape reporting unit with a classified HRV-
Stat departure of -3, the normalized probability distribution (dashed line), and an observed departure for current conditions of 
0.74.  The proportion of area under the probability distribution above the observed departure is 0.005, which is the estimated 
observed significance level.  

historical data set, leading to a relatively high observed 
significance (0.2475).

Departure Estimates by Fire Return 
Interval
	 Evaluation of departure results by fire return interval 
classes suggested that, under simulated historical con-
ditions, areas with short simulated fire return intervals 
tended to have higher departure estimates (table 8). In 
Zone 16, HRVStat departure estimates were highest 
(9.42 on a scale of 1 to 100) in areas with short fire 
return intervals (0-35 years) under reference conditions. 

In contrast, areas with long fire return intervals (201+ 
years) had the lowest departures (3.16 on a scale of 1 to 
100) under reference conditions. The FRCC Guidebook 
departure estimates showed a less clear but somewhat 
similar trend, with higher departure (mean value of 
35.22) in areas with short simulated fire return intervals 
(0-35 years) and somewhat lower departure (mean value 
of 27.27) in areas where long fire return intervals (201+ 
years) were simulated (table 8).
	 Results from Zone 19 showed similar patterns (table 8). 
HRVStat departure estimates were highest (mean value 
of 38.13 on a scale of 1 to 100) in areas with short fire 
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Figure 16—Distribution of succession classes in the two dominant PVTs, for reference and current conditions, 
in a landscape reporting unit with a classified HRVStat departure of -2 (departure index = 0.25 and observed 
significance level = 0.005) in Zone 16:  (A) Grand Fir – White Fir covers 53 percent of this landscape reporting 
unit and (B) Pinyon – Juniper / Mountain Big Sagebrush / South covers 32 percent of the landscape reporting 
units. See table 7 for explanation of succession class codes.
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Figure 18—Distribution of 
succession classes by per-
cent area, under reference 
and current conditions, for 
the Spruce – Fir / Spruce 
– Fir / Lodgepole Pine PVT 
that dominates a landscape 
reporting unit with a classi-
fied HRVStat departure of 
-1 (departure index = 0.002 
and observed significance 
level = 0.25) in Zone 16.  See 
table 7 for explanation of 
succession class codes.

Figure 17—Frequency 
distributions for divergence 
estimates in the example 
landscape reporting unit 
with a classified HRVStat 
departure of -2, the nor-
malized probability distri-
bution (dashed line), and 
an observed departure for 
current conditions of 0.25.  
The proportion of area 
under the probability distri-
bution above the observed 
departure is 0.005, which 
is the estimated observed 
significance level.  
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Table 8—Summary of departure estimates (area weighted mean) by historical fire 
return interval classes using the HRVStat and FRCC Guidebook methods.  In the 
FRCC Guidebook method, the spatial domains were the individual landscape reporting 
units.  Note: the HRVStat departure index was rescaled from 0-1 to 0-100 to match 
the FRCC Guidebook departure range.

	 Fire	 Departure using	 Departure using
	frequency class	 HRVStat approach	 FRCC Guidebook approach

Zone 16
1 - 35 years	 9.42	3 5.22
36 – 100 years	 7.78	 31.50
101 - 200 years	 7.92	 22.92
201+ years	3 .16	 27.27

Zone 19
1 - 35 years	3 8.13	 20.15
36 – 100 years	 16.08	 16.59
101 - 200 years	4 .37	1 6.41
201+ years	14 .77	1 7.06

Figure 19—Frequency distributions for divergence estimates in the example landscape reporting unit with 
a classified HRVStat departure of -1, the normalized probability distribution (dashed line), and an observed 
departure index for current conditions of 0.002.  The proportion of area under the probability distribution above 
the observed departure index is 0.2475, which is the estimated observed significance level.     
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return intervals (0-35 years) under reference conditions. 
Average departure decreased as fire return intervals 
increased (with a mean value of 16.08 for the 36 to 
100 year group and 4.37 for the 101-200 year group); 
however, in areas with the longest fire return intervals 
(201+ years), the mean departure estimate was interme-
diate (14.77). The FRCC Guidebook departure indices 
in Zone 19 showed the most departure (20.15) in areas 
with short simulated fire return intervals (0-35 years) 
and somewhat lower departure in the areas with longer 
return intervals (17.06 for 201+-years).

Discussion______________________
	 We developed two methods for creating maps describ-
ing the departure of current landscape conditions from 
simulated historical conditions. Both methods are stan-
dardized, both can be applied across large, continuous 
landscapes, and both can be automated to produce maps 
efficiently. The methods were designed for different ap-
plications: the FRCC Guidebook approach was intended 
to implement field-based procedures in a GIS environ-
ment, whereas the HRVStat approach was intended for 
use in the development of a statistically rigorous method 
that incorporates the temporal variability in a complex, 
spatial database describing historical conditions. Cor-
respondingly, each method produced divergent results 
in the maps of departure and their classifications (figs. 
7, 8, 10, 11 and 12; table 5). To interpret these dispari-
ties and ranges, we need to recognize the strengths and 
weaknesses of each approach and understand their dif-
ferences and commonalities.

Strengths and Limitations of the FRCC 
Guidebook Approach
	 The FRCC Guidebook method is simple, flexible, and 
designed to be easily understood by managers. This ap-
proach does not require advanced statistical techniques 
or large data sets, and the metrics used to represent the 
simulated historical conditions in the departure calcula-
tion can be easily changed. For Zone 16, we used the 90 
percent of the maximum percent area observed for each 
succession class in a PVT as the metric through which 
to summarize the reference conditions’ time-series; for 
Zone 19, we used the 90th percentile of the percent area 
observed for each succession class in a PVT. However, 
median, mean, minimum, or other metrics characterizing 
the reference conditions data set could also be substituted. 
The FRCC Guidebook approach does not require the 
simulated historical data set to have a minimum temporal 
depth (as does the HRVStat approach) and can use a data 

