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ABSTRACT.  Many anadromous salmonid stocks in the Pacific Northwest are at their 

lowest recorded levels, which has raised questions regarding their long-term persistence under 

current conditions.  There are a number of factors, such as freshwater spawning and rearing 

habitat, that could potentially influence their numbers.  Therefore, we used the latest advances in 

information-theoretic methods in a two-stage modeling process to investigate relationships 

between landscape-level habitat attributes and maximum recruitment of 25 index stocks of 

chinook salmon (Oncorhynchus tshawytscha) in the Columbia River basin.  Our first-stage 

model selection results indicated that the Ricker-type, stock recruitment model with a constant 

Ricker a (i.e., recruits-per-spawner at low numbers of fish) across stocks was the only plausible 

one given these data, which contrasted with previous unpublished findings.  Our second-stage 

results revealed that maximum recruitment of chinook salmon had a strongly negative 

relationship with percentage of surrounding subwatersheds categorized as predominantly 

containing U.S. Forest Service and private moderate-high impact managed forest.  That is, our 

model predicted that average maximum recruitment of chinook salmon would decrease by at 

least 247 fish for every increase of 33% in surrounding subwatersheds categorized as 

predominantly containing U.S. Forest Service and privately managed forest.  Conversely, mean 

annual air temperature had a positive relationship with salmon maximum recruitment, with an 

average increase of at least 179 fish for every increase in 2 oC mean annual air temperature.   

KEY WORDS:   Akaike’s Information Criterion, Chinook salmon, Model averaging, 

Oncorhynchus tshawytscha, Ricker model, Stock-recruitment. 
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 1.  Introduction.  Many anadromous salmonid populations in the Pacific Northwest have 

dramatically declined from previously recorded levels, presumably because of degradation or 

loss of freshwater spawning and rearing habitats, restricted upstream access and increased 

downstream passage mortality due to hydroelectric dams, commercial overfishing, and negative 

impacts from non-native and hatchery fishes (Nehlsen et al. [1991]).  Therefore, long-term 

persistence for a number of these stocks is doubtful under present conditions (e.g., see Emlen 

[1995], Ratner et al. [1997]).  Although the need for remedial measures is clear, it is unclear 

which factors to focus these measures on.  That is, complexity of the life history pattern of these 

anadromous fishes, as well as variability in this pattern among different stocks (Nehlsen et al. 

[1991]), adds to the uncertainty associated with attempting to identify limiting factors that most 

influence stock size and persistence.  For instance, there are a wide range of potential 

environmental conditions that anadromous fishes experience during their freshwater occupancy 

period; attempting to tease out the more influential of these factors is complex and difficult 

(Bisson et al. [1992]).  Efforts to properly restore anadromous salmonid stocks to previously high 

levels will require a broadscale approach that incorporates landscape patterns and processes 

(Schlosser [1991]), which adds further sources of uncertainty.    

 Quality and condition of freshwater habitats may affect productivity in salmonids (Hunt 

[1969], Scarnecchia and Bergersen [1987], Heggenes and Borgstrom [1991]), which in turn 

would affect their long-term persistence.  However, to our knowledge, relationships between 

large-scale habitat/land management attributes and productivity in anadromous salmon stocks 

have never been rigorously quantified in the published literature, particularly at the spatial scale 

of the Columbia River basin.  Previous broadscale assessments of salmonid stocks in this region 

have been mostly limited to compiling available status/risk information (e.g., Nehlsen et al. 
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[1991], Frissell [1993], Huntington et al. [1996]) or using GIS data to evaluate and map potential 

salmon freshwater habitat (Lunetta et al. [1997]; western Washington State only).  Conversely, 

Lee et al. [1997] attempted to rigorously quantify linkages between population status of fish 

species (based on empirical data and status calls from experts) and landscape-level habitat 

variables.  Schaller et al. [1999] modeled productivity and survival rates of spring/summer 

chinook salmon, particularly in relation to hydrosystem development, separately for each of 16 

index stocks in the Columbia River basin. 

 Here, we applied the latest advances in information-theoretic modeling (Burnham and 

Anderson [1998]) to existing data sets to investigate potential relationships between various 

landscape-level attributes and estimates of maximum recruitment of 25 index stocks of 

spring/summer chinook salmon within the Columbia River basin.  Because this information-

theoretic approach is probably unfamiliar to most ecologists and other natural resource 

professionals, an important objective of this paper is to describe and illustrate this modeling 

procedure.  Note that the information-theoretic approach has general relevance to statistical 

modeling situations well beyond the application described herein. 

