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Introduction ____________________
 Distributions of plant species are generally continu-
ous, gradually changing across landscapes and blending 
into each other due to the influence of, and interactions 
between, a complex array of biophysical gradients 
(Whittaker 1967; 1975). Key biophysical gradients for 
understanding vegetation distributions include moisture, 
temperature, evaporative demand, nutrient availability, 
and solar radiation. Models to predict plant commu-
nity distributions across landscapes can be developed 
by identifying the unique set of biophysical gradients 
that drive the physiological responses of plant species 
across landscapes (Guissan and Zimmerman 2000). This 
method of incorporating information about ecological 
characteristics into analyses of vegetation distribution, 
termed gradient modeling, is a standard technique for 
describing ecosystem composition, structure, and func-
tion (Gosz 1992; Kessell 1976; Kessell 1979; Whittaker 
1973) and has been applied extensively at varying scales, 
from local to regional (see Keane and others 2002 for a 
review of gradient modeling applications). The model-
ing process essentially involves developing empirical 
relationships between vegetation distributions and geo-
spatial data describing biophysical gradients to enable 
extrapolation over space. Modeling accuracy becomes 
substantially improved by incorporating those biophysi-
cal gradients that directly affect vegetation dynamics 
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such as temperature, light, and water (Austin 1980, 1985; 
Austin and Smith 1989; Franklin 1995). Recent efforts 
have further demonstrated that the accuracy of mapping 
vegetation and ecological characteristics using remote 
sensing techniques is greatly improved through the inclu-
sion of biophysical gradient data as predictive variables 
(Franklin 1995; Keane and others 2002; Ohmann and 
Gregory 2002; Rollins and others 2004).
 The Landscape Fire and Resource Management Plan-
ning Tools Prototype Project, or LANDFIRE Prototype 
Project, was conceived, in part, with the objective of 
developing methods and procedures for mapping veg-
etation composition and structure, wildland fuel, and 
historical conditions at a fine spatial grain (30-m) across 
the entire United States. This information will facilitate 
the identification of areas where current vegetation con-
ditions are markedly different from simulated historical 
conditions (Rollins and others, Ch. 2; Keane and Rollins, 
Ch. 3). We used a gradient modeling approach to de-
scribe vegetation conditions by their potential vegetation 
type, existing cover type, and existing structural stage 
(Frescino and Rollins, Ch. 7; Zhu and others, Ch. 8). 
The overall framework was to use geospatial data rep-
resenting biophysical gradient variables combined with 
field-referenced data describing vegetation composition 
in a classification and regression tree-based approach 
to map potential vegetation type (Frescino and Rollins, 
Ch.7) and then incorporate Landsat imagery to map 
existing vegetation composition, density, and height 
(Zhu and others, Ch. 8).
 We assumed that our accuracy in modeling these 
vegetation characteristics would be optimized by us-
ing biophysical gradient information, which included 
climatically derived variables related to physiological 
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responses of vegetation composition and structure 
(Austin and Smith 1989). Although geospatial data 
describing biophysical gradients may exist in certain 
specific locations, we could not rely on the availability 
of these data across the nation at spatial scales that met 
the LANDFIRE design criteria of national consistency 
(Keane and Rollins, Ch. 3); therefore, we relied on 
simulation of biophysical gradient data. A number of 
biogeochemical simulation models and statistical tech-
niques were available to estimate biophysical gradients 
across spatial domains (Keane and Holsinger 2006; 
Kessell 1979; Thornton and White 2000; Thornton 1998; 
White and others 1997). We chose to use the simulation 
model WXFIRE to develop biophysical gradient data 
because the model represents a balance of sophistica-
tion and computational efficiency. WXFIRE simulates 
a suite of gradients proven to describe both biotic and 
abiotic characteristics and processes that directly influ-
ence ecosystem composition, structure, and function 
(Keane and others 2002; Keane and Holsinger 2006; 
Rollins and others 2004).
 We implemented the LANDFIRE methods in two 
large prototype areas to test the feasibility of national 
application of the LANDFIRE design criteria and 
guidelines. The study areas were based on mapping 
zones developed for the USGS Multi-Resolution Land 
Characteristics (MRLC) 2001 project (landcover.usgs.
gov/index.asp). We first applied our methods to Zone 
16, located in central Utah, and then, based on lessons 
learned, applied refined methods in Zone 19, located 
in the northern Rocky Mountains (see fig. 1 in Rollins 
and others, Ch. 2). Most of the biophysical gradient lay-
ers were derived using the WXFIRE simulation model 
implemented with data from the DAYMET weather 
database, which comprises daily weather data across 
the conterminous United States (Thornton and others 
1997; Thornton and others 2002; Thornton and Running 
1999). We also acquired or derived ancillary geospatial 
data for use as predictors in vegetation gradient modeling 
(for example, topography from the National Elevation 
Database). In this chapter, we describe our methods 
for creating the biophysical gradient layers, including 
the development of WXFIRE input and simulation 
procedures. We also describe the resulting biophysical 
gradient layers used for mapping potential vegetation 
type, existing vegetation, structural stage, and canopy 
fuel. (Frescino and Rollins, Ch. 7; Zhu and others, Ch. 
8; Keane and others, Ch. 12). Further, the LANDFIRE 
biophysical gradient layers could potentially be applied 
in other land management purposes, such as hydrological 
studies or quantification of thermal cover for wildlife.

 In the process of developing these protocols for the 
LANDFIRE Prototype Project, we identified numer-
ous improvements that could be made to our methods, 
and we outlined a set of recommendations for future 
development of biophysical gradient layers. Hence, the 
methods described here do not necessarily reflect the 
protocols followed by LANDFIRE National (Rollins 
and others, Ch. 2).

Methods _______________________
 The LANDFIRE Prototype Project involved many 
sequential steps, intermediate products, and interde-
pendent processes. Please see appendix 2-A in Rollins 
and others, Ch. 2 for a detailed outline of the proce-
dures followed to create the entire suite of LANDFIRE 
 Prototype products. This chapter focuses specifically 
on the procedure followed in developing biophysical 
gradients, which served as spatial predictors in mapping 
models for nearly all mapping tasks in the LANDFIRE 
Prototype Project.

Figure 1—The	flow	and	component	diagram	for	the	WXFIRE	
program.
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Spatial Units used in Modeling
 We applied numerous spatial units in creating bio-
physical gradients, ranging in spatial extent from large, 
regional mapping zones to simulation units of intermedi-
ate size to 30-m pixels. These various spatial units used 
in the WXFIRE modeling process require some initial 
explanation here for clarity. Detailed descriptions are 
provided in the following sections. At the broadest scale, 
we divided the U.S. into regional mapping zones ranging 
in size from five to fifteen million ha, and we applied 
our protocols to mapping zones 16 and 19, which were 
six and ten million ha, respectively. Next, the mapping 
zones were divided into simulation units representing 
unique environmental conditions for the purposes of 
estimating biophysical gradients using the WXFIRE 
simulation model. Simulation units were derived by 
combining the key spatial WXFIRE inputs such as soils 
data and topography. Simulation units ranged in pixel 
size from 0.09-ha to 575-ha in Zone 16 and 0.09-ha to 
144-ha in Zone 19.
 Another spatial unit was developed for describing 
biophysical settings. The WXFIRE model required a set 
of data representing specific ecophysiological parameters 
for landscapes (table 1). These parameters could have 
been included in the development of simulation units 
because they describe unique environmental conditions. 
However, WXFIRE requires so many parameters (45) 
that, for expediency in model simulations, those ecophysi-
ological parameters are simply assumed to be relatively 
homogenous over fairly broad areas or across spatial units 
termed ecophysiological ‘sites’ (Keane and Holsinger 
2006). For example, albedo is an ecophysiological pa-
rameter required by the WXFIRE model, and it should 
be relatively constant across many simulation units in 
a landscape for many days of the year. WXFIRE runs 
far more efficiently by assigning albedo (along with the 
other 44 ecophysiological parameters) to a site, rather 
than determining unique parameter values for every 
simulation unit. Typically, one site encompasses many 
simulation units. As such, we identified ecophysiological 
sites across our mapping zones and then assigned unique 
values to all ecophysiological parameters for each site. 
The sites ranged in size from 6.25 to 4.6 million ha in 
Zone 16 and 6.25 to 2.2 million ha in Zone 19.