set describing PVT-succession class distributions that is 
limited to one observation, such as is demonstrated in 
figure 7A where only one reporting interval was used. 
Since the departure estimate is based on a procedure cur-
rently being applied by federal managers to characterize 
ecosystems with regard to hazardous fuel accumulation 
(Hann and others 2004), many managers should already 
be familiar with the calculations and readily understand 
the process by which spatial data are produced using 
the FRCC Guidebook approach.
	 Despite these merits, the FRCC Guidebook approach 
fails to provide a consistent and comprehensive mea-
sure of departure. Specifically, this approach requires 
that reference conditions are represented by a single 
observation, but departure estimates are very sensitive 
to the metric chosen to represent that point statistic. To 
compare the PVT-succession class distributions of cur-
rent and reference conditions, we must choose a metric 
to reduce the 200 observations from the simulated time 
series to one observation. However, the choice of veg-
etation metric (median, mean, minimum, 90 percent of 
maximum, or 90th percentile) for summarizing reference 
conditions cannot aptly represent all cases of vegetation 
composition distributions, and the chosen metric will bias 
departure estimates in different ways, depending on the 
composition of an LRU. This shortcoming is illustrated 
in table 9 where departure ranged from 0 using the 90 
percent of maximum and 90th percentile metrics to 32 
using the median as the metric.
	 We chose metrics for describing reference conditions 
(90 percent of maximum and 90th percentile) that would 
be more sensitive to variation on the upper end of succes-
sion class distributions (Hann, personal communication). 
We used the 90 percent of maximum metric for estimating 
reference conditions in Zone 16, but determined that the 
metric over-emphasized the upper end of distributions 
and consequently over-predicted departure – particularly 
in cases where an extreme, rare event triggers large but 
brief fluctuations in vegetation composition. In other 
words, departure would be measured only by evaluating 
the reference conditions for a PVT-succession class com-
bination at its widest ranges, even though the remaining 
time series may be primarily in a narrower range. The 
90th percentile metric proved more suitable because it 
filtered the rare, large oscillations in vegetation conditions 
and better represented the upper range of variation in 
vegetation classes. However, the 90th percentile metric 
represented the simulated time series poorly towards the 
median and lower end of succession class distributions. 
For example, the current vegetation composition may 
be very similar to the dominant vegetation composition 
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observed in the simulated time series, as shown in figure 
4, with an Aspen – Birch High Cover, High Height suc-
cession class in a Spruce-Fir / Spruce–Fir / Lodgepole 
Pine PVT. Using the 90th percentile for our metric, we 
would estimate a relatively high departure – a seemingly 
incongruous result since current conditions are similar 
to the historical conditions.
	 We avoided using metrics that evaluate central ten-
dencies (in other words the mean or median) because 
they can overlook or understate variation. For example, 
succession classes may have the same mean occurrence 
in the simulated historical record regardless of whether 
variability around the mean was low or high, and the 
resulting departure estimates would also be the same – even 
though the succession class occurrence for the current 
conditions might fall well within the simulated historical 
range when the data contain high variability. In short, 
the similarity calculation in the FRCC Guidebook ap-
proach is very sensitive to the metric used to represent 
reference condition time series data, and we expect that 
departure estimates for Zones 16 and 19 would look 
very different if other metrics were used.
	 An additional limitation to spatial application of the 
FRCC Guidebook approach is that illogical calculations 
can result. Specifically, we must select a single value to 
represent the percent of each succession class occupying 
a PVT across a time series. Because these selected values 
are not likely to occur at the same time interval (as in 
the temporal snapshot approach illustrated in fig. 7A), 
the sum of the area for all succession classes in a PVT 
will not equal 100 percent. In a simple hypothetical ex-
ample, an LRU consists entirely of one PVT with three 
succession classes occurring across the simulated time 
series such that their 90th percentiles are: 65 for succes-
sion class A in year 150; 40 for class B in year 4,550; 
and 20 for class C in year 7,050. The total percent area 
for the reference conditions sums to 125 percent — an 
area greater than the possible size of an LRU. Table 9 
also demonstrates that, for a given PVT, the sum of the 
succession class areas does not necessarily total 100 
percent, such as in the case of the Ponderosa Pine PVT 
where, using the 90th percentile as the reference condi-
tion metric, the sum of the succession classes totals 150 
percent. Such nonsensical results in the total summed 
area occur regardless of the metric used. For example, in 
table 9, the sum of succession classes for the Ponderosa 
Pine PVT, using the mean as the reference condition, 
was 56 percent. These incongruities do not occur in 
the field implementation of the FRCC Guidebook field 
procedures (Hann and others 2004) because reference 
conditions are estimated for a discrete point in time. In 

the simulation environment, however, we encountered 
the problem because we applied the FRCC field-based 
procedures to a time series of data. Despite the illogical 
calculations in our FRCC Guidebook implementation, 
departure estimates were constrained to values from 
0 to 100 because the calculation does not rely on total 
area, but instead uses the value for the least abundant 
succession (the smaller of reference or current conditions) 
to determine similarity and ultimately the departure 
estimate.
	 Another problem — stemming from the requirement 
of using a point statistic to represent reference condi-
tions — is that departure estimates are sensitive to 
stochasticity in the LANDSUMv4 simulations. Because 
the LANDSUMv4 model includes stochastic processes 
in the simulation of fire and vegetation processes, 
the likelihood of a rare event increases with greater 
simulation time. Consequently, departure estimates 
could be inconsistent between LANDSUMv4 runs 
and, potentially, substantially different, depending on 
simulation length. For example, a catastrophic fire may 
not occur during a 4,000-year simulation but is more 
likely to occur during a 5,000-year simulation. Use of 
the 90th percentile to represent reference conditions for 
Zone 19 helped minimize the potential effects of rare 
disturbances on the upper range of succession class 
distributions. Because point statistics cannot completely 
represent the full range and variability of a data set, the 
other possible metrics (median, mean, 90th percentile, 
etc.) would also be limited in their ability to moderate 
the effects of extreme stochastic events and would only 
impose different biases.
	 A final limitation of the FRCC Guidebook approach 
relates to the fact that the number of succession classes 
in a PVT affected the calculation of the departure index. 
That is, greater complexity in the succession models 
used to model reference conditions for each PVT led to 
an increase in the FRCC departure index. As the suc-
cession pathway complexity increased in the simulated 
historical data, the percent area occupied by any one 
succession class became dispersed across more classes, 
leading to a lower percent area for each individual class 
over the simulation period. Lower area values for each 
succession class leads to lower similarity indices when 
comparing reference conditions to the current, and 
consequently higher, departure estimates (see table 2 
for examples of similarity and departure calculations). 
The effect of PVT succession pathway complexity on 
departure estimates is also demonstrated in the departure 
maps for Zone 16, in which the three spatial domains 
of mapping zone, simulation landscapes, and LRUs 
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were explored (figs. 7B-7D). The number of succession 
classes per PVT in the reference conditions was highest 
in the zonal spatial domain, followed by the simulation 
landscapes domain, and lowest in the LRU domain; 
correspondingly, the departure estimates were highest 
in the largest spatial domain (zone) and lowest in the 
smallest (LRU). The effect of PVT succession pathway 
complexity on departure estimates highlights the need 
to identify ways to standardize succession pathways 
across all areas of consideration.

Strengths and Limitations of the HRVStat 
Approach
	 The HRVStat approach statistically compares current 
succession class distributions to simulated historical 
distributions, integrating every observation of PVT and 
succession class as they fluctuate across landscapes in 
the time-series. The data sets for these analyses were 
complex: the number of PVTs and succession classes 
occurring within any one LRU ranged from 1 to ap-
proximately 220, and each of these classes varied in 
percent area for each landscape reporting interval across 
the time series. HRVStat was able to incorporate the 
variance structure within the entire time-series of this 
highly dimensional data set to produce a measure of 
departure using the best linear approximation approach 
and estimate an observed significance for measuring the 
evidence for departure estimates (Steele and others, in 
preparation).
	 One limitation of this approach was the requirement 
by HRVStat for certain characteristics in the simulated 
historical data set. As discussed above, an adequate refer-
ence time series for HRVStat requires minimal temporal 
autocorrelation, stationary processes in vegetation class 
distributions, and a sufficiently long record. These require-
ments led to longer simulation times, larger data sets, 
and higher computational demands. However, the overall 
quality of the resulting data sets was enhanced, enabling 
the HRVStat approach to provide results with reasonable 
statistical rigor (Steele and others, in preparation).
	 In turn, statistics for HRVStat were developed that 
were specific to the simulated historical data set and that 
explicitly recognized the stochasticity that was intrinsic 
to LANDSUMv4. As discussed above, the LANDSUMv4 
model simulates disturbance stochastically such that the 
resulting vegetation composition in a landscape will 
vary somewhat between repeated simulations and with 
longer simulation periods as the likelihood increases 
for rare and extreme disturbance events (such as a cata-
strophically large fire). The HRVStat departure statistic 
accommodates such stochasticity because it incorporates 