 2.  Modeling approach.  We employed a two-step modeling process to evaluate 

relationships between landscape-level attributes and fish productivity in 25 index stocks of 

spring/summer chinook salmon within the Columbia River basin (Fig. 1).  The first set of models 

were Ricker-type, stock-recruitment models (Ricker [1975]).  Parameter estimates from these 

models were used in a response variable for a second set of second-stage models, which 

contained landscape-level predictor variables (Table 1).  In the following, we describe our 

methodological approaches for each modeling step, including the latest information-theoretic 
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(Akaike [1973], Burnham and Anderson [1998]) model selection and model-averaging 

techniques that we adapted for our needs. 

 2.1.  Developing a set of candidate models.  A crucial step in the modeling process is the 

construction of a set of candidate models that are ecologically meaningful (Lebreton et al. 

[1992], Burnham and Anderson [1998]).  Based on results from Deriso et al. [1996], we used a 

stock-recruitment, regression model with stock-specific Ricker a values as a base model from 

which we derived other candidate models (see Stock-recruitment models).  For the landscape-

level habitat models, we adopted the more general approach recommended by Burnham and 

Anderson [1998], i.e., we developed a global linear regression model containing various class, 

physiographic and geophysical, and anthropogenic landscape-level variables (Table 1) that may 

have had important influences on maximum recruitment of spring/summer chinook salmon in 

their spawning/rearing areas.  Because of the paucity of data ( 25=n  observations) and hence the 

danger of over-fitting the model, we only used a relatively small number of predictor variables to 

construct the global model.  From this set of predictors we generated a subset of models that 

contained various combinations of variables we deemed ecologically relevant based on results 

from Lee et. al. [1997], our knowledge of the species and system, and consultations with subject 

experts familiar with the study area. 

 2.2.  Model selection.  We used the small sample adjustment of AIC (Akaike [1973]) to 

rank models and assess their relative plausibility given the data.  AIC is an extension of 

likelihood theory and is derived from the Kullback-Leibler distance of information theory 

(Kullback and Leibler [1951], Kullback [1997]), which is a measure of how much information is 

lost when a model is used to approximate reality (Cover and Thomas [1991], Burnham and 

Anderson [1998]).  AIC is defined as 
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(1)     k
n

n 2RSSlnAIC +




=  ,      

where n  is the number of observations, RSS is the residual sum of squares (also called error sum 

of squares, SSE ), and k is the number of estimable parameters in the model.  Equivalently, 

( ) kdata 2)|ˆL(ln2AIC +−= θ , where ( ))|ˆL(ln dataθ  is the maximized log-likelihood over the 

unknown model parameters (θ ) given the data (Buckland et al. [1997], Burnham and Anderson 

[1998]).  When 40/ <kn , Burnham and Anderson [1998] recommended Hurvich and Tsai’s 

[1989] small sample adjustment to AIC, 

(2)     ( )
1
12AICAICc

−−
++=

kn
kk  .  

Note that AICc converges to AIC as the number of observations increases relative to the number 

of estimable parameters in a model.  In other words, as n  increases relative to k  in the second 

term in Eq. 2, the denominator increases relative to the numerator and the whole term approaches 

zero.  For large kn /  ratios, the second term essentially drops out, leaving only the AIC term.  

Hence, AICc can be routinely used in place of AIC because its adjustment to AIC is necessary 

for smaller kn / ratios, whereas it is essentially equivalent to AIC for larger kn /  ratios. 

AIC and its derivatives operate on the principle of parsimony (Box and Jenkins [1970]), 

i.e., the highest ranked models are those that best fit the data with the fewest parameters.  The 

principle of parsimony states that there is an ideal point in the balance between increasing the 

number of parameters to decrease bias and decreasing the number of parameters to increase 

precision.  This bias/precision trade-off can be seen in the AIC formula (Eq. 1), where the first 

term rewards a better-fitting model (i.e., leading to lower bias) and the second term penalizes an 

over-parameterized model (i.e., leading to higher precision) (Burnham and Anderson [1998]).  