Overview of the Modeling Process
 We developed biophysical gradient layers in several 
steps for each mapping zone (fig. 1). First, we collected 
and modified various topographic, soil, weather, and 
vegetation-related layers and grouped the values in 

these layers into classes to improve the computational 
efficiency of the model. We then partitioned each map-
ping zone into simulation units by spatially combining 
all of the classified input layers (fig. 1; table 2). That is, 
each unique spatial combination of the values for the 
input layers identified a distinct simulation unit. Next, 
we assembled the three input files needed to run WX-
FIRE, including: 1) the simulation unit file containing 
soil, topographic, weather, and vegetation-related data 
for all the simulation units in a mapping zone (simula-
tion unit list file) (fig. 2); 2) a file specifying general 
simulation options (driver file), such as time frames for 
summarizing data; and 3) a parameter file describing 
the ecophysiological site conditions (site file). We then 
ran WXFIRE simulations and produced tabular data of 
biophysical gradients for each simulation unit. Finally, we 
linked the tabular data to the spatial layer of simulation 
units to create geospatial biophysical gradient layers for 
each mapping zone. In the following sections, we briefly 
discuss the WXFIRE and DAYMET computer models 
used to generate biophysical gradients and then cover 
in detail our process for developing those layers.

Computer Models for Developing 
Biophysical Gradient Layers
 The WXFIRE model was developed with the goal of 
employing standardized and repeatable modeling meth-
ods to derive spatially explicit, climate-based biophysical 
gradients for predictions of landscape characteristics 
related to ecosystem management (Keane and others 
2002; Rollins and others 2004). Keane and others’ (2002) 
first model, WXGMRS, was built for a spatially explicit 
gradient modeling application called the Landscape 
Ecosystem Inventory System. The next generation of 
this model, WXFIRE, was used for creating biophysical 
gradient layers in the LANDFIRE Prototype Project 
(Keane and Holsinger 2006). The WXFIRE model is 
designed for simulating biophysical gradient data at 
any geographic extent or spatial resolution using spatial 
data layers of daily weather, soils, topography, leaf area 
index, and a suite of ecophysiological parameters. The 
WXFIRE model produces a broad array of biophysi-
cal gradients that can be categorized into two general 
types: 1) weather and climate variables and 2) ecosystem 
variables. The weather variables describe daily weather 
conditions (maximum daily temperature), whereas the 
climate variables summarize weather conditions over 
broader temporal periods (decades) to describe the 
climatic regime of the study area (for example, solar 
radiation flux to the ground). The ecosystem variables 
describe how climate variables interact with vegetation. 
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Table 1—Parameters	required	in	the	ecophysiological	site	input	file	for	WXFIRE	(Keane	
and	Holsinger	2006)	for	a	montane	site	(1,800	–	2,700	m)	in	Zone	16.

 Ecophysiological parameter Units Value

Julian date of start of pre-greenup period Jday ��5
Julian date of initiation of greenup period Jday ��9
Julian date of end of greenup period Jday �90
Julian date indicating live fuels are frozen Jday �00
LAI of the site in m2/m2 m2/m2 2.5
LAI conversion factor index �.5�
Extinction	coefficient	 index	 0.48
Rainfall	interception	coefficient	 index	 0.0005
Average site albedo (dim) for climax stand index 0.�8
Leaf water potential at stomatal opening -MPa -0.5
Leaf water potential at stomatal closure -MPa -�.65
Min	vapor	pressure	deficit	stomatal	opening	 Pa	 500.0
Max	vapor	pressure	deficit	stomatal	closure	 Pa	 4100.0
Maximum canopy conductance m sec–1 0.0065
Leaf boundary layer conductance m sec–1 0.0865
Leaf cuticular conductance m sec–1 0.0000�
Maximum live foliar moisture content percent 200.0
Minimum live foliar moisture conten percentt 80.0
DBH of reference tree cm 50.0
Bark conversion factor cm bark/cm dbh 0.05
Live crown ratio percent 50.0
Tree height meters 25.0
Initial fuel moisture content - �-hr woody percent 20.0
Initial fuel moisture content - �0-hr woody percent 20.0
Initial fuel moisture content - �00-hr woody percent 25.0
Initial fuel moisture content - �000-hr woody percent �0.0
Initial fuel moisture content - live foliage percent �20.0
Initial fuel moisture content - litter percent �00.0
Initial fuel moisture content - duf percent �50.0
Initial fuel moisture content - shrub percent �00.0
Initial fuel moisture content - herb percent ��0.0
FOFEM cover type ID number code ��
NFDRS fuel model number (a=�...z=26) code �2
FBFM ID number from Anderson et al. (�982) code �0
FLC fuel loading model ID number code �22
Elevation of site meters 2500.0
Aspect of site degrees �80.0
Slope of site percent �0.0
Latitude of site decimal-deg �5.�2��5
Longitude of site decimal-deg �20.�2��5
Depth	of	soil	defining	free	rooting	zone	 meters	 1.0
Percent	sand	in	soil	profile	in	FRZ	 percent	 50.0
Percent	silt	in	soil	profile	in	FRZ	 percent	 30.0
Percent	clay	in	soil	profile	in	FRZ	 percent	 20.0
Average wind speed m sec–1 �0.0
Topographic shading reduction factor m sec–1 �.00
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Table 2—Spatial input data for developing simulation units for the WXFIRE simulation model.

