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Introduction_____________________
	 Mapped potential vegetation functioned as a key 
component in the Landscape Fire and Resource Man-
agement Planning Tools Prototype Project (LANDFIRE 
Prototype Project). Disturbance regimes, vegetation 
response and succession, and wildland fuel dynamics 
across landscapes are controlled by patterns of the en-
vironmental factors (biophysical settings) that entrain 
the physiology and distribution of vegetation. These 
biophysical characteristics of landscapes are linked to 
stable vegetation communities that occur in the absence 
of disturbance (Arno and others 1985; Cooper and 
others 1991; Ferguson 1989; Pfister and Arno 1980; 
Pfister and others 1977). In the LANDFIRE Prototype 
Project, these stable vegetation community types were 
referred to as potential vegetation types (PVTs). Further, 
the concept of potential vegetation was used as a basis 
for developing biophysical map units that were critical 
for developing the LANDFIRE wildland fuel and fire 
regime products. In the LANDFIRE Prototype Project, 
maps of potential vegetation facilitated linkage of the 
ecological process of succession to simulation landscapes 
used as input the LANDSUMv4 landscape fire succes-
sion model for modeling historical vegetation reference 
conditions and historical fire regimes (Long and others, 
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Ch. 9). In addition, maps of PVT were used to guide the 
parameterization and calibration of the landscape fire 
succession model LANDSUMv4 (Pratt and others, Ch. 
10) and to stratify vegetation communities for mapping 
current vegetation and wildland fuel mapping (Zhu and 
others, Ch, 8; Keane and others, Ch. 12).
	 Analysis of the biophysical characteristics of land-
scapes is commonly used to quantify distributions of 
vegetation along biophysical gradients (Bray and Curtis 
1957; Gleason 1926; Whittaker 1967). Previous research 
has employed cluster analysis and ordination techniques 
to delineate biophysical gradients and link them to cor-
responding potential vegetation (Galiván and others 
1998). Other research has used supervised classification 
methods or predictive vegetation mapping techniques 
(Franklin 1995) to link potential natural vegetation with 
biophysical gradients (Keane and others 2000; Keane 
and others 2001; Lenihan and Neilson 1993; Rollins and 
others 2004) and gradients of climate, topography, and 
soils (Brzeziecki and others 1993; Jensen and others 
2000).
	 We developed PVT map unit classifications based on 
species’ shade tolerance and moisture tolerance to link 
LANDFIRE reference plot data to unique environmental 
conditions or biophysical settings. Here, we define bio-
physical setting as the suite of biotic and abiotic factors 
that affect the composition, structure, and function of 
vegetation. Our main assumption was that the shade 
tolerant species would serve as unique indicators of 
biophysical conditions (Daubenmire 1967). Because of 
dynamic climate and ecosystem complexities, we did 
not assume that a stable climax community would exist 
without the influence of disturbance (Keane and Rollins, 
Chapter 3).
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	 Initially, we investigated an unsupervised clustering 
approach to stratify the landscape using a series of indi-
rect biophysical gradients (Hargrove and Luxmore 1998; 
Hessburg and others 2000a, Hessburg and others 2000b). 
This approach successfully delineated unique biophysi-
cal settings, but the categories were not significantly 
correlated to patterns of vegetation. Alternatively, we 
used a supervised predictive modeling approach based 
on ground-referenced data to explicitly link biophysical 
gradients to potential vegetation. This approach provided 
an objective and repeatable method that could be linked 
directly to vegetation patterns identifiable in the field. 
This chapter describes the process used for mapping po-
tential vegetation for the LANDFIRE Prototype Project 
and provides recommendations for generating maps of 
potential vegetation for the national implementation of 
LANDFIRE.

Methods________________________
	 The LANDFIRE Prototype Project involved many 
sequential steps, intermediate products, and interde-
pendent processes. Please see appendix 2-A in Rollins 
and others, Ch. 2 for a detailed outline of the proce-
dures followed to create the entire suite of LANDFIRE 
Prototype products. This chapter focuses specifically 
on the procedure followed in developing the potential 
vegetation maps, which served as spatial templates for 
nearly all mapping tasks in the LANDFIRE Prototype 
Project.

Field-referenced Data
	 Comprehensive field-based reference data are critical 
for implementing a supervised mapping application, and 
these “training data” must be a statistically robust sample 
of the population. The LANDFIRE reference database 
(LFRDB) was designed to meet these criteria and pro-
vided an excellent source of consistent, comprehensive 
reference data from which to develop training sites for 
our predictive landscape models (Caratti, Chapter 4). 
Georeferenced field locations were obtained from the 
LFRDB and assigned PVTs based on hierarchical, flo-
ristic keys organized along gradients of shade tolerance 
and moisture tolerance developed a priori (Long and 
others, Chapter 6). The development of the keys began 
with existing national classifications (Kuchler 1975) and 
was then revised by regional (Quigley and others 1996) 
and local (Pfister and others 1977) classifications. The 
keys were further revised using the LFRDB, an exten-
sive literature review, and review by regional ecological 

experts. To qualify as a separate class, individual PVTs 
had to fit the criteria of being identifiable in the field, 
scalable, mappable, and model-able (See Keane and 
Rollins, Ch. 3 and Long and others, Ch. 6).
	 The keys divided PVTs into three physiological life 
forms, forest, shrub, and herbaceous, with forest PVTs 
following a shade tolerance gradient and shrub and 
herbaceous PVTs following moisture gradients. Initially, 
Zone 16 had 13 classes of forest PVTs, 10 classes of shrub 
PVTs, and 3 classes of herbaceous PVTs. Distinguishing 
between classes requires a sufficient number of training 
plots for each class. We grouped classes having fewer 
than 20 training plots with other classes, resulting in 10 
forest classes, 8 shrub classes, and 3 herbaceous classes 
(table 1). To minimize the number of classes in Zone 19 
and in an effort to increase overall map accuracy, we 
implemented the classification key for this zone under 
the criterion that a minimum of 30 training plots were 
necessary for a PVT to form a unique class. Table 2 
shows Zone 19 PVT classes and the number of training 
plots from the database assigned to each class.