The smaller the sum of these two terms (or the smaller the AIC), the better fitting the model.  
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However, AIC (or AICc) is a relative ranking statistic.  Therefore, AIC values should be 

interpreted in terms of the magnitude of their differences among candidate models rather than the 

magnitude of any particular value.  A simple method of model ranking is to order the relative 

differences among AIC values by subtracting the lowest value from all other values (these 

differences are called ∆AIC values), and then reordering these ∆AIC values and their associated 

models from low (i.e., 0) to high (Burnham and Anderson [1998]).  One can interpret the relative 

plausibility of each model for a particular data set by calculating the Akaike weights (see below).  

Note that AIC values are specific to the data set that was used to compute them, and hence those 

computed from different data sets are not comparable. 

 We interpreted the relative plausibility of each candidate model for a specific data set by 

its Akaike weight, iw  (Burnham and Anderson [1998]).  This weight is calculated as 

(3)     
( )

∑
=

∆−

∆−

= R

j

i
j

i

e

ew

1

)2/AICc(

2/AICc

 , 

where ∆AICci is the ∆AICc value for the ith model in a set of R  candidate models (Buckland et 

al. [1997]).  Thus, the iw  sum to 1.  Note that there may be more than one model that is 

reasonably plausible for a particular set of data, especially if the data set is small.   

 2.3.  Model-based inference.  We incorporated model selection uncertainty into model 

inference as generally described by Burnham and Anderson [1998].  We did not select a single 

model from a candidate set and treat it as the “true” model unless its Akaike weight was at least 

eight times larger than the next highest weight (our modification).  That is, we viewed the 

predictor variables contained in models whose Akaike weights were more than one-eighth of the 

largest Akaike weight as forming a composite model whose parameter estimates were computed 

based on the ∆AICc-weighted average of estimates from relevant models.  Following from 
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likelihood-based inference (Edwards [1992], Royall [1997]), Akaike weights correspond to 

strength of evidence of one model versus another, i.e., )|(/)|( dataMLdataML Bi , where iM  

refers to the ith model and BM  refers to the “best” model (Burnham and Anderson [1998:128-

129]).  Our strength of evidence metric, 1/8, was recommended by Royall [1997] as a general 

cutoff point.  

 We computed model-averaged estimates of regression coefficients for relevant predictor 

variables via 

(4)     i

R

i
iw ββ ˆˆ

1
∑

=

=   , 

where iβ̂  is the estimator of a regression coefficient for a specific predictor variable in model i  

and iw  is the Akaike weight that is calculated from the ∆AICc values for the R  candidate 

models containing a specific predictor variable (Buckland et al. [1997]).  For example, say 3 of 

the 8 candidate models contained predictor 1X , which appeared in at least one model with iw  

greater than one-eighth of the maximum iw .  The iw  used in the model selection process for 

assessing the plausibility of each model would be based on ∆AICc values from all 8 models, 

whereas the iw  used in model inference for estimating the overall regression coefficient (i.e., 

β̂ ) for 1X would only be based on ∆AICc values calculated from the 3=R  models containing 

1X .  Thus, the iw  always were scaled so that they summed to 1.  
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 Variance estimators for regression coefficients also were calculated based on model 

averaging.  There were two sources of uncertainty associated with each model parameter 

estimate: the variance based on a particular model (called conditional variance) and the variance 

due to uncertainty in the selection from a set of models (Buckland et al. [1997]).  The overall 

variance (called unconditional variance, ( )β̂râv ; Buckland et al. [1997]) is calculated as 

(5)   ( ) ( ) 2

1

2ˆˆ|ˆrâv)ˆr(âv 







−+= ∑

=

R

i
iiii Mw ββββ  , 

 where ( )ii Mβ̂râv  is the conditional variance (i.e., the square of the standard error for the 

regression coefficient in regression output) of model i and ( )2ˆˆ ββ −i is the variance component 

due to model selection uncertainty.  The iw  were computed based on the R  models as described 

above. Technically, estimators should have been perfectly correlated for Eq. 5 to be used so that 

there would be no covariance term (Buckland et al. [1997]); however, based on extensive 

simulations, reasonable results can be obtained for a correlation between 0.5 and 1 (K. P. 

Burnham, CO Cooperative Fish and Wildlife Research Unit, Fort Collins, CO, pers. commun.).   