every observation in the historical record. Specifically, 
stochastic differences between simulation runs will 
produce different vegetation distributions, possibly in-
cluding unusual vegetation compositions resulting from 
extreme disturbances. However, because the departure 
statistic emphasizes dominant patterns by integrating all 
observations, departure estimates should be relatively 
robust to rare, extreme disturbance events.
	 We suspect a limitation in the statistical calculations 
of HRVStat because the number of PVT and succession 
class combinations within any LRU affects departure 
estimates – a problem also apparent with the FRCC 
Guidebook approach but with opposite effects. As the 
number of PVT-succession class combinations increased 
within LRUs, estimates of departure by HRVStat tended 
to decrease. This observation is based on a cursory 
examination of an assortment of LRUs and a general 
comparison of forested versus non-forested areas. In 
evaluating various LRUs in zones 16 and 19, we gener-
ally found lower departure in LRUs with few PVTs and 
simple succession pathways, as opposed to the higher 
departure found in LRUs with more complex vegetation 
composition. Comparisons of forested to non-forested 
areas showed that forest PVTs, which generally had 
more classes in their succession pathways, also had 
lower departure estimates. However, the lower departure 
estimates in forest PVTs may also be attributed to the 
generally longer fire return intervals because the effects of 
fire exclusion would be less evident since fewer intervals 
would have been missed over the last century and the 
process of departure from historical vegetation composi-
tion would be slower than in those PVTs with more rapid 
succession and disturbance processes. Alternatively, we 
may simply be better able to model forested systems 
than non-forested systems because more information 
exists describing vegetation and disturbance (particularly 
fire) processes in forests (Long and others, Ch. 9). As 
with the FRCC Guidebook approach, the influence of 
succession pathway complexity on HRVStat departure 
estimates warrants further evaluation and should include 
exploration of techniques to standardize the succession 
pathways or parameters in the multivariate statistics of 
the HRVStat approach.

Comparison of Approaches
	 We categorized our FRCC and HRVStat departure 
estimates into three classes to compare results with the 
earlier nationwide coarse-scale (1-km) mapping project 
(Hardy and others 2001; Schmidt and others 2002). For 
Zone 16, the HRVStat map showed little correspon-
dence to the coarse-scale map, both in terms of patterns 
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observed and relative area in each class (fig. 20; table 
5). Among the three FRCC Guidebook maps produced 
for Zone 16, the FRCC map based on the LRU spatial 
domain corresponded best to the coarse-scale map and 
showed similar patterns of low and moderate departures 
(FRCC 1 and 2) throughout the zone (figs. 7D and 20). 
For Zone 19, overall patterns of both the HRVStat and 
FRCC Guidebook maps were relatively different from 
those of the coarse-scale map (fig. 21). However, some 
correspondences existed between the coarse-scale and 
FRCC Guidebook maps, with high departure observed 
in the northern region of Zone 19. We did not compare 
these maps in any quantitative detail because the coarse-
scale map was intended for use at the regional level. 
Furthermore, the accuracy in any of the maps was not 
known, and an extensive field campaign would be needed 
to evaluate the accuracy of maps such as these. Moreover, 
the thresholds used to categorize departure estimates into 
three classes are arbitrary, and if different thresholds were 
used, completely different patterns in the maps of FRCC 
and classified HRVStat departure would result.
	 To avoid the classes imposed by the FRCC Guide-
book method, we examined the unclassified departure 
maps produced by the HRVStat and FRCC Guidebook 
methods and compared the distributions of continuous 
departure estimates. Figure 9 shows frequency distri-
butions of departure estimates using the HRVStat and 
FRCC Guidebook methods (with LRUs as the spatial 
domain), and figures 7, 10A, 11A and 12A show maps 
of departure for Zones 16 and 19. Generally speaking, 
compared to the HRVStat approach, distributions of 
departure estimates for each zone were dominated by 
higher values using the FRCC Guidebook approach (fig. 
9). In terms of spatial pattern, some similarities were 
apparent in the southerly portions of Zone 16 (figs. 7D 
AND 11A). Zone 19 showed more spatial pattern cor-
respondences in that higher departure estimates were 
observed in the northern portions of the zone (in the 
North Fork Flathead River Valley and along the Rocky 
Mountains’ eastern front) and in the central part of the 
zone (in the Clark Fork River Valley and eastern prairie 
of Montana) (figs. 10A and 12A). We suspect that the 
greater correspondence in Zone 19 resulted from us-
ing the 90th percentile metric instead of 90 percent of 
maximum to represent reference conditions in the FRCC 
Guidebook approach. As in the case of the FRCC / clas-
sified HRVStat departure maps, we do not have field 
validation data with which to assess which departure 
index is most effective. At best, we can qualitatively look 
for consistency between map results to obtain an overall 
picture of vegetation conditions across broad regions. 

Consistent evidence of ecosystem change from these two 
departure maps can serve to highlight landscapes that 
have potentially undergone extensive ecological change. 
Additional information, such as site-specific field data 
and expert opinions, could supplement the departure 
estimates to evaluate how to best manage an ecological 
system (Landres and others 1999). It is important to 
note, however, that similar measures from the different 
approaches could also signify that the measures are 
simply both equally erroneous.
	 Dissimilarity between results from the two departure 
methods reveals potential weaknesses in both approach-
es. For example, departure estimates were different in 
Zone 16’s Uinta Mountains in areas dominated by the 
Spruce-Fir / Spruce-Fir / Lodgepole Pine PVT – a PVT 
with a complex succession pathway. Figure 22 shows 
succession class distributions in an LRU dominated by 
that PVT, which is typical for this area of the Uintas. 
In the reference conditions, LRUs were occupied by as 
many as 22 succession classes, whereas only a few classes 
dominated the landscape under current conditions. The 
HRVStat method tended to produce low departure esti-
mates for LRUs in the Uintas, resulting potentially from 
the abundance of succession classes in the reference 
conditions. Conversely, the FRCC Guidebook approach 
tended to produce high departure estimates in these LRUs 
because the percent area in any one succession class of 
these complex PVTs was reduced since the total area was 
spread across many succession classes. As previously 
mentioned, both methods require further refinement to 
ensure that departure estimates are not biased by the 
complexity of the succession class pathways.

Departure Estimates by Fire Return 
Intervals
	 We compared departure estimates by fire return interval 
classes in a manner similar to that used in the evaluations 
conducted in the coarse-scale project (Schmidt and others 
2002). For both zones 16 and 19, we found that departure 
estimates were higher in areas with shorter fire return 
intervals. Similarly, Schmidt and others (2002) generally 
found that landscapes with estimated historical fire return 
intervals of 100-years or less had higher proportions of 
landscapes categorized as FRCC 3 (analogous to classi-
fied HRVStat departure-3), whereas areas with fire return 
intervals of 200-years or more had the least proportion of 
highly departed landscapes. We expect that the impacts of 
fire exclusion during the past 100 years are more evident 
in areas that historically had more frequent fires because 
such ecosystems have missed more fire return intervals 
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and, as a result, have become more highly departed in 
their vegetation composition than systems with longer 
fire return intervals.
	 However, this assessment is predicated on the assump-
tion that our understanding and simulation of historical 
fire return intervals is reasonably accurate. Indeed, fire 
history in different vegetation types may be poorly 
understood, and considerable uncertainty may exist for 
describing fire frequencies in some ecosystems (Baker 
and Ehle 2001; Baker and Shinneman 2004). For ex-
ample, pinyon-juniper woodlands have been described 
by some as having a frequent, low severity fire regime 
(Brown and others 2001; Gottfried and others 1995; 
West 1999;), while others identify the vegetation type 

as having a high-severity (Floyd and others 2000) and 
less frequent fire regime (Baker and Shinneman 2004). 
Another example can be found in ponderosa pine forests, 
where fire return intervals were typically reported as 2-25 
years, but recent work suggests that return intervals may 
range between 22 and 308 years (Baker and Ehle 2001). 
Such uncertainty in fire history information emphasizes 
the need for thorough evaluations of the best available 
data to determine the appropriate data for inclusion in 
LANDSUMv4 simulations. If we assume that fire return 
intervals that are shorter than their actual intervals, we 
are likely to overestimate departure; conversely, if the 
assumed fire return intervals are longer than the actual, 
departure will likely be underestimated.