  Data scale 
Layer name Description or resolution Source

Aspect Direction of exposure in azimuths �0-m pixel Derived (ESRI 2002)
DAYMET Daily weather data �-km pixel Derived (Nemani et al. �99�)
Elevation Digital Elevation Model (DEM) (m) �0-m pixel Thornton et al. �997
LAI Leaf area index �0-m pixel USGS 2002
Percent sand Percent of sand in soil �:250,000 SCS �99�
Percent silt Percent of silt in soil �:250,000 SCS �99�
Percent clay Percent of clay in soil �:250,000 SCS �99�
Shading  Ecophysiological site conditions �0-m pixel Derived (ESRI 2002)
Site Topographic shade index �0-m pixel DEM & USGS NLCD
Slope Slope derived from DEM in percent �0-m pixel Derived (ESRI 2002)
Soil depth Soil depth to bedrock (cm) �0-m pixel Derived (Zheng et al. �996)

Figure 2—Example of WXFIRE simulation units for a small landscape in the Uinta mountains of Zone �6 and associated WXFIRE 
tabular	input,	including:	simulation	unit	identifier	(POLYID),	ecophysiological	site	(SITE),	elevation	(ELEV),	aspect,	slope,	geographic	
coordinates for weather, LAI, soil depth (SDEPTH), percents sand, silt and clay, and topographic shading (RSHD).
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For example, actual evapotranspiration can describe the 
moisture available for vegetation development much bet-
ter than average annual precipitation because it integrates 
phenology, temperature, and soil water dynamics. Keane 
and Holsinger (2006) provide extensive documentation of 
WXFIRE, including structure and formats of all input and 
output files, complete descriptions of all model algorithms, 
and guides on preparing and executing the program.
 DAYMET is a computer model that extrapolates daily 
spatial surfaces of temperature, precipitation, radiation, 
and vapor pressure deficit across large regions (Thornton 
and others 1997, Thornton and others 2002; Thornton and 
Running 1999). The DAYMET model requires digital 
elevation data, minimum and maximum temperature, 
and precipitation from ground-based meteorological 
stations. The DAYMET model extrapolates station-
based weather data across broad regions using a spatial 
convolution method with a truncated Gaussian weight-
ing filter (Thornton and others 2002). The DAYMET 
weather database was compiled for the entire nation 
using over 1,500 weather stations and served as a key 
input to the WXFIRE model. The DAYMET weather 
database contains gridded 1-km resolution daily data for 
daily minimum and maximum temperature (°C), precipi-
tation (cm), solar radiation (W m–2), and vapor pressure 
deficit (percent) from 1980 to 1997. At this time, the 
DAYMET model is unique in its ability to provide data 
at a temporal (18 years of daily data) and spatial (1-km) 
resolution across the conterminous U.S.

Input Layers for Developing WXFIRE 
Simulation Units
 This section details the process used to create the 
spatial data input layers required by WXFIRE (fig. 1). 
Specifically, we describe the procedures used to syn-
thesize information from existing spatial data layers, 
including a suite of terrain-related layers and layers of 
soils, leaf area index, weather and ecophysiological site. 
These input layers were subsequently used to develop 
simulation units and to compute the attributes for each 
simulation unit required as input into the WXFIRE 
model (table 2).
 Developing terrain-related input layers—We clas-
sified continuous data describing slope, aspect, and 
topographic shading as input to the WXFIRE model. 
Each layer was derived using digital elevation models 
(DEM) from the National Elevation Database (http://edc.
usgs.gov/products/elevation/ned.html) and standard 
algorithms for deriving topographic derivatives. We 
calculated slope as the rate of maximum change in a 

DEM from each cell relative to its neighbors using a 
3x3 grid cell neighborhood and an average maximum 
technique (Burrough 1986; ESRI 2002). Aspect was 
calculated by identifying the direction of maximum rate 
of change in a DEM between each cell and its neighbors 
(ESRI 2002). The topographic shading layer represented 
how direct radiation to a landscape area was attenuated 
by the surrounding high topography. The topographic 
shading layer was created by developing a shaded relief 
grid from a DEM, projecting an artificial light source 
onto the surface, and determining reflectance values. 
Solar azimuth and altitude for the sun’s position were 
required inputs for this process. We calculated azimuth 
and altitude using the National Oceanographic and 
Atmospheric Association Solar Position calculator 
(http://www.srrb.noaa.gov/highlights/sunrise/azel.html, 
assuming the summer solstice as the date and using the 
center coordinates for each mapping zone.
 Developing soil-related input layers—WXFIRE re-
quired soil texture (percent) and soil depth (m) as input 
for each simulation unit. Soil texture was derived using 
the State Soil Geographic (STATSGO) geo-spatial data, 
which is composed of digitized polygons from 1:250,000 
scale state soil maps (Natural Resources Conservation 
Service or NRCS 1995a). We explored the finer-scale 
Soil Survey Geographic (SSURGO) data but found 
that SSURGO has incomplete coverage across the two 
prototype regions and would not provide sufficient soils 
information for the national LANDFIRE mapping effort 
(NRCS 1995b). The STATSGO data structure consists 
of soil polygons, where each polygon has associated 
descriptions of soil sequence and soil layers in tabular 
format. Soil sequence represents the dominant kinds 
of soils (up to three taxonomic classes) contained in a 
polygon. Geographic locations for these soil sequences 
are not available but are instead represented as percents 
for each soil polygon. Soil information for the STATSGO 
polygons includes vertical composition (soil horizons) 
(up to six layers) for each soil sequence (soil taxonomic 
class).
 The WXFIRE model required that soil texture be 
described in terms of percent sand, silt, and clay (Keane 
and Holsinger 2006). These data are not directly defined 
in the STATSGO attribute list but can be extracted from 
the database based on variables describing the percent 
by weight of particles passing through various sieve 
sizes and percent clay content (Thornton and White 
2000). We first calculated four soil textures from the 
STATSGO database, including coarse fragment con-
tent and percent sand, silt, and clay. We computed the 
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four soil textures according to criteria for soil particle 
variables, described in table 3, using a script for SAS 
software (SAS System for Windows 2001). STATSGO 
data provides only high and low values for these attributes 
by soil sequence and layer. We calculated an average for 
each of the soil textures, for example, percent sand = 
(No. 10 sieve high + No. 10 sieve low) / 2 – (No. 200 
sieve high + No. 200 sieve low) / 2, and weighted the 
STATSGO variables by the layers’ depths and by the 
aerial extent of sequences within STATSGO polygons. 
Since the WXFIRE model requires measures of percent 
sand, silt, and clay only, we removed the coarse frag-
ment proportion from the composition of soil textures and 
rescaled the sand, silt, and clay components to comprise 
100 percent of soil texture estimates. Our final results from 
this analysis were estimates of percent sand, silt, and clay 
for each of the STATSGO polygons in a mapping zone.
 The soil depth layer was also derived using STATSGO 
data, but we modeled soil depth to a higher resolution us-
ing DEM data and hydrologic modeling. For this process, 
we first extracted the maximum depth per soil sequence 
from the STATSGO database and weighted these values 
by their aerial extent to calculate a maximum soil depth 
per polygon. We then calculated a topographic conver-
gence index (TCI) for each pixel using the following 
relationship provided by Beven and Kirkby (1979):

 
TCI

a
B

= 





ln
tan

where a is the upslope area (m2) draining past a certain 
point per unit width of slope and is calculated by ac-
cumulating the weight for all cells that flow into each 
down-slope cell (ESRI 2002; Jenson and Domingue 
1988; Tarboton and others 1991) and B is the local 
surface slope angle (degrees) calculated from a 3x3 
grid cell neighborhood using an average maximum 
technique (Burrough 1986; ESRI 2002). Using methods 
developed by Zheng and others (1996), we integrated 
the STATSGO maximum depth layer (STATGO Max 
Depth) and TCI data to calculate a soil depth value for 

each pixel using scalars to adjust for skewed TCI dis-
tributions as follows:
 Soil	depth = ∗{ , }M M TCI1 2

where M1 is the scalar used if a pixel’s TCI value was 
less than or equal to its mean across a mapping zone 
and was calculated by:

 

M
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 where Ave. Max. Depth is the mean value of the 
STATSGO maximum depth layer across each mapping 
zone, and LNmo and LNme are mode and mean values for 
the natural log of TCI. M2 is the scalar used if a pixel’s 
TCI value is greater than or equal to its mean across a 
mapping zone and is calculated by:

 

M
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2 =
Max.	Depth

max

where Max Depth is the STATSGO maximum depth 
layer for each polygon and LNmax is the maximum 
natural log of TCI.
 For Zone 19, we revised this process to improve 
data resolution by including slope in calculations of 
soil texture and depth. The STATSGO database pro-
vides high and low slope values for each STATSGO 
polygon. We calculated an average slope and classified 
the average slope into four classes: (1) ≤4 percent; (2) >4 
percent and ≤8 percent; (3) >8 percent and ≤15 percent; 
and (4) >15 percent (N. Bliss, personal communication). 
We extracted the soil texture and soil depth variables by 
these four slope classes from the STATSGO database. 
We used the slope geospatial layer (percent) previously 
described and then classified slope into the above four 
classes. We partitioned the STATSGO polygons by the 
classified slope layer and linked this spatial layer with 
the STATSGO variables of soil texture and depth by 
slope. For the final soil depth layer, we followed with 
the process described above for integrating STATSGO 

Table 3—Soil texture calculations based on STATSGO attributes that describe the percent by weight of particles 
passing through various sieve sizes and percent clay content (Thornton and White �999).

 Soil texture Equation using STATSGO attributes

Coarse fragment content Percent passing No. �0 sieve
Percent	sand	 Percent	passing	No.	10	sieve	–	Percent	passing	No.	200	sieve
Percent clay Percent clay weighted by percent passing No. 200 sieve
Percent	silt	 Percent	passing	No.	200	sieve	–	(percent	clay	–	percent	passing	No.	10	sieve)
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maximum soil depth with TCI to obtain soil depth values 
for each pixel. The final products were soil textures and 
soil depth—with improved resolution by incorporating 
slope into calculations. Note, improving the soil layers’ 
resolution also contributed to a large increase in the 
number of records in the simulation unit file for Zone 
19 from that of Zone 16.
 Developing leaf area index and weather input 
 layers—We generated leaf area index (LAI) from Landsat 
imagery (30-m pixel resolution) for leaf-on reflectance 
based on methods developed by Nemani and others 
(1993). We first calculated a corrected normalized dif-
ference vegetation index (NDVI) as follows:

 
NDVI

NIR RED
NIR RED

MIR MIR
MIR

c =
−
+







−
−

*
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where NIR is near infrared (band 4), RED is infrared 
(band 3), MIR is mid-infrared (band 5), MIRmin is the 
minimum value in mid-infrared band in an open canopy, 
and MIRmax is the maximum value in the mid-infrared 
band in a closed canopy. We then converted the NDVIc 
layer to LAI according to the following equation:

 
LAI

NDVIc
=

−
−

ln( . )
.

0 7
0 7

 Developing the ecophysiological site input layer—
For Zone 16, we delineated ecophysiological sites 
by partitioning the landscape by elevational breaks 
 corresponding to major vegetation changes (for example, 
landscapes dominated by pinyon pine vs. Douglas-fir). 
The four sites in Zone 16 included:

 Site 1 – Mohave (0 to 1,200 m mean sea level),
 Site 2 – Sagebrush (1,200 to 1,800 m MSL),
 Site 3 – Montane (1,800 to 2,700 m MSL), and
 Site 4 – Subalpine (2,700+ m MSL).

 We assigned values to the sets of ecophysiological 
variables for each site based on previous synthesis efforts 
(Korol 2001; Hessl and others 2004; White and others 
2000). Table 1 shows the ecophysiological parameters 
and associated values for the Montane site in Zone 16.
 For Zone 19, we used a less subjective approach where 
we developed sites using the U.S. Geological Service/
U.S. Environmental Protection Agency National Land 
Cover Database (http://edcwww.cr.usgs.gov/programs/
lccp/natllandcover) and biome types described for na-
tional-level ecosystem simulation (Thornton 1998). The 
National Land Cover Database contains 21 broad cover 
types, and we summarized these cover types into five 
general plant functional types and one non-vegetated 
class: water/barren (table 4). Each of these plant func-
tional types represented a site, and we assigned a set 

Table 4—Changes	made	to	National	Land	Cover	Database	(NLCD)	land	cover	class	definitions	
for the LANDFIRE site map.

 NLCD land cover class LANDFIRE plant functional types

Open water Water/barren
Perennial ice/snow Water/barren
Bare rock/sand/clay Water/barren
Quarries/strip mines/gravel pits Water/barren
Transitional Closest natural vegetation
Low intensity residential Closest natural vegetation
High intensity residential Closest natural vegetation
Commercial/industrial/transportation Closest natural vegetation
Deciduous forest Deciduous broadleaf forest 
Evergreen forest Evergreen needleleaf forest
Mixed forest  Majority of surrounding deciduous broadleaf 
     forest or evergreen needleleaf forest
Orchards/vineyards/other Deciduous broadleaf forest
Shrubland Shrub
Grasslands/herbaceous Grass
Pasture/hay Grass
Row crops Grass
Small grains Grass
Fallow Grass
Urban/recreational grasses Grass
Woody wetlands Deciduous broadleaf forest
Emergent herbaceous wetlands Grass
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of ecophysiological parameters to each site. The five 
main plant functional types were C3-grass, evergreen 
needle leaf forest, deciduous broadleaf forest, shrub, and 
barren/water. Areas classified as human development, 
such as urban and agriculture, were assigned a cover 
type based on the dominant cover type in neighboring 
pixels. Similarly, areas classified as mixed forest were 
recoded to either evergreen needle leaf forest or decidu-
ous broadleaf forest based on the dominant forest type 
in surrounding pixels.

Development of WXFIRE Simulation Units 
and Model Input Files
 Simulation units were developed by combining all 
11 spatial data layers described above and detailed in 
table 2. Ideally (given the available data) we would have 
combined all input layers for every 30-m pixel to obtain 
the best resolution possible in the biophysical gradient 
layers. However, the LANDFIRE prototype mapping 
zones were very large and would have required the 
simulation of 284 million records for Zone 16 and 289 
million records for Zone 19. Our computer resources 
were insufficient to process this amount of data in a 
timely manner. Instead, we reduced the data sets to 
10 million and 26 million records for mapping zones 
16 and 19, respectively, by classifying input layers to 
a coarser attribute measurement resolution. That is, 
we classified spatial layers so that their measurement 
increments were in broader ranges. Table 5 shows the 
classification scheme for each of the terrain, soil depth, 
and LAI layers. For example, slope was grouped into 
three classes of low, moderate, and high slope. Note that 
the soil texture layers (sand, silt, and clay) were already 
at a coarse spatial resolution, so we maintained them in 
their original form (1:250,000 scale) and did not sum-
marize to a broader attribute measurement resolution.
 To create the simulation units for executing WXFIRE, 
we combined the classified input layers (terrain, soil 
depth, LAI) with ecophysiological site, soil texture 

and weather layers such that each unique combination 
formed one simulation unit. Prior to combining these 
layers, we re-sampled all input layers to a 25-m pixel size 
such that each layer nested within the 1-km DAYMET 
weather data layer. Accordingly, each simulation unit was 
geo-referenced at a 25-m pixel size and had a series of 
associated input data. Figure 2 provides an example of 
WXFIRE simulation units developed for a landscape in 
the Uinta Mountains of Zone 16. As input to the WXFIRE 
model, we created an ASCII simulation unit list file that 
contained records for all the simulation units in a map-
ping zone along with their associated ecophysiological 
site identifiers, terrain data, geographic coordinates for 
weather (latitude and longitude), LAI, and soil values.