 2.4.  Stock-recruitment models.  A commonly used approach to modeling the relationship 

between fishery stock size (spawners) and number of recruits is the Ricker model (Ricker 

[1975]).  One form of this model (Ricker [1975:283]) is  

(6)     bSaSeR −=  , 

where R  is number of recruits, S  is number of spawners, ae  (where a  is Ricker a ) is the slope 

of the Ricker curve near 0 (Fig. 2a), and the inverse of b  (i.e., Ricker b ) is the maximum level 

of recruitment (Fig. 2b).  A natural logarithm transformation often is applied to Eq. 6 for ease of 

use, which yields bSaSR −+= lnln . 
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Deriso et al. [1996] evaluated a set of Ricker-type models modified from Eq. 6 to develop 

a simple stock-recruitment model for estimating factors affecting survival of 13 index stocks of 

spring/summer chinook salmon in the Columbia River basin.  They modified the basic Ricker 

model by adding various combinations of covariates representing in-river passage mortality of 

salmon traveling to the ocean and individual stream random effects.  Estimates of spawners and 

recruits were generated by Beamesderfer et al. [1998] using run reconstruction methods (Starr 

and Hilborn [1988]).  Numbers of spawners were estimated from redd counts, counts of live fish, 

and carcass counts, whereas numbers of recruits were returning fish measured to the mouth of 

the Columbia River (Beamesderfer et al. [1998], Schaller et al. [1999]).  Most of the influences 

of hatchery fish on these spawner-recruit estimates for each stock were assumed to be removed 

(Beamesderfer et al. [1998]).  

 Based on an AIC selection criterion, the best approximating model chosen by Deriso et 

al. [1996] was the one with no spawner measurement error and stock-specific Ricker a values, 

(7)    ittititiitit mSbaSR ,,,, lnln εδ +−−++=  , 

where itR ,  was the Columbia River observed spawning returns (recruitment) for stock i during 

year t, itS ,  was the observed spawners for stock i during year t, ia  was the Ricker a parameter 

for stock i, ib  was the Ricker b parameter for stock i, tδ  was the year-effect parameter for year t, 

tm  was the in-river passage mortality during year t, and it ,ε  was the multiplicative residual error 

(assumed to be distributed as ( )2,0 εσN ; Deriso et al. [1996]).  In this model, Ricker a contains 

the density-independent sources of mortality for the various salmon life stages (fry through 

adult), whereas the inverse of Ricker b reflects the maximum recruitment of different spawning 
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and rearing areas (Deriso et al. [1996]).  Note that Eq. 7 is the loge-transformed version of Eq. 6 

with additional subscripts for year t and stock i as well as tδ , tm , and it ,ε  terms. 

The year-effect parameter in Eq. 7 accounted for mortality factors affecting all stocks 

such as regional changes in terrestrial climate and large changes in survival rates of chinook 

salmon in the marine environment; ocean conditions were assumed to be constant across stocks.  

Although chinook salmon may spawn at ages 3, 4 or 5 years, Deriso et al. [1996] assumed that 

inter-annual variation in ocean mortality was limited to their first 2 years of life in the ocean (i.e., 

ocean survival after age 4 is assumed constant).   

As defined by Deriso et al. [1996], in-river passage mortality was the sum of two 

components, Xd •  and tµ .  The first component was a combination of the number of dams 

encountered by chinook salmon during downstream migration ( d ), which differed depending on 

year, and the dam passage mortality for each of these dams ( X ).  During recording years 1952-

1969, d  was the actual number of dams encountered between the spawning/rearing area and the 

lowest dam in the system (Bonneville Dam; Fig. 1) inclusive (range 91 −=  dams), whereas 

during 1970-1990 it was the number of dams between John Day Dam and Bonneville Dam (i.e., 

3).  Splitting the time intervals in this way was done because Deriso et al.’s [1996] original 

emphasis was on estimation of passage mortality of the Snake River stocks (Fig. 1) since 1970.   

The second component of in-river passage mortality was the net dam passage mortality, 

tµ , from both the mid-Columbia and Snake River stocks to the John Day Dam during 1970-

1990 (Deriso et al. [1996]).  This net mortality included effects of dam passage across all life 

stages of chinook salmon.  For example, in-river passage mortality through 1969 was based on 

the actual number of dams encountered by chinook salmon from each stock during downstream 

migration (i.e., 91 −  dams), whereas after 1969 it  was based on the number of dams 
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encountered between John Day Dam and Bonneville Dam (i.e., 3) plus the net dam passage 

mortality from the mid-Columbia and Snake River stocks to the John Day Dam.  Note that the 

first component of in-river passage mortality, Xd • , assumed passage mortality was 

proportional to the number of dams encountered during downstream migration (Deriso et al. 