Figure 22 – Distribution of succession classes by percent area under reference and current vegetation conditions for the Spruce – 
Fir / Spruce – Fir / Lodgepole Pine PVT that dominates a landscape reporting unit in the Uinta Mountain Range of Zone 16.  See 
table 7 for explanation of succession class codes.
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Recommendations for National 
Implementation__________________
	 Before departure indices are computed for the na-
tional implementation of the LANDFIRE Project, the 
limitations of each approach need to be addressed, or 
at least recognized. Specifically, the effect of succes-
sion pathway complexity on departure estimates in both 
approaches should be evaluated. To ensure consistency 
across the nation, we propose using a simple, standard-
ized model with a limited number of succession stages 
(for example, only five succession classes per PVT). 
Such a set structure may more closely characterize 
information on vegetation structure and fire regimes 
available across the nation. Also, limitations inherent to 
the FRCC Guidebook approach need to be addressed; 
these include: 1) the inability to capture the range and 
variability across all succession classes, 2) inconsisten-
cies in area comparisons between current and reference 
landscapes, and 3) potential inconsistencies in departure 
estimates with longer or repeated LANDSUMv4 simu-
lations. Additionally, if multiple departure maps are 
developed using different approaches, instructions must 
be provided for the interpretation and application of the 
maps both on a nationwide basis and at the local level. 
Furthermore, prior to national implementation, a policy 
decision must be made regarding the treatment of certain 
land cover types for modeling reference conditions and 
estimating departure. As discussed above, inclusion of 
immutable land cover types (urban, agriculture, water, 
barren, and snow/ice) in departure estimates can mask 
ground conditions and conceal the need to restore de-
parted landscapes or to conserve healthy landscapes.
	 Another consideration for national implementation is 
the use of other ways to measure landscape condition 
that describe landscape configuration instead of land-
scape composition. Landscape configuration depicts 
the physical distribution or spatial character of patches 
within the landscape (McGarigal and Marks 1995). Such 
patch-based metrics can be used to identify landscapes 
that have become highly fragmented and possibly beyond 
their historical distributions of patches within landscapes 
(Spies and others 1994; Wallin and others 1996), and 
these metrics include patch size, shape, density, and 
relative location (Farina 2000). We did not use these 
metrics in the LANDFIRE Prototype Project because 
they are computationally intensive, but if better computer 
resources become available for national implementation, 
such metrics may be informative and preferable.

Research Recommendations
	 In developing methods for the LANDFIRE Prototype, 
a number of questions emerged that require further 
research before implementing LANDFIRE across the 
nation. We first describe recommended research pertain-
ing to the HRVStat approach and then propose a series 
of other lines of research.
	 Adequate simulation of historical reference conditions 
is a key factor in developing HRVStat statistics. Two 
main factors determine the adequacy of the LAND-
SUMv4 simulations for generating historical reference 
conditions: (1) sufficient number of sampling observa-
tions and (2) adequate spatial representation. Prior to 
executing LANDSUMv4 simulations for zones 16 and 
19, we conducted analyses to address these two factors. 
We focused on developing the best data sets of simulated 
historical reference conditions, given our time constraints 
and computer resources. Other alternatives for produc-
ing simulated historical data sets should be explored as 
described below.
	 Our initial evaluations of sample size found that 200 
observations from LANDSUMv4 simulations would 
adequately describe simulated historical landscape dy-
namics. However, it is important to ensure that enough 
sampling observations are reported to estimate the ef-
fects of periodic rare and large fire events. For example, 
infrequent catastrophic fires maintained large patches 
of old-growth ponderosa pine in a non-equilibrium 
state in the Black Hills of South Dakota and Wyoming 
(Shinneman and Baker 1997). If we under-sample 
LANDSUMv4 simulations with such fire regimes, 
we may observe only one dominant vegetation condi-
tion and miss a different state that was an important 
component of historical conditions. If that unobserved 
state is now the current condition of the landscape, we 
would overestimate departure and underestimate the 
observed significance level (that is, describe evidence 
for departure as higher than its true value). We suggest 
further analysis that examines the sensitivity of departure 
statistics to the number of sampling observations, given 
a fixed current landscape.
	 An additional issue related to sample size involves 
the way observations are sampled in simulations and 
the influence on temporal autocorrelation. We sampled 
data within one simulation at reporting intervals that 
were determined long enough to minimize temporal 
autocorrelation. An alternative approach is to run mul-
tiple simulations at shorter time periods, sampling only 
once from each simulation. These separate executions 
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with different random number streams would ensure 
independence in sampling observations and eliminate 
any chance of temporal autocorrelation. We recommend 
comparing departure statistics from one long simulation 
to many shorter simulations (for example, a 10,000-year 
simulation with 50-year reporting intervals versus 200 
simulations of 1,000-year length) to evaluate the influ-
ence of temporal autocorrelation. We anticipate that any 
differences detected would primarily affect the observed 
significance level. That is, the observed significance from 
one long simulation would be smaller than that produced 
from many shorter simulations because the number 
of independent observations and therefore degrees of 
freedom will be less where autocorrelation exists. If 
temporal autocorrelation within reporting intervals 
does substantially influence observed significance level 
estimates, we suggest exploring additional statistical 
techniques to minimize the effects before implementing 
the approach of multiple simulations. Multiple simula-
tions, although potentially preferable, would prove costly 
because of the need for substantially longer simulation 
periods and could therefore be prohibitive to national 
implementation of the LANDFIRE Project.
	 Temporal autocorrelation may also affect departure 
statistics for landscapes that express a periodicity in 
their vegetation characteristics matching the reporting 
interval. For example, if a PVT alternates between two 
succession classes at 50-year intervals and we sample at 
50-year intervals, we may only observe one of those two 
succession classes. In this case, the observed departure 
would be underestimated and observed significance level 
would be overestimated. We suspect that the likelihood 
of coinciding vegetation and reporting intervals is low, 
but recommend exploring the use of a restricted random-
ization scheme to avoid this possibility. For example, 
we might choose random numbers between 50 and 10 
to sample the simulation data and generate reporting 
intervals such as 50, 75, 90, and so on.
	 Besides the adequacy of sampling observations, satis-
factory spatial representation of vegetation composition 
is vital to estimating departure and is influenced by two 
main components: 1) LANDSUMv4 simulations and 
2) the spatial grain of LRUs. In simulating historical 
vegetation conditions using LANDSUMv4, the main 
concern regarding spatial representation is simulating 
the full distribution of succession classes within a PVT 
on the landscape and, specifically, ensuring detection 
of all states that may currently exist on the landscape. 
Some of the primary LANDSUMv4 input components 
are fire regime parameters, fire size, and landscape 