Spatial Data
	 The biophysical gradient layers included variables 
created using WXFIRE, an ecosystem simulation model 
developed by R.E. Keane at the USDA Forest Service, 
Rocky Mountain Research Station, Missoula Fire Sci-
ences Laboratory in Missoula, Montana (Keane and 
others 2006; Keane and Rollins, Ch. 3) and variables 
from the National Elevation Database (http://ned.usgs.
gov ). The WXFIRE model integrates DAYMET cli-
mate data (Running and Thornton 1996; Thornton and 
others 1997; Thornton and others 2000) with landscape 
data and site specific parameters (for example, soils 
and topography) and generates spatially explicit maps 
of climate and ecosystem variables that integrate land-
scape-weather interactions (See Holsinger and others, 
Ch. 5 for details about these variables and how they were 
derived). For topographic gradients, we used variables 
from the National Elevation Database, including eleva-
tion, derivatives of slope, aspect, a classified landform 
variable, and a topographic position index. This process 
resulted in a total of 38 biophysical gradients available for 
use as independent variables in our predictive landscape 
models of PVT. We reviewed correlation matrices and 
principle component analyses to reduce (winnow) this 
list of variables used in the modeling process. For Zone 
16, we used 21 variables (table 3) and for Zone 19, 22 
variables (table 4).
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Table 1—Zone 16 codes, life forms, names, and the number of training sites and test sites by PVT. Life form 
categories include F (forest), S (shrub), and H (herbaceous).

	 Life		  Number of	 Number of
Code	 form	 Name	 training sites	 test sites

	1	  F	 Spruce - Fir / Blue Spruce	1 57	13
	 2	 F	 Spruce - Fir / Spruce - Fir	11 88	 92
	 3	 F	 Grand fir - White Fir	 439	 40
	 4	 F	 Douglas-fir / Lodgepole Pine - Timberline Pine	 65	 3
	 5	 F	 Douglas-fir / Douglas-fir	 263	 19
	 6	 F	 Lodgepole Pine - Timberline Pine	1 04	1 0
	 7	 F	 Ponderosa Pine	 205	1 6
	 8	 F	 Pinyon - Juniper / Mountain Big Sagebrush	433	31 
	 9	 F	 Pinyon - Juniper / Wyoming - Basin Big Sagebrush	1 052	 95
	1 0	 F	 Riparian Hardwood	1 26	11
	11	  S	 Riparian Shrub	33	4 
	1 2	 S	 Blackbrush - Chaparral - Dry Deciduous Shrub	 22	3
	13	  S	 Dwarf Sagebrush	 99	14
	14	  S	 Salt Desert Shrub	3 5	 2
	1 5	 S	 Mountain Mahogany	 66	4
	1 6	 S	 Gambel Oak	1 72	14
	1 7	 S	 Wyoming - Basin Big Sagebrush	11 8	1 2
	1 8	 S	 Mountain Big Sagebrush	1 71	1 7
	1 9	 H	 Wetland Herbaceous	 57	 6
	 20	 H	 Alpine	4 7	 6
	 21	 H	 Herbaceous	1 09	 9

Table 2—Zone 19 codes, life forms, names, and the number of training sites and test sites by 
PVT. Life form categories include F (forest), S (shrub), and H (herbaceous).

	 Life		  Number of	 Number of
Code	 form	 Name	 training sites	 test sites

	1	  F	 Western Redcedar	1 76	 23
	 2	 F	 Grand Fir - White Fir	1 94	33
	3	  F	 Spruce - Fir / Montane	141 8	 235
	4	  F	 Spruce - Fir / Timberline	 951	133
	 5	 F	 Spruce - Fir / Subalpine	11 65	1 71
	 6	 F	 Douglas-fir / Ponderosa Pine	 363	 56
	 7	 F	 Douglas-fir / Lodgepole Pine	 546	 88
	 8	 F	 Douglas-fir / Timberline Pine	 161	 26
	 9	 F	 Douglas-fir / Douglas-fir	 947	 125
	1 0	 F	 Lodgepole Pine	4 60	 55
	11	  F	 Ponderosa Pine	 76	 8
	1 2	 F	 Timberline Pine / Limber Pine	 51	 7
	13	  F	 Timberline Pine / Whitebark Pine	4 0	 6
	14	  F	 Rocky Mountain Juniper	33	3 
	1 5	 F	 Riparian Hardwood	 28	 2
	1 6	 S	 Riparian Shrub	 94	 5
	1 7	 S	 Mountain Mahogany	3 2	3
	1 8	 S	 Dry Shrub	 51	4
	1 9	 S	 Dwarf Sagebrush Complex	 68	1 0
	 20	 S	 Mountain Big Sagebrush Complex	 249	43
	 21	 S	 Threetip Sagebrush	1 87	 26
	 22	 S	 Wyoming - Basin Big Sagebrush Complex	 514	 75
	 23	 H	 Wetland Herbaceous	11 2	 9
	 24	 H	 Alpine	3 0	3
	 25	 H	 Fescue Grasslands	1 74	 22
	 26	 H	 Bluebunch Wheatgrass	144	  23
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Table 3—Zone 16 PVT predictor layers. See Holsinger and others, Ch. 5, 
table 6 for biological significance of each layer.