[1996]).  Other models containing passage mortalities differing by year and dam were considered 

in other candidate models by Deriso et al. [1996] but results indicated they were implausible 

relative to the model form of Eq. 7 containing the tXd µ+• )(  representation of in-river passage 

mortality. 

Two factors led us to revisit modeling results of Deriso et al. [1996].  First, spawner-

recruit data from the John Day Middle Fork during 1959-1973 had an unusually large influence 

on parameter estimates, including ia , generated by the model in Eq. 7 (R. Hinrichsen, University 

of Washington, Seattle, WA, pers. commun.).  Therefore, we needed to remove the pre-1974 

data from John Day Middle Fork and refit at least some of the Ricker-type models considered by 

Deriso et al. [1996] to see if Eq. 7 still would be chosen as the best approximating model.  

Second, Beamesderfer et al. [1998] and R. Beamesderfer (Oregon Dept. of Fish and Wildlife, 

Portland, OR, pers. commun.) provided spawner-recruit data for an additional 12 stocks 

(compared to 13 stocks available to Deriso et al. [1996]), which afforded us the opportunity to 

more rigorously evaluate the relative importance of the Ricker-type models.  Consequently, we 

considered a set of 8 candidate Ricker-type models, including Eq. 7, and 7 others that differed 

from Eq. 7 by the Ricker a  term and the in-river passage mortality term (Table 2; R. Deriso, 

Inter-American Tropical Tuna Commission, San Diego, CA, pers. commun.).  We considered 

two separate parameterizations of in-river passage mortality: 1) tXd µ+• )(  described above 

and 2) number of days, on average, required for water to pass from the head of lower Granite 
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Dam reservoir to Bonneville Dam (Fig. 1) during salmon spring migration (water transit time; 

Deriso et al. 1996). 

 2.5.  Landscape-level habitat models.  Landscape-level data for physiographic, 

geophysical, and anthropogenic variables (Table 1) were developed from variables at the 

subwatershed level of spatial scale, which averaged about 7,800 ha within the Columbia River 

basin, obtained from the Interior Columbia Basin Ecosystem Management Project (Lee et al. 

[1997]).  Because spawning/rearing areas typically occurred in more than 1 subwatershed, 

landscape-level variables were a weighted average based on spatial area of relevant 

subwatersheds.  We did not have data on amount of spawning/rearing habitat within each 

subwatershed so we had to assume they shared equal amounts this habitat.   

The 2 variables used to index land management practices (i.e., MNG_FOR and 

MNG_FW; Table 1) were generated from management cluster variables from Lee et al. 

[1997:1130, 1132]) in which they assigned each subwatershed a predominant category from 

results of a cluster analysis of variables representing land-type classification, management 

classification, ownership, percent grazed, and percent wilderness.  We further pooled Lee et al.’s 

[1997] forest management categories into a single category, U.S. Forest Service and private 

forests with moderate to high impact management practices (i.e., logging and grazing; referred to 

as managed forests).  We then  calculated a percentage of each category (i.e., managed forests 

and wilderness areas) contained in a spawning/rearing area as defined by the spatial areas of the 

relevant subwatersheds.  For instance, say the spawning/rearing area for a stock was contained in 

2 subwatersheds, one of which was twice as large as the other, with the larger one categorized as 

managed forest and the other as wilderness.  In this case, the managed forest variable, 

MNG_FOR, would be assigned 67% and the wilderness variable, MNG_FW, would be assigned 
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33%.  Thus, these 2 variables represented a weighted percentage of categorical variables, which 

themselves were based on a predominant category for each subwatershed generated from a 

mixture of land-type classification, management classification, ownership, percent grazed, and 

percent wilderness.  Further, a third variable, not included in our analyses because of its linear 

dependence with MNG_FOR and MNG_FW (i.e., all 3 summed to 1), contained private and 

Bureau of Land Management rangeland and U.S. Forest Service moderate impact (grazed) forest 

and rangeland. 