simulation size (Pratt and others, Ch. 10). Accordingly, 
a given fire regime and fire size will have an optimum 
landscape simulation size for simulating fire spread and 
the corresponding effects on succession. Sensitivity 
analyses on the scale of LRUs are needed to identify the 
appropriate sizes for estimating departure. As the size 
of LRUs decreases, temporal variability may increase 
in fire and vegetation characteristics. If LRUs are too 
small, we may observe a limited and highly variable 
distribution of succession classes within a stand than 
would be expected at the optimal size for describing its 
vegetation characteristics. Conversely, if LRUs are too 
large, important components within LRUs needing res-
toration or conservation could be missed. In performing 
these various sensitivity analyses, we expect to identify 
thresholds at a relatively narrow range of sizes, which 
will give the most effective estimates of departure. 
We also expect that these optimal sizes will vary from 
ecosystem to ecosystem, especially if fire regimes are 
very different, and this source of variation should be 
included in sensitivity analyses.
	 Other kinds of research are also critically needed 
to fully investigate the implications of calculating de-
parture and determining FRCC. One line of research 
should focus on the implications of calculating depar-
ture from an array of possible methods, including the 
two presented here (FRCC Guidebook and HRVStat). 
Numerous limitations were noted, particularly in 
the FRCC Guidebook approach, in the methods for 
computing ecological departure, prompting the explo-
ration of other departure methods. We have developed 
a computer program, called DEPART, that computes 
various other ecological indices of similarity, including 
Sorenson’s Index, Jaccard’s Index, and Similarity Ratio 
(Mueller-Dombois and Ellenberg 1974). Departure 
estimates determined from all these indices should 
be evaluated and compared for their sensitivity to and 
consistency in detecting vegetation change. A second 
line of research should pursue the development of field 
methods that can be used to validate the departure and 
FRCC maps created by the LANDFIRE Project. A 
final research track should investigate the implications 
of collapsing departure measures into an ordinal clas-
sification, as with the FRCC and classified HRVStat 
departure groupings. Specifically, identification of ap-
propriate breakpoints should be based on standardized 
methods to best represent departure estimates and avoid 
arbitrary classifications, which may skew assessments 
of landscapes.
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Conclusion______________________
	 Spatial data describing historical and existing condi-
tions were successfully implemented in both the Inter-
agency FRCC Guidebook approach and the HRVStat 
approach to quantify ecological departure across two 
large western study areas. Each method for quantify-
ing ecological departure had strengths and limitations. 
The FRCC Guidebook approach proved relatively easy 
to use, but was not statistically rigorous. Conversely, 
the HRVStat approach was computationally complex, 
but provided a statistically sound measurement of the 
departure of current conditions from simulated his-
torical conditions. While each approach has promise, 
more research related to the application of fire history 
information and the spatial units for measuring depar-
ture is needed to develop a consistent map of ecological 
departure across the United States.
	 For further project information, please visit the LAND-
FIRE website at www.landfire.gov.

The Authors_____________________
	 Lisa Holsinger is a GIS Specialist with the USDA 
Forest Service, Rocky Mountain Research Station, 
Missoula Fire Sciences Laboratory (MFSL). Holsinger 
joined MFSL in 2002 and has worked on developing and 
analyzing spatial data for simulation models applied to 
large landscapes. She has developed GIS data and input 
for the WXFIRE and LANDSUMv4 simulation models 
and HRVStat program, run simulations, and produced 
associated spatial data. She has also conducted sensitiv-
ity analyses for both the WXFIRE and LANDSUMv4 
models. Prior to working at MFSL, she worked as a 
Fisheries Biologist and GIS Specialist for the National 
Marine Fisheries Service conducting research and 
management for the conservation of west coast salmon 
populations. Holsinger received her B.S. degree in 
Biological Sciences from the University of California, 
Davis in 1984 and her M.S. degree in Fisheries at the 
University of Washington in 1988.
	 Robert E. Keane is a Research Ecologist with the 
USDA Forest Service, Rocky Mountain Research Sta-
tion, Missoula Fire Sciences Laboratory (MFSL). Since 
1985, Keane has developed various ecological computer 
models for the Fire Effects Project for research and 
management applications. His most recent research 
includes the development of a first-order fire effects 
model, construction of mechanistic ecosystem process 
models that integrate fire behavior and fire effects into 
succession simulation, restoration of whitebark pine 

in the Northern Rocky Mountains, spatial simulation 
of successional communities on landscapes using GIS 
and satellite imagery, and the mapping of fuel for fire 
behavior prediction. He received his B.S. degree in For-
est Engineering in 1978 from the University of Maine, 
Orono, his M.S. degree in Forest Ecology in 1985 from 
the University of Montana, and his Ph.D. degree in For-
est Ecology in 1994 from the University of Idaho.
	 Brian Steele is an Associate Professor in the Depart-
ment of Mathematical Sciences at the University of 
Montana, where he has been on the faculty since 1998. 
Steele earned a B.S. degree in Resource Management 
from Cornell University in 1978 and an M.S. degree in 
Statistics from Oregon State University in 1987. In 1995, 
Steele received his Ph.D. in Mathematics, specializing 
in Statistics, from the University of Montana. He has 
worked on statistical applications in ecology, resource 
management, and biology since 1997. Much of this ef-
fort has involved multivariate statistical methods and 
statistical methods for analyzing dependent data.
	 Matthew C. Reeves is a GIS Specialist with the 
LANDFIRE Project at the USDA Forest Service, Rocky 
Mountain Research Station, Missoula Fire Sciences 
Laboratory (MFSL). He earned a B.S. degree in Range 
Management (minoring in Wildlife Management) from 
Washington State University in 1995. In 1999, Reeves 
received his M.S. degree from Arizona State University’s 
Environmental Resources program, where he focused 
on the remote sensing of desert vegetation and the 
development of GIS-based wildlife habitat suitability 
models. In 2004, he earned a Ph.D. from the University 
of Montana’s School of Forestry, where he developed 
automated wheat yield simulation models and rangeland 
biomass estimators from remotely sensed data in a GIS 
framework.
	 Sarah Pratt is a GIS Specialist with the USDA Forest 
Service, Rocky Mountain Research Station, Missoula 
Fire Sciences Laboratory (MFSL). Sarah joined MFSL 
in 2003, where she has prepared and analyzed spatial 
data for the simulation models LANDSUMv4 and FIRE-
HARM. Pratt received her B.A. from Kenyon College 
(Gambier, Ohio) in 1992 and her M.S. in Biological 
Sciences from Northern Michigan University in 2003.

Acknowledgments________________
	 We would like to thank the USDA Forest Service 
Fire and Aviation Management Washington Office for 
funding the LANDFIRE Project. We thank Dr. Ayn 
Shlisky of The Nature Conservancy for her review of 



360 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-175. 2006

Chapter 11—Using Historical Simulations of Vegetation to Assess Departure of Current Vegetation Conditions across Large Landscapes

and insightful comments on the manuscript. We also 
thank Brendan Ward, Don Long, and Dr. Matthew 
Rollins at the USDA Forest Service, Rocky Mountain 
Research Station, Missoula Fire Sciences Laboratory 
and Dr. Swarna Reddy at the University of Montana 
for their valuable help during this effort. We also thank 
Christine Frame and Dennis Simmerman of Systems 
for Environmental Management for their assistance in 
technical editing and graphic design.

References______________________
Aptech Systems, Inc. 2004. GAUSS Software for Windows, version 

6.0. Black Diamond, Washington.
Arno, S. F.; Simmerman, D. G.; Keane, R. E. 1985. Forest succes-

sion on four habitat types in western Montana. Gen. Tech. Rep. 
INT_GTR-177. Ogden, UT: U.S. Department of Agriculture, 
Forest Service, Intermountain Research Station.

Aronson, J.; Floret, C.; LeFloc’h, E.; Ovalle, C.; Pontanier, R. 
1993. Restoration and rehabilitation of degraded ecosystems in 
arid and semi-arid lands. I. A view from the south. Restoration 
Ecology. 1:8-17.

Baker, W. L.; Ehle, D. 2001. Uncertainty in surface-fire history: 
the case of ponderosa pine forests in the western United States. 
Canadian Journal of Forest Research. 31:1205-1226.

Baker, W. L.; Shinneman, D. J. 2004. Fire and restoration of piñon-
juniper woodlands in the western United States: a review. Forest 
Ecology and Management. 189:1-21.

Barnes, B. V.; Zak, D. R.; Denton, S. R.; Spurr, S. H. 1998. Forest Ecol-
ogy, fourth edition. New York, NY: John Wiley & Sons, Inc.

Brown, P. M.; Kaye, M. W.; Huckaby, L. S.; Baisan, C. H. 2001. 
Fire history along environmental gradients in the Sacramento 
Mountains, New Mexico: influences of local patterns and regional 
processes. Ecoscience. 8:115-126.

Covington, W. W.; Everett, R. L.; Steele, R. W.; Irwin, L. I.; Daer, 
T. A.; Auclair, A.N.D. 1994. Historical and anticipated changes 
in forest ecosystems of the inland west of the United States. 
Journal of Sustainable Forestry. 2:13-63.