Code	 Units	 Description

aet	 kg H20 yr–1	 Actual evapotranspiration
dsr	 days	 Days since last rain
dss	 days	 Days since last snow
gsws	 -MPa	 Growing season water stress
mc1	 %	 NFDRS – 1-hr wood moisture content
outflow	 kg H20 m–2 day–1	 Soil water lost to runoff and ground
pet	 kg H20 yr–1	 Potential evapotranspiration
ppt	 cm	 Precipitation
psi	 -MPa	 Water potential of soil and leaves
psi.max	 -MPa	 Maximum annual leaf water potential
rh	 %	 Relative humidity
srad.tg	 kJ m–2 day–1	 Total solar radiation
tmin	 °C	 Minimum daily temperature
vmc	 Scalar	 Volumetric water content
sdepth	 cm	 Soil depth
elev	 m	 Elevation
aspect	 8 classes	 Aspect class*
slope	 %	 Slope
lndfrm	1 0 classes	 Landform**
trmi	 Index (0-1)	 Topographic relative moisture index
posidx	 Index (0-1)	 Topographic position index
*Aspect classes – 0:Level; 1:North; 2:North-East; 3:East; 4:South-East; 5:South; 6:
South-West; 7:West; 8:North-West
**Landform classes – 1:Vally flats; 2:Toe slopes; 3:Gently sloping ridges and hills; 4:
Nearly level plateaus and hills; 5:Very moist steep slopes; 6:Moderately moist steep 
slopes; 7:Moderately dry slopes; 8:Very dry steep slopes; 9:Cool aspect cliffs, canyons; 
10:Hot aspect cliffs, canyons.

Table 4—Zone 19 PVT predictor layers. See Holsinger and others, Ch. 5, 
table 6 for biological significance of each layer.

Code	 Units	 Description

aet	 kg H20 yr–1	 Actual evapotranspiration
dday	 °C	 Degree-days
dss	 days	 Days since last snow
evap	 kg H20 m–2 day–1	 Evaporation
g.sh	 M sec–1	 Leaf-scale stomatal conductance
gsws	 -MPa	 Growing season water stress
outflow	 kg H20 m–2 day–1	 Soil water lost to runoff and ground
pet	 kg H20 yr–1	 Potential evapotranspiration
ppfd	 Umol m–2	 Photon flux density
ppt	 cm	 Precipitation
psi	 -MPa	 Water potential of soil and leaves
snowfall	 kg H20 m–2 day–1	 Snowfall
srad.fg	 KW m–2 day–1	 Solar radiation flux to the ground
tmax	 °C	 Maximum daily temperature
tmin	 °C	 Minimum daily temperature
tnight	 °C	 Nighttime daily temperature
trans	 kg H20 m–2 day–1	 Soil water transpired by canopy
vmc	 Scalar	 Volumetric water content
sdepth	 cm	 Soil depth
elev	 m	 Elevation
posidx	 index (0-1)	 Topographic position index
slope	 %	 Slope
*Aspect classes – 0:Level; 1:North; 2:North-East; 3:East; 4:South-East; 5:South; 
6:South-West; 7:West; 8:North-West
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Modeling and Mapping Process
	 Classification trees, also known as decision trees, have 
been widely applied in landscape mapping applications 
(Brown de Colstoun and others 2003; Friedl and Brodley 
1997; Hansen and others 2000; Joy and others 2003; 
Moisen and others 2003, Moore and others 1991; Rollins 
and others 2004). Classification trees were originally 
developed for artificial intelligence research to identify 
patterns and recognize these patterns in similar situa-
tions using a hierarchical structure of rules (Quinlan 
1986). The rules are constructed from available train-
ing data where observations are delineated into smaller 
subsets of more homogenous classes. Specifically, the 
classification tree algorithm considers each predictor 
variable and examines all n-1 ways to split the data into 
two clusters. For every possible split of each predictor 
variable, the within-cluster impurity is calculated. The 
first split in the tree is that which yields the smallest 
overall within-cluster impurity. This process is repeated 
for each branch defined by the previous split (Breiman 
and others 1984).
	 Classification trees are well-suited to vegetation map-
ping because they accommodate common conceptions 
that vegetation has a nonlinear, non-normal response 
to environmental gradients (Austin and others 1984). 
In addition, they are nonparametric models, meaning 
they make no underlying assumptions about the distri-
bution of the data, and they are adaptable for nonlinear 
relationships between the predictors and the response 
(Friedl and Brodley 1997). Classification trees are also 
valuable because they are robust, are able to incorporate 
both categorical and continuous variables, and are rela-
tively insensitive to outliers (Breiman and others 1984). 
Furthermore, for a large project such as LANDFIRE, 
classification trees offer the advantage that models are 
generated and executed quickly.
	 The classification trees for modeling PVTs were gen-
erated using the commercially available See5 machine-
learning algorithm (Quinlan 1986, 1993; Rulequest 
Research 2004) and were applied within an ERDAS 
Imagine (ERDAS, Inc. 2001) interface. See5 uses a 
classification and regression tree (CART) approach 
for constructing a tree, generating a tree with high 
complexity, and pruning it back to a more simple tree 
by merging classes (Breiman and others 1984). This 
pruning process was found to improve the efficiency of 
the model and minimize the classification error (Brei-
man and others 1984). We used the boosting feature of 
See5 to improve the accuracy of the model (Friedl and 
others 1999; Quinlan 1986). In the boosting procedure, 
multiple trees are built in an iterative process and, each 