Because the stock-recruitment model containing common â  values was the only 

plausible model given the data (see section 3), we used the inverse of ib̂  (which is maximum 

recruitment) instead of iâ  as a response variable in the second-stage, landscape-level habitat 

models.  We also attempted to use the coefficient of variation of ib̂  as the response variable in a 

second set of second-stage models to account for the variability in ib̂  among index stocks; 

however, model diagnostics (see below) revealed a poorly fitting model and typical 

transformations would have changed the model form so as to make results biologically 

uninterpretable.  Therefore, we limited our second-stage models to those with point estimates of 

maximum recruitment as the response variable.  

For the second stage of modeling, we constructed a global linear regression model 

containing various physiographic, geophysical, and anthropogenic landscape variables (Table 1) 

that may have had important influences on maximum recruitment of chinook salmon in their 

spawning/rearing areas.  Choice of predictors was guided by results reported in Lee et al. [1997], 

our knowledge of the species and system, and consultations with experts familiar with the study 

area.  We also included a class variable, REGION (Table 1, Fig. 1), as a predictor based on 

preliminary modeling results of the 25 index stocks by I. Parnell (ESSA Technologies, Ltd., 
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Vancouver, BC, pers. commun.) in which iâ was the response variable.  Further, we included a 

covariate containing kilometers of perennial and intermittent streams (ST_LNGTH; Table 1) 

within the spawning/rearing area for each index stock to account for areal differences among 

stocks.  Scaling ib̂  directly (i.e., dividing by ST_LNGTH) yielded a global model with severe 

heteroscedasticity as well as severe non-normality.  

Variance inflation factors, studentized residual plots, and normal probability plots were 

generated by SAS PROC REG (SAS Institute, Inc. [1990]) to check for any serious departures 

from the model assumptions of linear regression.  Predictor variables with variance inflation 

factors of 10 or more (Neter et al. [1985]) were dropped from the models.  If there were no 

serious departures from underlying model assumptions, SAS PROC GENMOD and SAS 

programming code (SAS Institute, Inc. [1996]) were used to fit each habitat model and to 

generate ∆AICc values, Akaike weights, estimated regression coefficients, and estimated 

standard errors.  

We assessed statistical significance of a given predictor variable by whether the 95% 

confidence interval for its regression coefficient contained 0.  When computing the 95% 

confidence intervals, we multiplied the estimated regression coefficients and standard errors of 

continuous variables by a scalar ( c ), which was based on the sample standard deviation of each 

predictor and rounded to the nearest unit (i.e., )ˆE(Ŝˆ
2/1,1 ini tcc ββ α ••±• −− ; modified from 

Hosmer and Lemeshow [1989]).  This made the magnitude of change in average maximum 

recruitment more biologically meaningful and interpretable, i.e., rather than based on a single 

unit change.  For instance, a change of 225 mm in mean annual precipitation is more biologically 

meaningful than a change of 1 mm.  Because the true parameter can occur anywhere within the 

95% confidence interval, given it is within the interval, we used the value at either the lower 
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bound (positive coefficient) or the upper bound (negative coefficient) to judge biological 

importance of statistically significant predictors. 

 3.  Results.  In the first stage of modeling, the stock-recruitment model containing a 

common Ricker a was the only plausible model in our set of candidate models for our data.  This 

was true regardless of inclusion or exclusion of pre-1974 spawner-recruitment data from John 

Day Middle Fork (Table 3).  Therefore, we treated ib̂  from this model as the best estimates (i.e., 

no model-averaging was necessary).  Ricker a estimates were similar between common Ricker a 

models both with ])39.0[74.1]EŜ[ˆ( =a  and without ])39.0[85.1]EŜ[ˆ( =a  pre-1974 John Day 

Middle Fork data.  Further, a scatter plot of ib̂  from both models closely followed a straight-line 

relationship, which indicated estimates were similar in size and ordering.  Thus, we used 

estimates from the common Ricker a model with pre-1974 John Day Middle Fork data included 

for generating the response variable for the second-stage landscape models.  Interestingly, the 

stock-recruitment model containing stock-specific ia  (Eq. 7) was highly implausible in both 

cases.  Also notable was inclusion of a dam effect in lieu of water transit time to estimate in-river 

passage mortality.  Note that inclusion of a dam effect in this model indicated that this effect was 

removed from the ib̂  used as the response variable in the second stage of models. 