Farina, Almo. 2000. Landscape Ecology in Action. Dordrecht, 
Netherlands: Kluwer Academic Publishers.

Farquhar, Graham D. 1997. Carbon dioxide and vegetation. Sci-
ence. 278 (5342): 1411.

Floyd, M. L.; Romme, W. H.; Hanna, D. D. 2000. Fire history and 
vegetation pattern in Mesa Verde National Park, Colorado, USA. 
Ecological Applications. 10:1666-1680.

Fulé, P.Z.; Covington, W.W.; Moore, M.M. 1999. Determining 
reference conditions for ecosystem management of southwestern 
ponderosa pine forests. Ecological Applications. 7(3):895-908.

Gardner, R. H. 1998. Pattern, process, and the analysis of spatial 
scales. In: Peterson, D. l.; Parker, V. T., eds. Ecological Scale: 
Theory and Applications. New York, NY: Columbia University 
Press. Pp. 17-34.

Gottfried, G. J.; Swetnam, T. W.; Allen, C. D.; Betancourt, J. L.; 
Chung-MacCoubrey, A. L. 1995. Pinyon-juniper woodlands. In: 
Finch, D. M.; Tainter, J. A., eds. Ecology, Diversity, and Sustain-
ability of the Middle Rio Grande Basin. Gen. Tech. Rep. RMRS-
GTR-268. Fort Collins, CO: U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station.

Gurevitch, J.; Padilla, D.K. 2004. Are invasive species a major 
cause of extinctions? TRENDS in Ecology and Evolution. 
19(9):470-474.

Hann, W. J.; Bunnell, D.L. 2001. Fire and land management plan-
ning and implementation across multiple scales. International 
Journal of Wildland Fire. 10:389-403.

Hann, W.; Shlisky, A.; Havlina, D.; Schon, K.; Barrett, S.; DeMeo, 
T.; Pohl, K.; Menakis, J.; Hamilton, D.; Jones, J.; Levesque, M. 
2004. Interagency Fire Regime Condition Class Guidebook. 
[Online.] Available: http://www.frcc.gov/ [May 12, 2006].

Hardy, C. C.; Schmidt, K. M.; Menakis, J. P. and Sampson, R. H. 
2001. Spatial data for national fire planning and fuel management. 
International Journal of Wildland Fire. 10:353-372.

Holling, C. S. 1992. Cross-scale morphology, geometry, and dynam-
ics of ecosystems. Ecological Monographs. 62:447-502.

Hunter, M. L. 1996. Benchmarks for managing ecosystems: are 
human activities natural? Conservation Biology. 10:695-697.

Jones, T.H.; Thompson, L.J.; Lawton, J.H.; Bezemer, T.M.; Bardgett, 
R.D.; Blackburn, T.M.; Bruce, K.D.; Cannon, P.F.; Hall, G.S.; 
Hartley, S.E.; Howson, G.; Jones, C.G.; Kampichler, C.; Kandeler, 
E.; Ritchie, D.A.. 1998. Impacts of rising atmospheric carbon di-
oxide on model terrestrial ecosystems. Science. 280:441-443.

Kaufmann, M.R.; Graham, R.T.; Boyce, D.A.; Moir, W.H.; Perry, 
L.; Reynolds, R.T.; Bassett, R.L.; Mehlhop, P.; Edminster, C.B.; 
Block, W.M.; Corn, P.S. 1994. An ecological basis for ecosystem 
management. Gen. Tech. Rep. RMRS-GTR-246. Fort Collins, 
CO: U.S. Department of Agriculture, Forest Service, Rocky 
Mountain Research Station.

Keane, R. E.; Ryan, K. C.; Veblen, T. T.; Allen, C. D.; Logan, J. A. 
Hawkes, B. 2002. The cascading effects of fire exclusion in Rocky 
Mountain ecosystems. Rocky Mountain futures: an ecological 
perspective. Washington D.C.: Island Press. Pp.133-152.

Keane, R. E.; Cary, G. J.; Parsons, R. 2003. Using simulation to map 
fire regimes: an evaluation of approaches, strategies, and limita-
tions. International Journal of Wildland Fire. 12:309-322.

Keane, R.E.; Holsinger, L.M.; Pratt, S.D. 2006. Simulating historical 
landscape dynamics using the landscape fire succession model 
LANDSUM version 4.0. Gen. Tech. Rep. RMRS-GTR-171CD. 
Fort Collins, CO: U.S. Department of Agriculture, Forest Service, 
Rocky Mountain Research Station. 73 p. [Online]. Available: http://
www.fs.fed.us/rm/pubs/rmrs_gtr171.html [May 18, 2006].

Keddy, P.A.; Drummond, C.G. 1996. Ecological properties for the 
evaluation, management, and restoration of temperate deciduous 
forest ecosystems. Ecological Applications. 6:748-769.

Landres, P. B.; Morgan, P.; Swanson, F. J. 1999. Overview of the use 
of natural variability concepts in managing ecological systems. 
Ecological Applications. 9(4):1179-1188.

Laverty, L.; Williams, J. 2000. Protecting people and sustaining 
resources in fire-adapted ecosystems — A cohesive strategy: 
Forest Service response to GAO Report GAO/RCED 99-65. 
USDA Forest Service, Headquarters. Washington DC. [Online]. 
Available: www.fs.fed.us/pub/fam [May 12, 2006].

Leenhouts, B. 1998. Assessment of biomass burning in the conter-
minous United States. Conservation Ecology. 2:1.

Leon, Steven J. 2002. Linear Algebra, with Applications. Sixth 
Edition. Upper Saddle River, NJ: Prentice Hall.

Levin , S.A. 1978. Pattern formation in ecological communities. In: 
Steele, J.S., ed. Spatial Pattern in Plankton Communities. New 
York, NY: Plenum Press. Pp. 433 – 465.

Levin, S.A.; Buttel, l. 1986. Measures of Patchiness in Ecological 
Systems. Publication ERC-130. Ithaca, NY: Ecosystem Research 
Center, Cornell University.

McGarigal, K.; Marks, B. J. 1995. FRAGSTATS: spatial pattern analy-
sis program for quantifying landscape structure. Gen. Tech. Rep. 
PNW-GTR-351. Portland, OR: U.S. Department of Agriculture, 
Forest Service, Pacific Northwest Research Station. 122 p.

Mladenoff, D. J.; White, M. A.; Pastor, J.; Crow, T.R. 1993. Compar-
ing spatial pattern in unaltered old-growth and disturbed forest 
landscapes for biodiversity design and management. Ecological 
Applications. 3:293-305.

Mladenoff, David J.; White, M.A.; Crow, T.R.; Pastor, J. 1994. 
Applying principles of landscape design and management to 
integrate old-growth forest enhancement and commodity use. 
Conservation Biology. 8:752-762.



361USDA Forest Service Gen. Tech. Rep. RMRS-GTR-175. 2006

Chapter 11—Using Historical Simulations of Vegetation to Assess Departure of Current Vegetation Conditions across Large Landscapes

Moore, M. M.; Covington, W. W.; Fule, P. Z. 1999. Reference condi-
tions and ecological restoration: A southwestern ponderosa pine 
perspective. Ecological Applications. 9(4):1266-1277.

Morgan, P.; Aplet, G.H.; Haufler, J.B.; Humphries, H.C.; Moore, 
M.M.; Wilson, W.D. 1994. Historical range of variability: a use-
ful tool for evaluating ecological change. Journal of Sustainable 
Forestry. 2:87-111.

Mueller-Dombois, D.; Ellenberg, H. 1974. Aims and methods of 
vegetation ecology. New York, NY: John Wiley & Sons.

O’Neill, R.V.; Turner, S.J.; Cullinan, V.I.; Coffin, D.P.; Cook, T.; 
Conley, W.; Brunt, J.; Thomas, J.M.; Conley, M.R.; Gosz, J. 1991. 
Multiple landscape scales: an intersite comparison. Landscape 
Ecology. 1:137-144.