tree “learns” from the misclassification errors of the 
previously built tree (Bauer and Kohavi 1999). The final 
tree is selected from all the trees based on a weighted 
vote of the predictions. We also employed other features 
of See5 including winnowing, which excludes variables 
that are not relevant in the model, and differential mis-
classification cost weighting, which assigns more weight 
to classes with more costly classification errors.
	 Although not fully automated, the process for mapping 
PVTs was simplified using a suite of tools developed 
by Earth Satellite Corporation (2003) in support of the 
National Land Cover Database (NLCD 2000). These 
tools were developed to integrate the Rulequest See5/
C5.0 software package with the ERDAS Imagine image-
processing software. For mapping PVTs, we used the 
sampling tool to set up See5 input files and the classifier 
tool to generate the final map and a coinciding map of 
error or confidence. The sampling tool allows a user to 
input a spatially explicit layer of field-referenced train-
ing data as the dependent variable and multiple spatially 
explicit gradient layers as the independent variables and 
then outputs the input files needed to run See5. The 
classifier tool applies the output tree model from See5 
over the specified spatial extent or a specified masked 
extent.
	 To meet the input requirements of See5 and to improve 
the efficiency of the model-making process, we followed 
three pre-processing rules: (1) all layers must be ER-
DAS Imagine images, (2) all layers must have the same 
number of rows and columns, and (3) all layers must be 
size 16-bit or smaller, with positive values. A few data 
preparation steps were necessary to follow these rules. 
The biophysical gradient layers are output from WX-
FIRE as Arc/Info grids with float data values. We ran an 
Arc/Info AML (Arc Macro Language) to translate and 
dilate or “stretch” the grids to an unsigned, 16-bit integer 
format; converted the grids to ERDAS Imagine images 
using a batch setup in ArcGis 8.0 (ESRI Inc. 2001), and 
masked the images in Imagine using a buffered mask of 
the zone region (the zone boundaries). Through the entire 
LANDFIRE process, we used a 3-km buffer around the 
zone boundary. This buffer facilitated edge matching 
and reduced the edge effects in modeling historical fire 
regimes (Pratt and others, Ch. 10) The topographic and 
soil gradient layers were also converted to images and 
masked with the buffered zone region. We generated 
the spatially explicit dependent layer within ArcGis 8.0 
using the spatial analyst tool to convert a data table to an 
image and set the extent to match the gradient images. 
Prior to creating this layer, we performed exploratory 
data analyses, both spatial and non-spatial, to look for 
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and remove any major outliers or unusual patterns in the 
data. The output from the sampling tool includes a “data 
file,” which contains values from the model response and 
the corresponding value of the model predictor layers 
for each georeferenced training site, and a “names file” 
identifying the model input names and data types.
	 For each prototype mapping zone, we built three differ-
ent See5 classification trees and generated three different 
maps. The first classification tree was generated using a 
binary response variable describing forest and non-forest 
PVTs. The resulting map was used to stratify the zones 
to improve the performance of the PVT models. The 
other two classification trees were generated and applied 
to forest PVTs within the predicted forested areas and 
non-forest PVTs within the predicted non-forested areas. 
The final map was a combined product of the forest PVT 
predictions and the non-forest PVT predictions from 
each zone. For Zone 16, classes of agriculture, barren, 
open water, and urban/developed were masked from the 
Zone 16 cover type map and were considered non-forest 
types. For Zone 19, we masked only classes of barren, 
open water, and snow/ice following the assumption there 
is a potential for vegetation to grow on agricultural and 
urban lands. These classes had not been mapped for 
Zone 19 at this stage of the mapping process and were 
masked after the final PVT map was generated.
	 For the forested and non-forested stratification map, 
all training plots classified as forest PVTs were grouped 
into one class and the training plots classified as shrub or 
herbaceous PVTs into another class. There were a total 
of 4,032 training sites for Zone 16 with 4,032 forested 
plots and 929 non-forested plots (table 1). For Zone 19, 
there were a total of 8,264 training sites, 6,609 forested 
plots and 1,655 non-forested plots (table 2). Multiple 
models were executed exploring the different features 
of See5, including winnowing, boosting, and analyz-
ing differential misclassification costs. We selected the 
model having the lowest error. The final PVT maps for 
each zone were created using the classifier tool and rep-
resented an integration of the forest/non-forest models 
defined by the masking strategy described above.

Accuracy Assessment
	 We used a 10-fold cross-validation routine performed 
by See5 to assess the accuracy of the binary forested and 
non-forested stratification map and used an independent 
test set to assess the accuracy of the forest and non-forest 
PVT predictions. We determined that a 10-fold cross-
validation measure would be sufficient for assessing the 
accuracy of the stratification map and would maximize 
the number of plots used for developing the model. The 

independent test set would, in turn, assess the accuracy 
of the final map product. To perform the 10-fold cross-
validation routine, the training data set was divided 
into 10 blocks of approximately the same size and class 
distribution. A classification tree was built ten times, and 
each time, one block was withheld for testing purposes. 
The error rate was averaged from the total number of 
errors and the total number of training sites. See5 output 
an error matrix generated from the sum of all errors 
and calculated the percent of the predictions that were 
correctly classified.
	 From the LANDFIRE reference database, we ran-
domly reserved ten percent of the training sites. These 
sites were withheld from the modeling process and were 
used to independently evaluate the accuracy of the final 
map. There were a total of 421 test sites for Zone 16 
and 1194 test sites for Zone 19 (tables 1 and 2). See5 
automatically tested the model predictions at these sites 
and output an error matrix and a percentage measure 
of PVTs that were correctly classified. We brought the 
error matrix results into R statistical software (Ihaka 
and Gentleman 1996) and calculated user and producer 
accuracy measures and a kappa statistic to see if the 
model could achieve above-random accuracy (Cohen 
1960; Congalton and Green 1999).
	 Error matrices provide a global summary of the ac-
curacy of the map but do not show the range and vari-
ability of the accuracies across the map (Congalton 
1988). The classifier tool provides the ability to generate 
a coinciding map of confidence. This map displays the 
prediction errors and thereby presents a spatial, visual 
representation of map accuracy. We generated a map of 
confidence for Zone 19 to examine this feature.