WXFIRE Model Simulation and Development 
of Biophysical Gradient Layers
 Using the various input files, the WXFIRE model 
calculated a series of biophysical gradients for each 
simulation unit and output the results to ASCII files. 
We linked each record in the ASCII output files to their 
corresponding simulation units to create geospatial 
data representing the biophysical gradients output from 
WXFIRE. We implemented the WXFIRE model using 
average annual time frames to consistently measure 
biophysical gradients across large regions that may have 
variable growing seasons and to match temporal periods 
commonly used in other gradient modeling analyses 
(Waring and Running 1998).
 In the initial WXFIRE runs, we retrieved the 
DAYMET weather data in the model simulations in 
its native 1-km format in an effort to maximize model 
efficiency. However, we discovered a strong gridded 
pattern in the biophysical gradient layers—a direct ar-
tifact of the coarsely gridded DAYMET weather maps 
(fig. 3A). We revised the WXFIRE program to scale the 
temperature and precipitation maps to a finer resolution 
using a moving window technique to calculate dynamic 
lapse rates (fig. 3B) (Keane and Holsinger 2006). The 

Table 5—Methods used for classifying input layers to coarser attribute measurement resolution, implemented to reduce 
the number of input records and computer processing time.  

   Number of
 Input layer Classification method categories

Elevation �00-m intervals �0+
Aspect SW (�65° to 255°; NW (255° to ��5°); NE (��5° to 75°); SE (75° to �65°) �
Slope	 Low	(<10%);	moderate	(10%	to	30%)	and	high	(≥	30%)	 3
Topographic shading index Every 0.25 (index) �
Soil depth 0.5-meter classes �
LAI �.0 LAI intervals 9
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Figure 3—The biophysical gradient soil water fraction for an area in the Uinta mountains where: (A) shows 
results from initial model run using a static lapse rate calculation (the �-km DAYMET footprint is particularly 
evident	in	southern	area);	and	(B)	shows	final	model	run	using	dynamic	lapse	rates	to	scale	down	weather	
maps. Use of the dynamic lapse rate dramatically reduced the �-km DAYMET footprint.



�09USDA Forest Service Gen. Tech. Rep. RMRS-GTR-�75. 2006

Chapter 5—Development of Biophysical Gradient Layers for the LANDFIRE Prototype Project

lapse rates were incorporated into linear regressions 
that adjusted the weather based on the difference in 
elevation between the coarse-scale DAYMET DEM 
and the elevation of the simulation unit. Solar radiation 
was also scaled to the simulation unit using geometric 
relationships of aspect and slope to sun zenith and azi-
muth angles (Keane and Holsinger 2006). We used the 
adiabatic lapse rate correction and the solar radiation 
adjustment in WXFIRE model runs for both mapping 
zones to minimize the DAYMET 1-km footprint pattern 
in output data layers, minimally affecting the efficiency 
of our model simulations and computational capacity.

Additional Topographic Layers for 
Gradient Modeling
 Additional terrain-related layers were created as 
predictive layers for developing potential vegetation 
type, cover type, structural stage, and canopy fuel maps 
(Frescino and Rollins, Ch.7; Zhu and others, Ch. 8; Keane 
and others, Ch. 12). Although not part of WXFIRE 
input or output, we mention these layers in this chapter 
because they were important biophysical gradients for 
subsequent mapping applications. One of the terrain-
related layers was topographic position index, which 
describes the exposure of a location in space compared to 
the surrounding terrain. Positive values expressed ridges 
or exposed sites, while negative values described sinks, 
gullies, valleys, or toe slopes. The topographic position 
index layer was developed using a moving window to 
describe relative location on a slope (Z. Zhang, personal 
communication). A topographic relative moisture index 
layer was developed to describe potential moisture 
conditions by combining relative slope position, slope 
configuration, slope steepness, and slope-aspect into a 
single scalar value based on methods defined by Haplin 
(1999) and Parker (1982). Finally, a landform layer was 
created based on reclassifying the topographic relative 
moisture index and slope. The landform layer described 
physiographic features such as valley flats, hills, and 
steep mountain slopes formed by erosion, sedimentation, 
mass movement, or glaciation (Neufeldt and Guralnik 
1988).

Results and Discussion __________

Demonstration of Biophysical Gradient 
Layers
 We developed thirty-one biophysical gradient layers 
from WXFIRE simulations to describe weather and 
climate variables and ecosystem variables (table 6). We 

created seven additional biophysical gradient layers describ-
ing topographic and soil conditions for use in subsequent 
vegetation and wildland fuel mapping (table 6). The mean, 
standard deviations, and ranges for each of the biophysical 
gradient variables in each mapping zone are presented in 
table 7.
 Due to the large number of biophysical gradient lay-
ers that can be created by WXFIRE, we present only 
maps of a subset of the two variable types developed 
by WXFIRE: weather/climate variables and ecosystem 
variables. Average annual precipitation (cm) was an 
important weather/climate variable because it directly 
influences plant productivity and limits vegetation 
 distributions (fig. 4). Another key weather/climate vari-
able was degree-days, which reflects the heat load to 
a simulation unit (fig. 5). Potential evapotranspiration  
(kg H2O yr–1) is an example of an ecosystem variable 
modeled in WXFIRE (fig. 6). Potential evapotranspira-
tion integrates temperature, precipitation, radiation, and 
relative humidity to estimate the maximum evapotranspi-
ration through a vegetated surface. To better demonstrate 
the spatial patterns in the biophysical gradients, we also 
present a close-up view of important WXFIRE layers 
used in predicting potential vegetation type for forested 
areas of Zone 16 (fig. 7).

Limitations in Developing Biophysical 
Gradient Layers
 The suite of biophysical gradient layers developed for 
the LANDFIRE Prototype Project must be considered in 
light of the limitations inherent to the simulation model-
ing process. Simulation modeling using WXFIRE was 
based on a set of algorithms that simplify and synthesize 
correlative relationships and mechanistic understandings 
of biophysical gradient variables (Keane and Holsinger 
2006). The resulting geospatial data do not reflect direct 
and accurate measurements, but rather approximations of 
environmental conditions and ecosystem characteristics 
as they fluctuate across broad landscapes. Specifically, 
biophysical data developed using simulation modeling 
demonstrate the transition of biophysical gradients, em-
phasizing relative differences across large areas. In any 
given location, estimates for any one of the WXFIRE 
variables may not be particularly accurate; however, 
estimates will be consistently measured with high preci-
sion across landscapes. Care must therefore be taken to 
limit mapping applications to relative comparisons of 
variables across large landscapes and to forego expecta-
tion of spatial accuracy at any specific location. Keane 
and Holsinger (2006) present a detailed accuracy assess-
ment of several WXFIRE weather outputs for several 
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Table 6—Biophysical gradients developed for the LANDFIRE Prototype Project, including weather, climate, and ecosystem vari-
ables simulated by the WXFIRE model and additional geographic variables.  