Parker, T. V.; Pickett, S. T. 1998. Historical contingency and multiple 
scales of dynamics within plant communities. In: Peterson, D. 
l.; Parker, V. T., eds. Ecological Scale: Theory and Applications. 
New York: Columbia University Press. Pp. 171-192.

Schmidt, K. M.; Menakis, J. P.; Hardy, C. C.; Hann, W. J.; Bunnell, 
D. L. 2002. Development of coarse-scale spatial data for wildland 
fire and fuel management. Gen. Tech. Rep. RMRS-GTR-87. Fort 
Collins, CO: U.S. Department of Agriculture, Forest Service, 
Rocky Mountain Research Station. 41 p. + CD.

Schrader-Frechette, K.; McCoy, E.D. 1995. Natural landscapes, 
natural communities and natural ecosystems. Forest and Con-
servation History. 39:138-142.

Shinneman, D. J.; Baker, W. L. 1997. Nonequilibrium dynam-
ics between catastrophic disturbances and old-growth forests 
in ponderosa pine of the Black Hills. Conservation Biology. 
11:1276-1288.

Spies, T. A.; Ripple, W.; Bradshaw, G. A. 1994. Dynamics and 
pattern of managed coniferous forest landscapes in Oregon. 
Ecological Applications. 4:555-568.

Steele, R.; Geier-Hayes, K. 1989. The Douglas-fir/nine-bark habitat 
type in central Idaho: succession and management. Gen. Tech. 
Rep. INT-GTR-252. Ogden, UT: U.S. Department of Agriculture, 
Forest Service, Intermountain Research Station.

Steele, B. M.; Reddy, S. K.; Keane, R. E. In preparation. A meth-
odology for assessing departure of current plant communities 
from historical conditions over large landscapes. University of 
Montana, Missoula, MT.

Stephenson, N. L. 1999. Reference conditions for Giant Sequoia 
forest restoration: structure, process, and precision. Ecological 
Applications. 9(4)1253-1265.

Stevens, C. J.; Dise, N. B.; Mountford, J. O.; Gowing, D. J. 2004. 
Impact of nitrogen deposition on the species richness of grass-
lands. Science. 303:1876-1879.

Swanson, F. J.; Jones, J. A.; Wallin, D. O.; Cissel, J. H. 1994. Natural 
variability - implications for ecosystem management. Gen. Tech. 
Rep. PNW-318. Portland, OR: U.S. Department of Agriculture, 
Forest Service, Pacific Northwest Research Station.

Swetnam, T.W.; Allen, C.D. Betancourt, J.L. 1999. Applied histori-
cal ecology: using the past to manage for the future. Ecological 
Applications. 9(4):1189-1206.

Turner, M.G.; Gardner, R.H.; O’Neill, R.V. 2001. Landscape Ecol-
ogy in Theory and Practice: Pattern and Process. New York, 
NY: Springer-Verlag.

United States Department of Agriculture (USDA) and United States 
Department of Interior (USDOI). 2001. The National Fire Plan: 
A collaborative approach for reducing wildland fire risks to com-
munities and the environment. [Online]. Available: http://www.
fireplan.gov/report_page.cfm. [February 2003].

United States Government Accountability Office. 1999. Western 
national forests: a cohesive strategy is needed to address cata-
strophic wildland fire threats. GAO Report. GAO/RCED-99-65. 
United States Government Accountability Office, Washington 
D.C., USA.

United States Government Accountability Office 2002. Severe 
Wildland Fires — Leadership and Accountability Needed to 
Reduce Risks to Communities and Resources. GAO Report. 
GAO-02-259, United States Government Accountability Office. 
Washington, D.C., USA.

Urban, D. L.; Acevedo, M. F.; Garman, S. L. 1999. Scaling fine-
scale processes to large-scale patterns using models derived from 
models: meta-models. In: Mladenoff, D.J.; Baker, W.L., eds. 
Spatial modeling of forest landscape change: approaches and 
applications. Cambridge, UK: Cambridge University Press.

Wallin, D.O.; Swanson, F.J.; Barks, B.; Cissel, J.H.; Kertis, J. 1996. 
Comparison of managed and pre-settlement landscape dynamics 
in forests of the Pacific Northwest, USA. Forest Ecology and 
Management. 85:291-309.

West, N. E. 1999. Juniper-pinyon savannas and woodlands of western 
North America. In: Anderson, R.C.; Fralish, J.S.; Baskin, J.C., 
eds. Savannas, Barrens, and Rock Outcrop Plant Communities 
of North America. Cambridge, UK: Cambridge University Press. 
Pp. 288-308.

Personal Communications
Hann, Wendel. 2004. [Personal communication]. May 24, 2004. U.S. 

Department of Agriculture Forest Service, Washington Office 
Fire & Aviation Management, Silver City, New Mexico. 



362 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-175. 2006

Chapter 11—Using Historical Simulations of Vegetation to Assess Departure of Current Vegetation Conditions across Large Landscapes

 Zone 16		  Zone 19
PVT code	 Zone 16 PVT name	 PVT code	 Zone 19 PVT name

	 1601	 Spruce Fir – Blue Spruce	 1902	 Western Redcedar
	 1602	 Spruce Fir – Blue Spruce – Lodgepole Pine	 1914	 Grand Fir – Rocky Mtn. White Fir
	 1603	 Spruce Fir – Spruce Fir	 1920	 Spruce – Fir / Western Larch
	 1604	 Spruce Fir – Spruce Fir – Lodgepole Pine	 1921	 Spruce – Fir / Douglas-fir
	 1611	 Grand Fir – White Fir	 1922	 Spruce – Fir / Timberline Pine
	 1612	 Grand Fir – White Fir - Maple	 1924	 Spruce – Fir / Lodgepole Pine
	 1621	 Douglas-fir – Timberline Pine	 1930	 Douglas-fir / Western Larch
	 1622	 Douglas-fir – Douglas-fir	 1931	 Douglas-fir / Ponderosa pine
	 1623	 Douglas-fir – Lodgepole Pine	 1932	 Douglas-fir / Lodgepole Pine
	 1631	 Timberline Pine	 1934	 Douglas-fir / Timberline Pine
	 1632	 Ponderosa Pine	 1936	 Douglas-fir / Douglas-fir
	1 633	 Lodgepole Pine	1 940	 Lodgepole Pine
	1 634	 Aspen	1 942	 Ponderosa Pine
	 1641	 Pinyon Juniper–Mtn. Big Sagebrush - North	 1944	 Timberline Pine / Limber Pine
	 1642	 Pinyon Juniper–Mtn. Big Sagebrush - South	 1946	 Timberline Pine / Whitebark Pine
	1 643	 Pinon Juniper-Wyoming-Basin Big Sagebrush-North	1 950	 Rocky Mountain Juniper
	1 644	 Pinyon Juniper-Wyoming-Basin Big Sagebrush-South	1 952	 Riparian Hardwood
	 1645	 Pinyon Juniper – Mountain Mahogany	 1960	 Riparian Shrub
	 1646	 Pinyon Juniper – Gambel Oak	 1962	 Mountain Mahogany
	1 651	 Blackbrush	1 964	 Dry Shrub
	1 652	 Salt Desert Shrub	1 965	 Dry Shrub/Conifer
	1 653	 Warm Herbaceous	1 970	 Dwarf Sagebrush Complex
	1 654	 Cool Herbaceous	1 971	 Dwarf Sage/Conifer
	1 661	 Dwarf Sagebrush	1 972	 Mtn. Big Sagebrush Complex
	1 662	 Wyoming-Basin Big Sagebrush	1 973	 Mtn. Big Sage/Conifer
	1 663	 Mountain Big Sagebrush	1 974	 Threetip Sagebrush
	1 671	 Riparian Hardwood	1 975	 Threetip Sage/Conifer
	1 672	 Riparian Shrub	1 976	 Wyoming/Basin Big Sagebrush Complex
	1 673	 Wetland Herbaceous	1 977	 Wyoming/Basin Big Sage/Conifer
	1 680	 Alpine	1 980	 Wetland Herbaceous
	1 690	 Open Water	1 982	 Alpine
	1 691	 Urban - Developed	1 984	 Fescue Grasslands
	1 692	 Barren	1 985	 Fescue Grasslands/Conifer
	1 693	 Agricultural	1 986	 Bluebunch Wheatgrass
	1 694	 Snow - Ice	1 987	 Bluebunch Wheatgrass/Conifer
			1   990	 Open Water
			1   991	 Urban - Developed
			1   992	 Barren
			1   993	 Agricultural
			1   994	 Snow - Ice