Results_________________________
	 The forest and non-forest stratification maps for zones 
16 and 19 are displayed in figure 1. The classification 
model selected for Zone 16 used 12 boosting trials and a 
misclassification cost of 2, meaning the cost of misclas-
sifying a non-forested plot as forested was doubled. This 
weighting compensated for the potential inaccuracies 
resulting from the fewer non-forested shrub and herba-
ceous training sites relative to the forested training sites. 
No variables were excluded from the model using the 
winnowing feature. The percent of plots correctly clas-
sified, according to the 10-fold cross-validation routine 
performed by See5, was 82.5 percent. For Zone 19, we also 
selected a classification tree using 12 boosting routines 
with a misclassification cost of 2. The 10-fold validation 
procedure identified the accuracy at 91.6 percent.
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	 The classification tree selected for Zone 16 forest 
PVTs used 10 boosting trials, and ten variables (gsws, 
outflow, pet, psi, psi.max, vmc, sdepth, aspect, slope, 
posidx) were winnowed from the model (table 3). The 
non-forest PVT classification tree for Zone 16 also used 
10 boosting trials, and eleven variables (dsr, dss, gsws, 
mc1, outflow, posidx, psi.max, vmc, sdepth, aspect, lnd-
frm) were winnowed (table 3). The classification tree we 
selected for Zone 19 forest PVTs used 14 boosting trials 
and used all the variables in the model. The non-forest 
PVT classification tree for Zone 19 used 16 boosting 
trials with two variables (tnight, srad.fg) winnowed 
(table 4). The variables that explain the most variance 
in the models are usually at the top of the classification 
tree, defining the initial breaks. For the Zone 19 forest 
classification tree, no variables were winnowed, and the 
variables that most often appeared at the top of the trees 
were snowfall, gl.sh, dday, dss, evap, pet, and tmin (table 
4). For the Zone 19 nonforest classification tree, tnight 
and srad.fg were winnowed, and the prominent variables 
were gl.sh, ppt, pet, aspect, and dday (table 4).
	 The total percent of plots correctly classified for 
Zone 16 was 61 percent, with a kappa coefficient of 

0.55 (table 7). For Zone 19, the total percent of plots 
correctly classified was 58 percent with a kappa coef-
ficient of 0.54 (table 7). The error matrices for forest and 
non-forest PVTs in Zone 16 are shown in tables 5 and 6, 
respectively. The number of plots correctly classified is 
represented by the diagonal values in bold font. The total 
percent of plots correctly classified for the forested lands 
was 65 percent with a kappa coefficient of 0.55 (table 7). 
The percent of plots correctly classified for shrub and 
herbaceous lands was 48 percent, with a kappa coeffi-
cient of 4.0 (table 7). The user and producer accuracies 
for each class in Zone 16 is provided in table 8. User 
accuracies range from 0 percent for the Douglas-fir / 
Lodgepole Pine - Timberline Pine type to 89 percent for 
the Spruce – Fir / Spruce – Fir type. Producer accuracies 
range from 0 percent for the Douglas-fir / Timberline 
Pine type to 100 percent for the Blackbrush and Salt 
Desert Shrub types. Zero percent values are the result 
of having no test sites occurring within a particular 
class. Most of the lower user accuracies are within 
PVT subgroups. The Spruce – Fir / Blue – Spruce 
PVT has a user accuracy of only 15 percent (table 8). 
From the error matrix, we can see that 54 percent of 

Figure 1—Forest and non-forest stratification maps. A, Zone 16; B, Zone 19.
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Table 5—Error matrix for Zone 16 forest PVTs. PVT codes are listed in 
table 1. The number of test sites correctly classified is shown in bold.

PVT	 PVT Code
Code	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10

	1	  2	 7	1	  0	 2	 0	1	  0	 0	 0
	 2	1	  82	 2	 0	 2	1	  2	 0	 0	 2
	3	1	   7	 23	 0	3	  0	 2	1	1	   2
	4	  0	1	1	   0	 0	1	  0	 0	 0	 0
	 5	 0	 8	3	  0	 3	 0	 2	 0	 2	1
	 6	 0	4	3	   0	 0	 1	 0	1	  0	1
	 7	 0	1	1	   0	1	  0	 5	1	  7	 0
	 8	 0	 0	4	  0	 0	 0	1	  6	1 9	1
	 9	 0	 2	1	  0	 0	 2	 2	3	  84	1
	1 0	 0	1	  2	 0	 2	 0	 0	 0	 0	 6

Table 6—Error matrix for Zone 16 non-forest PVTs. PVT codes are listed in  
table 1. The number of test sites correctly classified is shown in bold.

PVT	 PVT Code
Code	 11	 12	 13	 14	 15	 16	 17	 18	 19	 20	 21

	11	  2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 2
	1 2	 0	 2	 0	 0	 0	 0	 0	1	  0	 0	 0
	13	  0	 0	 8	 0	 0	 0	3	3	   0	 0	 0
	14	  0	 0	 0	 1	 0	1	  0	 0	 0	 0	 0
	1 5	 0	 0	 0	 0	 3	1	  0	 0	 0	 0	 0
	1 6	 0	 0	 0	 0	1	  8	1	  2	 0	1	1 
	1 7	 0	 0	 0	 0	 0	 2	 5	 5	 0	 0	 0
	1 8	 0	 0	1	  0	 0	3	  2	 9	 0	1	1 
	1 9	1	  0	 0	 0	 0	 0	 0	 2	 1	 0	 2
	 20	 0	 0	 0	 0	 0	 0	 0	1	  2	 1	 2
	 21	1	  0	 0	 0	 0	 2	 0	3	  0	 0	 3

Table 7—Overall accuracies and kappa coefficients for  
Zone 16 a nd Zone 19.