Description Biological significance

WXFIRE weather and climate variables
Maximum daily temperature (°C) Affects evapotranspiration and productivity
Minimum daily temperature (°C) Limiting factor for plant tolerance
Precipitation (cm) Directly affects productivity; limiting factor at lowest extreme
Average daily temperature (°C) Affects evapotranspiration and productivity
Daytime daily temperature (°C) Determines daily photosynthesis and respiration
Nighttime daily temperature (°C) Important for dark respiration
Soil temperature (°C) Affects water availability, soil respiration, nutrient availability
Relative humidity (%) Determines photosynthesis and evapotranspiration rates
Total solar radiation (kJ m–2 day–1) Directly affects photosynthesis 
Solar	radiation	flux	to	the	ground	(KW	m–2 day–1) Dictates fuel moistures, duff moisture, understory response
Photon	flux	density	in	PAR	(Umol	m–2)	 Incident	photon	flux	density	of	photosynthetically	active	radiation
Days since last snow (days) Good index of time that snow is on the ground
Days since last rain (days) Index of precipitation environment
Degree-days	(°C)	 Reflects	heat	load	at	a	stand

WXFIRE ecosystem variables
Potential evapotranspiration (kg H2O yr–1)	 Potential	evaporation	and	transpiration	if	no	deficiency	of	water	in	
  the soil
Actual evapotranspiration (kg H2O yr–1) Water actually lost from plant surface due to evaporation and 
  transpiration
Leaf-scale stomatal conductance (M sec–1) Indicates how often stomates are open during the year
Leaf conductance to sensible heat  (M sec–1) Ability of foliage to transpire water
Canopy conductance to sensible heat (M sec–1) Ability of canopy to transpire water
Soil water fraction (index) Indicates amount of water available for plant growth
Water potential of soil and leaves (-MPa) How tightly leaf holds moisture--high value indicates plant may be
  water stressed  
Volumetric water content  (Scalar) Indicates soil moisture availability
Growing	season	water	stress	(-MPa)	 Reflects	extent	of	soil	drying	during	the	year
Maximum annual leaf water potential (-MPa) Soil water availability and evapotranspiration
Snowfall  (kg H2O m–2 day–1) Amount of snowfall aids in water balance for site
Soil water lost to runoff and ground (kg H2O m–2 day–1) Water that is not stored on-site for plant growth
Soil water transpired by canopy  (kg H2O m–2 day–1) Amount of water lost from plants through their stomata by
  transpiration
Evaporation (kg H2O m–2 day–1) Indicates loss of water other than evapotranspiration
NFDRS	-	1-hr	wood	moisture	content	(%)	 Illustrates	fine	fuel	moisture	regime
NFDRS - �0-hr wood moisture content (%) Illustrates large fuel moisture regime
Keetch-Byram Drought Index Represents net effect of evapotranspiration and precipitation to pro-

duce	cumulative	moisture	deficiency	in	deep	duff	and	upper	
  soil layers

Additional terrain and soils data
Elevation (m) Indirectly affects plant response to climate 
Aspect (degrees) Indirectly affects radiation, water, temperature
Slope (percent) Indirectly affects soil water, radiation
Landform Indirectly affects water storage
Topographic	relative	moisture	index	 Index	reflecting	ability	of	site	to	hold	water
Topographic position index Index describing topographic setting
Soil depth (cm) Affects soil water availability
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Figure 7—Higher resolution view of key WXFIRE layers used in predicting PVT for forested areas of Zone �6:  
(A) Zone �6 showing watershed of interest; (B) actual evapotranspiration; (C) days since rain; (D) days since 
snow; (E) moisture content of �-hour wood; (F) relative humidity; (G) total solar radiation; and (H) minimum 
temperature.
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landscapes in the two prototype mapping zones. They 
found that these biophysical gradients had a high level of 
precision but lacked a high degree of accuracy. WXFIRE 
model predictions were limited most by the difficulty 
of accurately quantifying the simulation units and site 
parameters due to the low quality and consistency of 
available GIS layers (Keane and Holsinger 2006).
 The quality of biophysical gradient data was also 
constrained by the interpolation of weather data by the 
DAYMET model and by the integration of that weather 
data into biophysical gradient estimates. The WXFIRE 
model relies strongly on predictions of the DAYMET 
weather model. The DAYMET model offers extensive 
weather data for the conterminous United States at 
a high mapping resolution; however, it has limited 
spatial accuracy and temporal depth (Thornton and 
others 1997). In many parts of the country, weather 
stations are scarce, and this sparse distribution reduces 
the DAYMET model’s ability to accurately interpolate 
weather between stations. In addition, the DAYMET 
data set spans 18 years (1980-1997), which, although 
substantial, is relatively short for generalizing the vari-
ability in weather patterns over time. For example, if 
our weather data set extended back one hundred years, 
we would have data from the drought years of the 1930s 
and relatively wet years of the 1950s. If such an extensive 
climate data set were available, spatial variability would 
likely be different in our suite of biophysical gradient 
layers—particularly for parameters calculated using 
non-linear equations, such as actual evapotranspiration 
(Keane and Holsinger 2006). An 18-year period possibly 
captured the range of variability in weather for some 
locations, but in other areas, this narrow time window 
may reflect only a relatively homogenous weather period, 
missing the full magnitude of variability.
 Additionally, the WXFIRE model calculates weather 
outputs as annual averages (in other words, data were 
summed across daily values in a year and averaged across 
18 years), which was not the ideal approach for predicting 
plant species distribution. Plant phenology most closely 
corresponds to seasonal or daily changes in weather 
conditions (White and others 2000), not annual time 
periods. However, the appropriate seasonal or daily time 
frames that affect vegetation dynamics will vary across 
regional landscapes. For example, the primary growing 
season of whitebark pine in alpine habitats ranges from 
approximately July to October, while sagebrush com-
munities, on average, range from April to October. We 
used annual time period to capture the potential range 
of all plant species in a mapping zone; however, with 
weather data generalized to the coarser annual time 