Appendix 11-A—Names of PVT codes for zones 16 and 19_ _______________
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Mean and standard deviation (SD) of departure estimates and a ranking of the five PVTs with the greatest departure across each of 
the three spatial domains of mapping zone (Zone), simulation landscape (SL), and landscape reporting unit (LRU) across Zone 16 
using the FRCC Guidebook method.  Overall, the PVTs with the highest departure were similar across the three spatial domains, 
but departure values generally decreased as the size of the spatial domain decreased (from Zone to SL to LRU).  For the smallest 
spatial domain of LRU, departure values for each PVT were generally higher using the FRCC methods.

		  Zone	 Zone	 Zone	 SL-	 SL-	 SL-	 LRU-	 LRU-	 LRU-
		  level	 level	 level	 level	 level	 level	 level	 level	 level
	 PVT	 mean	 ank	 SD	 mean	 rank	 SD	 mean	 rank	 SD

Agricultural	 28		1  5	 20		11	13		     8
Alpine	3 7		1  7	 22		14	11		     7
Aspen 	 54		  9	31		11	11		      9
Barren	41		1   7	3 2		14	1   7		  9
Blackbrush	 54		1  6	31		1   5	1 0		  9
Cool Herbaceous	 61		13	4   5		1  2	 28		  9
Douglas-fir / Douglas-fir	 64	 	 9	 44	 	 13	 19	 	 14
Douglas-fir / Lodgepole Pine	 69	 3	 7	 53	 3	 12	 33	 4	 15
Douglas-fir / Timberline Pine	 77	 1	 15	 65	 1	 18	 42	 1	 18
Dwarf Sagebrush	 55		1  2	3 5		13	1   7		1  2
Grand Fir – White Fir	 65	 	 9	 47	 	 12	 25	 	 13
Grand Fir – White Fir / Maple	 54	 	 11	 31	 	 12	 12	 	 8
Lodgepole Pine	 65		1  0	 50		14	   24		14 
Mountain Big Sagebrush	 63		  9	41		13	14		13     
Open Water	33		   20	 25		1  5	14		1   2
Pinyon – Juniper / Gambel Oak	 62	 	 12	 39	 	 15	 21	 	 13
Pinyon – Juniper / Mountain Big Sagebrush / North	 62	 	 8	 42	 	 10	 23	 	 11
Pinyon – Juniper / Mountain Big Sagebrush / South	 75	 2	 8	 57	 2	 11	 36	 2	 15
Pinyon – Juniper / Mountain Mahogany	 62	 	 11	 39	 	 15	 19	 	 13
Pinyon – Juniper / Wy. – Basin Big Sagebrush / N	 66	 	 13	 44	 	 17	 19	 	 15
Pinyon – Juniper / Wy. – Basin Big Sagebrush / S	 71	 5	 12	 52	 5	 15	 28	 	 15
Ponderosa Pine	 62		1  2	4 9		13	3   0		14 
Riparian Hardwood	 54		1  0	 29		11	   8		  6
Riparian Shrub	 56		1  7	4 0		1  5	1 9		1  0
Salt Desert Shrub	 63		14	4   8		1  5	3 5	3	1  8
Spruce – Fir / Blue Spruce	 66	 	 9	 48	 	 12	 26	 	 13
Agricultural	 28		1  5	 20		11	13		     8
Alpine	3 7		1  7	 22		14	11		     7
Aspen	 54		  9	31		11	11		      9
Barren	41		1   7	3 2		14	1   7		  9
Blackbrush	 54		1  6	31		1   5	1 0		  9
Spruce – Fir / Blue Spruce / Lodgepole Pine	 68	 4	 12	 53	 4	 17	 31	 5	 17
Spruce – Fir / Spruce – Fir 	 67	 	 9	 51	 	 13	 24	 	 14
Spruce – Fir / Spruce – Fir / Lodgepole Pine	 67	 	 11	 49	 	 14	 23	 	 17
Urban–Developed	 24	 	 13	 17	 	 8	 13	 	 6
Warm Herbaceous	 56		1  0	4 0		11	   26		11 
Wetland Herbaceous	 56		13	3   6		1  6	 22		1  2
Wyoming – Basin Big Sagebrush	 63	 	 13	 38	 	 14	 17	 	 13

Appendix 11-B_____________________________________________________
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Mean and standard deviation (SD) of departure estimates and ranking (up to 5) for each PVT for the 
landscape reporting unit (LRU) spatial domain across Zone 19 using the FRCC Guidebook method.  De-
parture values for each PVT were generally higher than those estimated using HRVStat methods.

	 PVT	 LRU-level mean	 LRU-level rank	 LRU-level SD

Alpine	43 .94		1  5.07
Bluebunch Wheatgrass	 62.42	1	1  9.56
Bluebunch Wheatgrass / Conifer	4 7.71		1  6.03
Douglas-fir / Douglas-fir	 33.96	 	 13.80
Douglas-fir / Lodgepole Pine	 36.57	 	 14.09
Douglas-fir / Ponderosa Pine	 40.51	 	 13.88
Douglas-fir / Timberline Pine	 35.38	 	 13.86
Douglas-fir / Western Larch	 42.35	 	 12.29
Dry Shrub	 57.61	 2	 20.07
Dry Shrub / Conifer	41 .69		14  .26
Dwarf Sage / Conifer	4 0.28		1  2.44
Dwarf Sagebrush Complex	4 8.32	 5	 23.50
Fescue Grasslands	4 7.97		1  6.88
Fescue Grasslands / Conifer	41 .42		14  .54
Grand Fir -  White Fir	43 .62		13  .68
Lodgepole Pine	43 .34		14  .10
Mountain Mahogany	41 .14		14  .56
Mountain Big Sage Complex / Conifer	3 9.18		1  5.07
Mountain Big Sagebrush Complex	31 .65		1  6.21
Ponderosa Pine	4 5.44		1  5.68
Riparian Hardwood	4 8.97	4	1  6.16
Riparian Shrub	44 .01		1  5.75
Rocky Mountain Juniper	43 .52		1  6.29
Spruce – Fir / Douglas-fir	 36.87	 	 14.03
Spruce – Fir / Lodgepole Pine	 47.81	 	 15.80
Spruce – Fir / Timberline Pine	 42.42	 	 15.72
Spruce – Fir / Western Larch	 39.60	 	 17.27
Threetip Sagebrush / Conifer	3 5.63		11  .28
Threetip Sagebrush	3 0.74		13  .62
Timberline Pine / Limber Pine	3 6.30		13  .88
Timberline Pine / Whitebark Pine	34 .95		11  .92
Western Redcedar	 52.22	3	14  .98
Wetland Herbaceous	4 5.84		1  5.81
Wy. – Basin Big Sage Complex / Conifer	 40.57	 	 14.91
Wy. – Basin Big Sagebrush Complex	 38.66	 	 17.12

Appendix 11-C_____________________________________________________
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