		  Overall
Zone	 Category	 accuracy	 Kappa

	1 6	 Total	 61.2	 0.55
		  Forest	 64.8	 0.55
		  Shrub and herbaceous	4 7.8	 0.40
	1 9	 Total	 58.4	 0.54
		  Forest	 56.5	 0.49
		  Shrub and herbaceous	 66.4	 0.58
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Table 8—Zone 16 user and producer accuracy measures.

PVT		  User	 Producer
code	 PVT name	 accuracy	 accuracy

	 1	 Spruce – Fir / Blue Spruce	 15.4	 50.0
	 2	 Spruce – Fir / Spruce - Fir	 89.1	 72.6
	3	  Grand Fir - White Fir	 57.5	 60.5
	 4	 Douglas-fir / Lodgepole Pine - Timberline Pine	 0.0	 0.0
	 5	 Douglas-fir / Douglas-fir	 15.8	 23.1
	 6	 Lodgepole Pine - Timberline Pine	14 .3	 20.0
	 7	 Ponderosa Pine	31 .3	33 .3
	 8	 Pinyon - Juniper / Mountain Big Sagebrush	1 9.4	 50.0
	 9	 Pinyon - Juniper / Wyoming - Basin Big Sagebrush	 88.4	 74.3
	1 0	 Riparian Hardwood	 54.6	4 2.9
	11	  Riparian Shrub	 50.0	 50.0
	1 2	 Blackbrush - Chaparral - Dry Deciduous Shrub	 66.7	1 00.0
	13	  Dwarf Sagebrush	 57.1	 88.9
	14	  Salt Desert Shrub	 50.0	1 00.0
	1 5	 Mountain Mahogany	 75.0	 75.0
	1 6	 Gambel Oak	 61.5	4 7.1
	1 7	 Wyoming - Basin Big Sagebrush	41 .7	4 5.5
	1 8	 Mountain Big Sagebrush	 52.9	34 .6
	1 9	 Wetland Herbaceous	1 6.7	33 .3
	 20	 Alpine	1 6.7	 50.0
	 21	 Herbaceous	33 .3	 27.3

the test sites classified as Spruce – Fir / Blue Spruce 
were predicted as Spruce – Fir / Spruce – Fir (table 5). 
The Pinyon – Juniper / Mountain Big Sagebrush type 
had similar results. The user accuracy was 19 percent, 
but 61 percent of the Pinyon – Juniper / Mountain Big 
Sagebrush test sites were predicted as Pinyon – Juniper / 
Wyoming – Basin Big Sagebrush (table 6).

	 Error matrices for Zone 19 forest and non-forest PVTs 
are presented in tables 9 and 10, respectively. The total 
percent of plots correctly classified for forest PVTs was 57 
percent, with a kappa coefficient of 0.49 and 66 percent 
for shrub and herbaceous PVTs, with a kappa coefficient 
of 0.58 (table 7). Table 11 shows the user and producer 
accuracies for each class in Zone 19. For Zone 19, the 

Table 9—Error matrix for Zone 19 forest PVTs. PVT codes are listed in table 2. The number of 
test sites correctly classified is shown in bold.

PVT	 PVT Code
Code	 1	 2	 3	 4	 5	 6	 7	 8	 9	 10	 11	 12	 13	 14	 15

	1	  17	 2	3	  0	1	  0	 0	 0	 0	 0	 0	 0	 0	 0	 0
	 2	3	  19	 7	 0	 2	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0
	3	  7	3	  147	1 7	41	  5	 6	1	  6	1	  0	1	  0	 0	 0
	4	  0	 0	 7	 107	1 6	 0	 0	 0	 0	1	  0	 0	 2	 0	 0
	 5	1	3	4   2	3 5	 75	4	  6	 0	 0	 5	 0	 0	 0	 0	 0
	 6	1	3	   5	 0	1	  27	3	1	1   2	 0	 2	1	  0	 0	 0
	 7	 0	 0	 20	4	3	   2	 29	1	  22	 7	 0	 0	 0	 0	 0
	 8	 0	 0	1	3	   2	 0	1	  8	1 0	1	  0	 0	 0	 0	 0
	 9	 0	 2	11	1	4	1    0	13	3	   74	 5	 0	1	  0	 0	1
	1 0	 0	 0	 2	3	  6	 0	4	  0	 6	 33	1	  0	 0	 0	 0
	11	  0	 0	 0	 0	 0	 2	 0	 0	1	  0	 5	 0	 0	 0	 0
	1 2	 0	 0	1	  0	 0	 0	 0	 0	3	  0	 0	 3	 0	 0	 0
	13	  0	 0	 0	 2	 0	 0	 0	 0	 0	 2	 0	 0	 2	 0	 0
	14	  0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0	 3	 0
	1 5	 0	 0	 0	 0	 2	 0	 0	 0	 0	 0	 0	 0	 0	 0	 0
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Table 11—Zone 19 user and producer accuracy measures.

PVT		  User	 Producer
Code	 PVT name	 accuracy	 accuracy

	1	  Western Redcedar	 73.9	 58.6
	 2	 Grand Fir / White Fir	 57.6	 59.4
	3	  Spruce - Fir / Montane	 62.6	 59.8
	 4	 Spruce - fir / Timberline	 80.5	 62.2
	 5	 Spruce - Fir / Subalpine	43 .9	4 9.0
	 6	 Douglas-fir / Ponderosa Pine	 48.2	 51.9
	 7	 Douglas-fir / Lodgepole Pine	 33.0	 46.8
	 8	 Douglas-fir / Timberline Pine	 30.8	 57.1
	 9	 Douglas-fir / Douglas-fir	 59.2	 55.2
	1 0	 Lodgepole Pine	 60.0	 60.0
	11	  Ponderosa Pine	 62.5	 62.5
	1 2	 Timberline Pine / Limber Pine	4 2.9	 50.0
	13	  Timberline Pine / Whitebark Pine	33 .3	 50.0
	14	  Rocky Mountain Juniper	1 00.0	1 00.0
	1 5	 Riparian Hardwood	 0.0	 0.0
	1 6	 Riparian Shrub	4 0.0	 66.7
	1 7	 Mountain Mahogany	33 .3	33 .3
	1 8	 Dry Shrub	 75.0	 60.0
	1 9	 Dwarf Sagebrush Complex	1 0.0	33 .3
	 20	 Mountain Big Sagebrush Complex	 65.1	 66.7
	 21	 Threetip Sagebrush	 69.2	 58.1
	 22	 Wyoming - Basin Big Sagebrush Complex	 81.3	 70.1
	 23	 Wetland Herbaceous	 66.7	 66.7
	 24	 Alpine	33 .3	 50.0
	 25	 Fescue Grasslands	 68.2	 62.5
	 26	 Bluebunch Wheatgrass	 52.2	 85.7