frame, the resulting biophysical gradients were less 
robust for predicting vegetation distributions.
 Another limitation in the development of the biophysi-
cal gradients for the LANDFIRE Prototype Project is 
related to the issue of scale, both in terms of spatial resolu-
tion and attribute measurement resolution. Our goal was 
to produce moderate resolution spatial data, which for the 
biophysical data layers, corresponds roughly to a 30-m 
resolution. The biophysical gradient layers produced for 
mapping zones 16 and 19 had a pixel size of 30-m, but 
the actual spatial resolution of the simulated data was 
much coarser. The reduced spatial resolution was a result 
of the limited availability of high resolution input layers 
for WXFIRE and limited computer resources. We chose 
only those geospatial data sources that were complete and 
contiguous across the conterminous United States. The 
base data layers used to create the WXFIRE input files 
had a wide variety of spatial resolutions and mapping 
scales. Weather and soil texture data for the nation were 
available only at spatial resolutions greater than 30-m. 
Other input layers were available at a 30-m resolution 
(for example, topographic data) but could not be fully 
utilized because we lacked the computer resources to 
execute model simulations for the large amount of re-
cords created at these fine resolutions. Consequently, we 
classified our finer-scale data layers to broader ranges 
in their measurement increments leading to coarser at-
tribute measurement resolution. We also assumed that 
ecophysicological sites were homogenous across broad 
landscapes and thereby omitted smaller patches in the 
gradient patterns, decreasing spatial resolution. More-
over, WXFIRE was constructed, for lack of alternatives, 
under the assumption that the ecophysiological param-
eters match the simulation units in spatial and temporal 
scale (Keane and Holsinger 2006), which is rarely true. 
For example, maximum canopy conductance derived 
from the ecophysiological site layer has a significantly 
coarser resolution than terrain-related data.
 The true resolution of these biophysical gradient layers 
was difficult to determine for several reasons. First, the 
core data layers that were used as input to the WXFIRE 
model were of varying resolution. Second, the WXFIRE 
model integrated multiple algorithms and equations for 
calculation of each biophysical gradient layer. Third, 
WXFIRE required additional ecophysiological site pa-
rameters for simulation—also at varying resolutions. We 
can illustrate the difficulty in assessing resolution from 
these compounding influences with the example of potential 
evapotranspiration (kg H2O yr–1) calculation. Calculations 
of potential evapotranspiration required data from six 
input layers: DAYMET weather, elevation, aspect, slope, 
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ecophysiological site (albedo and others, see Keane and 
Holsinger 2006), and topographic shading (table 8). The 
original resolution of these input layers ranged from 30 
m to 1 km, although the terrain-related layers (elevation, 
aspect, slope, and topographic shading) were classified to 
coarser attribute measurement resolutions (table 5). Actual 
simulation of potential evapotranspiration involved calcu-
lating several variables as inputs to a complex algorithm, 
and these variables represent processes which introduce 
additional modifications to data resolution. Specifically, 
weather data were interpolated from stations across the 
mapping zone in the DAYMET weather database. These 
weather data were also scaled down from 1-km data to 
the simulation unit, and the extent of scaling varied 
depending on size of the simulation unit. Finally, the 
actual algorithm to calculate potential evapotranspira-
tion required the input of ecophysiological parameters 
of varying scale. For example, the ecophysiological 
parameter albedo can vary over small distances in real 
landscapes and over short time spans as species change 
due to phenology. However, we mapped albedo over large 
areas for broad categories of vegetation types that were 
considered static instead of dynamic. Overall, the result-
ing spatial resolution of the potential evapotranspiration 
layer depended on the integration of all the multiple data 
inputs and individual processing steps. Perhaps the best 
method for assessing data resolution would be through 
accuracy assessments using field-based data. However, 
observed data for potential evapotranspiration and other 
ecosystem, weather, and climate WXFIRE variables 
were not available. The effect of data resolution could 
also be assessed using sensitivity analysis such as Monte 
Carlo simulation, and such analyses would be worthwhile 
to perform in the future. In an effort to inform some 
understanding of the scale of the data layers, we have 
presented the data inputs required for modeling each of 
the biophysical gradients (table 8), the associated data 
resolution or scale for these input layers (table 2), and 
the classification scheme of input layers (table 5).

Recommendations for National 
Implementation _________________
 Many of the decisions made in the LANDFIRE Proto-
type Project aimed to minimize computation time while 
maintaining information content. Without constraints, it 
would be ideal to model each 30-m pixel on the landscape. 
For the LANDFIRE Prototype, however, that would have 
been intractable due to limited resources, the number 
of processes required, and narrow time-frames. For 
instance, we classified input layers and grouped pixels 

with similar values to create broad simulation units so 
that the model could be run one time and the outputs 
applied to many pixels. The overall scheme of this clas-
sification and creation of unique simulation units was 
sufficient, but the details implemented contained some 
flaws, such as in the soil depth layer’s derivation and the 
DAYMET weather grid inclusion for creating simulation 
units. We suggest making changes to various phases of 
the biophysical gradients creation process to increase 
the quality of output while working within the general 
simulation framework developed during the LANDFIRE 
Prototype Project.

Improving Simulation Models
 Early in the LANDFIRE Prototype Project, we explored 
using an ecosystem process model called LF-BGC, in 
addition to the WXFIRE simulation model (Thornton 
1998). LF-BGC is a version of Biome-BGC adapted for 
the LANDFIRE Project that simulates carbon, water, and 
nitrogen fluxes to simulate a set of carbon budget metrics and 
ecophysiological characteristics. The version of LF-BGC 
available for the LANDFIRE Prototype Project, however, 
was designed primarily to produce biophysical gradient 
layers at a 1-km resolution, based on the scale objectives 
of Biome-BGC. We attempted to create higher-resolu-
tion biophysical gradient layers (30 m) by using higher-
 resolution inputs but discovered that more sophisticated 
model modifications were needed. A subsequent version 
of the LF-BGC model was developed that successfully 
creates higher-resolution biophysical gradient layers. 
Due to time constraints, however, we were unable to 
develop the layers with this new version. For the na-
tional implementation of LANDFIRE, we recommend 
incorporating the LF-BGC model to develop a more 
extensive set of biophysical gradient layers.
 The LF-BGC and WXFIRE simulation models have 
many similarities, including file input, processing, and 
biophysical gradient output, and we suggest that the two 
models be combined into a single model executable for 
the national implementation of LANDFIRE. A number 
of factors should make this combination straightforward 
and a logical step towards optimizing model efficiency. 
First, both LF-BGC and WXFIRE are written in the 
C+ programming language and contain many equiva-
lent calculations. Second, LF-BGC and WXFIRE have 
similar required inputs, differing in that WXFIRE 
requires more physical site information: slope, aspect, 
and hillshade. These three variables predominantly 
control the scaling of incoming radiation and its deriva-
tives. Third, both models extract DAYMET weather 
data—the most time-consuming and process-intensive 
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step for executing either model. If the two models were 
combined, this call to DAYMET would only occur once. 
Fourth, the ecosystem variables (see table 6) calculated 
in WXFIRE are dependent on a site file and LAI data 
that both represent current land cover. The same (and 
more) ecosystem variables are output from LF-BGC, 
and, by combining models, we would no longer require 
current land cover information.
 The process of combining WXFIRE and LF-BGC 
should be relatively seamless and significantly improve 
model outputs and efficiency. The unique variables out-
put by WXFIRE, namely the climate derivatives, can 
readily be added to the LF-BGC model. This procedure 
can be done with minimal change to the core LF-BGC 
program and without affecting the stand-alone output. 
This proposed combination of the models would remove 
a major source of problems and error and virtually 
cut simulation times and computing resource needs in 
half.
 In addition to combining the models, we suggest a 
change in the way that LF-BGC is parameterized and 
executed. During exploratory simulations, LF-BGC was 
run with the evergreen needle leaf forest plant functional 
type (PFT) across simulation units in Zone 16. Our goal 
in using this model was not to calculate the actual net 
primary productivity (NPP), but to represent the relative 
differences in potential NPP across landscapes in order 
to delineate unique biophysical settings. We chose to 
simulate the PFT with the narrowest ecological ampli-
tude to maximize the information content of the output 
and selected only one to remain within our deadlines. 
This logic could be applied for most areas of the U.S.; 
however, some landscapes may exist that cannot sustain 
an evergreen needle leaf PFT. Sole use of the evergreen 
needle leaf PFT for LF-BGC simulations does not provide 
enough information to distinguish unique biophysical 
settings in such landscapes. Assuming that efficiency is 
improved and resources are increased for the national 
effort, we suggest adding the C3 grass (cool season) PFT 
to the simulation protocol. By modeling the two plant 
functional types with the narrowest (evergreen needle 
leaf) and broadest (C3 grass) ecological amplitudes, we 
can achieve a more complete picture of the biophysical 
gradients that exist across the entire United States.