Table 10—Error matrix for Zone 19 non-forest PVTs. PVT codes are listed in table 2. 
The number of test sites correctly classified is shown in bold.

PVT	 PVT Code
Code	 16	 17	 18	 19	 20	 21	 22	 23	 24	 25	 26

	1 6	 2	 0	 0	 0	 2	 0	 0	1	  0	 0	 0
	1 7	 0	 1	 0	 0	 0	 0	 2	 0	 0	 0	 0
	1 8	 0	 0	 3	 0	 0	 0	 0	 0	 0	1	  0
	1 9	 0	 0	 0	 1	1	  0	 8	 0	 0	 0	 0
	 20	 0	1	  0	 0	 28	 5	3	1	   0	3	  2
	 21	 0	 0	 0	 0	1	  18	 6	 0	 0	1	  0
	 22	 0	 0	 0	 2	 7	 5	 61	 0	 0	 0	 0
	 23	1	  0	 0	 0	1	  0	 0	 6	 0	1	  0
	 24	 0	 0	 0	 0	 0	 0	 0	 0	 1	 2	 0
	 25	 0	1	  0	 0	1	  2	1	1	1	    15	 0
	 26	 0	 0	 2	 0	1	1	   6	 0	 0	1	  12
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user accuracies range from 0 percent for the Riparian 
Hardwood type to 100 percent for the Rocky Mountain 
Juniper type. Again, we see similar patterns in the error 
matrices of within-subgroup inaccuracies. Forty-five 
percent of the Spruce – Fir / Subalpine test sites were 
misclassified as Spruce – Fir / Montane (Western Larch 
or Douglas-fir) or Spruce – Fir / Timberline, and 25 
percent of the Spruce – Fir / Montane (Western Larch or 
Douglas-fir) test sites were misclassified as Spruce – Fir 
/ Timberline or Spruce – Fir / Subalpine (table 9). Simi-
larly, 19 percent of the Mountain Big Sagebrush test sites 
were misclassified as Threetip Sagebrush or Wyoming 
– Basin Big Sagebrush Complex, and 16 percent of the 
Wyoming – Basin Big Sagebrush Complex test sites were 
misclassified as Mountain Big Sagebrush or Threetip 
Sagebrush types (table 10). Thirty-six Douglas-fir sites 
were misclassified as Spruce – Fir / Montane (Western 
Larch or Douglas-fir) (table 10). The final PVT maps for 
zones 16 and 19 are presented in figure 2. The spatial 
estimate confidence for Zone 19 is shown in figure 3.

Discussion______________________

The LANDFIRE PVT Mapping Approach
	 The LANDFIRE PVT mapping process represents an 
innovative framework for linking vegetation dynamics, 
such as post-disturbance recovery and succession, to 
landscape patterns represented by the biophysical vari-
ables compiled from the National Elevation Database 
and modeled using the WXFIRE model. The variables 
that were most important (defined by the first few splits 
of the tree) for the successful mapping of forest PVTs 
included: actual and potential evapotranspiration, days 
since snow, degree days, evaporation, relative humid-
ity, leaf resistance to sensible heat, and minimum tem-
perature. For the non-forest PVTs, the most important 
variables included: actual and potential evapotranspira-
tion, precipitation, degree days, relative humidity, and 
minimum temperature. These gradients are associated 
with plant-water interactions and explain the influence 
of water and temperature derivatives in determining the 
distribution of vegetation across landscapes.

Classification and Regression Trees
	 Classification tree modeling proved an efficient 
means for identifying relationships between PVTs and 
biophysical variables across broad landscapes. With a 
comprehensive set of training data, classification trees 
can serve as strong predictors of these relationships. 
This predictive power extends across scales and is fully 

repeatable in time and space. Classification trees have 
proven successful in modeling and mapping vegetation 
at regional (Moisen and others 2003), national (Vogel-
mann and others 2001; Zhu and others, Chapter 8), and 
global scales (Hansen and others 2000). Although some 
research has found the predictive accuracy of classifi-
cation trees to be inferior to other predictive modeling 
tools (Moisen and Frescino 2002; Pal and Mather 2003), 
the statistical flexibility, speed, and objectivity of the 
trees justify their use for large-scale mapping efforts 
such as LANDFIRE. See5 software adds efficiency to 
classification tree modeling by providing automated 
procedures, flexibility in terms of changing modeling 
functions, and by built-in accuracy measures.

Accuracy Assessment
	 There are several possible sources of the generally low 
accuracies found in the PVT maps created during the 
LANDFIRE Prototype Project. First, the performance 
of mapping models depends greatly on the quality of 
input data. The training databases for PVT mapping were 
collected and compiled from the LANDFIRE reference 
database (LFRDB), a database that comprised existing 
agency and non-agency field-referenced data sets and 
contained inventory, monitoring, and analysis data that 
originate from a variety of sampling objectives, sizes, and 
designs. (see Caratti, Ch. 4 for details). Data inaccuracies, 
major outliers, and unbalanced or insufficient numbers 
of training sites can have significant negative effects on 
the quality of mapping models (Friedman 2001). While 
the LFRDB was a large, comprehensive database that 
was compiled quickly and economically, the disparate 
sampling objectives, designs, and procedures certainly 
affected the final accuracies of the PVT maps.
	 A second possible explanation for the low accuracies 
is related to the model building characteristics of clas-
sification trees. As See5 builds classification trees, map 
units are divided using hard breaks, making it difficult to 
discriminate between vegetation types that have similar 
responses to the biophysical predictor variables. Most 
of the lower accuracies found during the LANDFIRE 
Prototype Project were within groups of similar PVTs, 
suggesting that these PVTs occur on overlapping bio-
physical settings, as represented by the predictor vari-
ables. The distributions of the three spruce-fir PVTs and 
the four Douglas-fir PVTs over a gradient of potential 
evapotranspiration are quite similar in Zone 19 (fig. 4). 
The error matrices reflect these similarities as well, 
indicating that the See5 classification tree algorithms 
had difficulty in discriminating these PVT subgroups. 
In any mapping application, this overlap between classes 
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Figure 4—Boxplot distributions of 
potential vegetation types (PVTs) by 
potential evapotranspiration gradient.  
See table 1 for code descriptions.  
Codes 3 to 5 are Douglas-fir PVT vari-
ants and codes 6 to 10 are spruce – fir 
PVT variants.

Figure 3—Potential Vegetation Type (PVT) Confidence map for Zone 19.
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negatively affects overall accuracy. Although accuracies 
may have been higher if we had grouped these PVT 
subgroups into single map units, we determined that 
the resulting loss in resolution in fire regime modeling 
would limit the utility of the final LANDFIRE fuel and 
fire regime products.
	 A third possible reason for overall low PVT map ac-
curacies relates to the limited set of predictor variables 
used in PVT mapping. We did not include Landsat im-
agery in the mapping process because we did not want 
current land patterns influencing the final PVT maps; 
we relied completely on the affinity of individual PVT 
map units to specific distributions and combinations of 
biophysical variables. Further, because of technical dif-
ficulties, output from the LANDFIRE Biogeochemical 
Cycles model (LFBGC) (Holsinger and others, Ch. 5), 
which spatially represents the rates of the hydrologic, 
carbon, and nitrogen cycles, was not available in time to 
be used in the LANDFIRE Prototype Project and was 
therefore not included in the final mapping models. These 
ecophysiological gradients have proven to be highly 
useful in discriminating between potential vegetation 
types in other research (Keane and others 2001; Rollins 
and others 2004).
	 A fourth potential reason for low accuracies in the 
PVT maps lies in the possibility that the validation 
procedure we used did not represent true accuracy. The 
validation procedure used in the LANDFIRE Prototype 
Project included a cross-validation routine and a test 
set comparison using a randomly selected set of data 
withheld from classification tree building. Although, in 
both cases, the test sites were randomly selected from a 
probability sample, sampling was conducted at different 
intensities within different sub-populations. Therefore, 
more test sites are drawn from heavily sampled areas and 
fewer from less intensively sampled areas. Other possible 
sources of error include positional inaccuracies in the 
LANDFIRE reference database and errors imbedded in 
the biophysical predictor variables. It should be noted 
that quality control and assurance measures and methods 
for generating the biophysical gradient layers have been 
refined for national implementation (See Holsinger, Ch. 
5 for details).

Recommendations for National 
Implementation__________________
	 For mapping PVT at the national scale, we recommend 
employing the approach and methods described in this 
chapter. The efficiency and nonparametric flexibility of 
classification trees make them the optimal method for 

implementing LANDFIRE nationally, and the ease of 
implementation of the mapping models created using 
See5 software in ERDAS Imagine facilitate the broad-
scale implementation of classification trees. We suggest 
conducting more structured quality control and assurance 
in the LANDFIRE reference database. In addition, we 
recommend detailed exploration of the relationships 
between response and predictors in the mapping data-
base using correlation matrices and principle component 
analyses to reduce the number of gradient predictors 
and to remove major outliers or unusual patterns in the 
training data.
	 In addition, alternative validation sampling schemes 
should be considered for national implementation to 
ensure that the test sites are independent and representa-
tive of the population. For example, accuracy assessment 
sites developed solely from the systematically sampled 
Forest Inventory and Analysis data would ensure inde-
pendent and representative test sites and therefore be a 
possible alternative as an equal probability sampling 
design. A similar procedure would be needed for shrub 
and herbaceous lands.
	 To compensate for positional errors in the training 
data set, we suggest employing alternative methods for 
calculating map accuracy when implementing LAND-
FIRE nationally. The agreement between each test site 
and its neighborhood of pixels (for example, 3 by 3) 
should be assessed. If the test site class matches any of 
the pixels, it correctly classifies the prediction. This kind 
of assessment is appropriate for plots in the LANDFIRE 
reference database that were not measured specifically 
for 30-meter pixel accuracy assessments.

Conclusion______________________
	 In conclusion, maps of potential vegetation were 
valuable for supporting the broad-scale mapping of 
wildland fuel and also as a foundation for modeling 
fire regimes. The LANDFIRE process of generating 
biophysical gradients from topographic information 
and from the WXFIRE model served as an innovative 
framework for linking vegetation dynamics, such as 
post-disturbance recovery and succession, to landscape 
patterns represented by maps of potential vegetation. 
Although we found that the quality of field data for use 
as training data and of input spatial data layers can be 
limiting to the process of potential vegetation mapping, 
the LANDFIRE Prototype Project illustrated that the 
added effort involved in developing maps of potential 
vegetation results in higher quality data products rep-
resenting fuel and fire regime characteristics.
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	 For further project information, please visit the LAND-
FIRE website at www.landfire.gov.
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