Improving Model Input Layers
 To minimize the number of unique simulation units, 
we classified much of the input data to broad categories. 
 Classification served to minimize the number of 
 simulations while attempting to remain within the bounds 

of model sensitivity. We propose a number of changes to 
the methods for creating the input layers used to create 
simulation units.
 We derived soil depth from STATSGO slope groups 
that were further divided with a topographic convergence 
index (TCI). The derived soil depth layer showed a very 
speckled pattern or pixelation and contained a definite 
footprint of the hydrologic modeling that carried through 
to final biophysical gradient layers in the form of linear 
hydrologic features. Further examination determined that 
the pixelation of the soil depth layers was the dominant 
determinate of the size and shape of simulation units. 
This pattern was due largely to characteristics of the 
soil depth layer that were undesirable. The input of 
flow accumulation to the soil depth derivation process 
resulted in long, linear artifacts in the simulation units 
resulting from limitations in the flow direction grid. 
We explored different flow direction layers of varying 
complexity, but all created the same artifacts in the final 
layers. The multiple flow direction layers, in addition 
to the high degree of pixelation in the depth values, 
reduced our confidence in the derived soil depth values. 
We recommend eliminating the TCI soil depth calcula-
tion and using the soil depth information taken directly 
from STATSGO but modified by slope group, as with 
the soil texture information. In addition, we recommend 
exploring techniques to modify the soil depth estimation 
according to the coarse fragment proportion.
 Reducing the soil depth layer complexity would provide 
the flexibility to increase the number of categories in 
our other model input layers and thereby improve the 
characterization of ecologically important and unique 
physical patches on the landscape for creating simulation 
units. We advocate increasing the number of classes in 
the terrain-related layers as follows:
 •	 Aspect—Divide into eight classes: north 338 – 22, 

northeast 23 – 67, east 68 – 112, southeast 113 – 
157, south 158 – 202, southwest 203 – 247, west 
248 – 292, and northwest 293 – 337.

 •	 Slope—Divide into five classes: <4 percent, 5 – 14 
percent, 15 – 29 percent, 30 – 79 percent, and 
80 – maximum percent.

 •	 Hillshade—Divide (as a value between 0 and 1) 
into ten classes with the maximum class value 
representing each class (in other words, 0.1, 0.2, 
and so forth).

 As in the prototype effort, the value assigned to the 
pixel should be the midpoint of the class range for aspect 
and slope.
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 We also propose a change in the extraction and han-
dling of the DAYMET weather data. For the LAND-
FIRE Prototype Project, the center coordinates of 1-km 
DAYMET pixels were used to create simulation units 
and to extract weather data for each simulation unit 
within a 1-km pixel. A lapse rate was applied based on 
the elevation difference between the simulation unit 
and DAYMET pixel. A significant 1-km artifact of this 
DAYMET grid remained in many output layers, even 
when various smoothing techniques were implemented. 
We propose removing the DAYMET grid from the suite 
of layers used to create simulation units and employing 
a more sophisticated smoothing process to scale the 
weather data down to better represent our 30-m simula-
tion units Specifically, we suggest applying a lapse rate 
based on bilinear interpolation to the four surrounding 
DAYMET pixels closest to the center coordinates for 
each simulation unit.
 The ecophysiological site and LAI data layers were 
created based on current land use and land cover data, 
and these layers were used to determine unique simula-
tion units for developing the biophysical gradient lay-
ers. When the site and LAI layers were used to create 
simulation units, they not only generated artifacts but 
had no bearing on biophysical attributes that define 
environmental site potential or biophysical setting. For 
these reasons, we recommend omitting these layers in 
the creation of unique simulation units. In combining 
the WXFIRE and LF-BGC models, the ecophysiological 
site and LAI inputs could be eliminated because they 
are inherent to the BGC PFT parameterization and will 
represent more generic potential rather than current land 
use and land cover.

Improving Simulation Unit Development
 We propose some changes to the protocol for defining 
the simulation units with respect to reducing data volume 
and increasing simulation efficiency. We identified three 
major limitations in our methods, the removal of which 
would improve the quality of the simulation units. First, 
as stated in the previous section, the ecophysiological 
site, LAI, and the 1-km DAYMET layers should not be 
used to create simulation units. These layers impose 
artificial footprints and are not physical features that 
affect the biophysical potential of a landscape patch. 
Second, by removing the DAYMET grid as a controlling 
factor in creating simulation units, we can maintain the 
data at its native resolution rather than re-sampling all 
data to 25 m. Following these two changes to the input 
data used to create simulation units, we propose changes 

in the delineation methods aimed towards reducing the 
overall number of simulation units through classification 
and combination of the input layers.
 In our proposed method for creating simulation units, 
we first assume that the following: First, executing the 
model to create biophysical gradient layers for each 30-
m pixel is computationally problematic. Second, model 
input layers can be classified within the bounds of model 
sensitivity, thereby decreasing data volume without losing 
information. Third, physical limits—regarding the size 
of the simulation units—can be imposed without losing 
desired spatial detail. We suggest first combining the 
following input layers with new class definitions: eleva-
tion, slope, aspect, hillshade, soil depth, and soil texture 
(sand, silt, and clay). This combination would assign a 
unique identification number to each unique combination 
of the variables. We then suggest grouping adjacent like 
pixels based on the combined output. This aggregation 
would separate any pixels that have the same biophysi-
cal gradient properties but are separated in geographic 
space. We then propose applying a minimum mapping 
unit of ~1 ha to these simulation units to reduce the 
total number. Because the DAYMET weather data is 
interpolated to scale it to the 30-m DEM, a maximum 
size for simulation units should be imposed, such that the 
units are less than 1 km; we propose using a maximum 
axis length of 750 m. This set of steps represents small 
changes, but it would result in a significant reduction in 
the number of simulation units. Additionally, we expect 
that the gain in biophysical information through these 
new methods would significantly improve the quality 
of the output biophysical gradient layers.

Conclusion _____________________
 Integration of remote sensing, simulation modeling, 
and gradient analysis proved to be an efficient and suc-
cessful approach for mapping broad-scale vegetation, 
wildland fuel, and fire regime characteristics in the 
LANDFIRE Prototype Project. The ability of remote 
sensing and ecosystem simulation to portray spatial 
distributions of biophysical gradients enables the ef-
ficient construction of reasonably accurate maps that 
are critical for both fire managers and ecologists. While 
there were a variety of limitations encountered during 
the application of the LANDFIRE Prototype Project 
biophysical gradient modeling approach, the lessons 
learned will prove valuable when LANDFIRE methods 
are applied across the entire United States.
 For further project information, please visit the LAND-
FIRE website at www.landfire.gov.
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