In the second stage of modeling, mean elevation exhibited high multicollinearity 

(variance inflation factor 13= ) and hence was dropped from all models.  Residual and normal 

probability plots generated for the global model with mean elevation removed did not reveal any 

serious violations of assumptions underlying the linear regression model; hence, we assumed a 

linear regression model was appropriate for all subsets of the global model (Burnham and 

Anderson [1998]).  
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In the candidate set of landscape attribute models, the one composed of the weighted 

percent of subwatersheds containing a spawning/rearing area that were predominantly 

categorized as either U.S. Forest Service (USFS) and private forests with moderate to high 

impact management practices percent or USFS managed wilderness was the most plausible 

model, given the data (Akaike weight 58.0= ; Table 4).  However, 3 other models had Akaike 

weights that were at least one-eighth of 0.58.  Therefore, we applied model averaging to produce 

a composite model, which displayed a reasonably strong correlation between observed and 

predicted maximum recruitment of spring/summer chinook salmon (Fig. 3).  Note, however, that 

the composite model’s predictive ability was much more variable, and hence less strong, at lower 

observed maximum recruitment of salmon stocks, especially those below 500 fish.  Two of the 9 

stocks with observed maximum recruitment below 500 fish were in the lower Columbia region; 

both of these stocks were predicted to have about a 4 times larger maximum recruitment than 

was observed.  The remaining 7 stocks were from the Snake River region and 5 of these were 

predicted to be about 32.1 −  times larger maximum recruitment than was observed. 

Model-averaged results indicated statistically significant relationships between estimated 

maximum recruitment of spring/summer chinook salmon and mean annual air temperature, 

weighted percent of subwatersheds predominantly categorized as either USFS and privately 

managed forests or USFS managed wilderness lands, and length of streams within the 

spawning/rearing area (Table 6).  However, only mean annual air temperature, weighted percent 

of subwatersheds predominantly categorized as USFS and privately managed forests, and length 

of streams within the spawning/rearing area had lower or upper bounds of a magnitude that could 

be considered biologically important.  We deemed the average change in maximum recruitment 

predicted for weighted percent of USFS managed wilderness lands (i.e., at least 61 fish) to be of 
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marginal importance relative to these other three predictors. 

Both mean annual air temperature and length of streams within the spawning/rearing area 

were positively related to predicted maximum recruitment of spring/summer chinook salmon in 

their spawning/rearing areas (Figs. 4 and 5).  Index stocks in areas with mean annual air 

temperatures less than 3 oC tended to have predicted maximum recruitment of 1000 fish or less, 

whereas those in areas with temperatures above 5 oC tended to have predicted maximum 

recruitment of more than 1000 fish (Fig. 4).  Our composite model predicted that average 

maximum recruitment would increase by at least 179 fish for every increase in 2 oC mean annual 

air temperature, whereas it would increase by at least 278 fish for every increase in 250 km of 

streams within the spawning/rearing area (Table 6).   

Weighted percent of subwatersheds predominantly categorized as USFS and privately 

managed forests was negatively related to predicted maximum recruitment.  Predicted maximum 

recruitment was more variable at low percentages and less variable at higher percentages (Fig. 

6).  Further, there was not a strong regional effect, whereas there was one evident in the plot of 

predictive values for weighted percent of USFS managed wilderness lands (Fig. 7).  Our 

composite model predicted that average maximum recruitment of spring/summer chinook in 

their spawning/rearing areas would decrease by at least 247 fish for every increase in 33% in 

surrounding subwatersheds categorized as predominantly containing USFS and privately 

managed forest.  

4.  Discussion.  In contrast to traditional model selection methods based on null 

hypothesis testing (e.g., backward, forward, and stepwise selection procedures), the information-

theoretic approach employed in this paper has a firm statistical foundation in both likelihood and 

information theory (Burnham and Anderson [1998]).  Moreover, recent advances in model 
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averaging allow incorporation of model selection uncertainty into parameter estimates as well as 

multi-model inference, which is useful when no single model is clearly better than all other 

candidate models.  Our modeling situation presented additional obstacles because of its two-

stage nature, i.e., output from the stock-recruitment models were used as the response variable 

for the landscape attribute models.  Thus, we applied information-theoretic methods separately to 

both sets of models, but were unable to account for the uncertainty in estimates of maximum 

recruitment.  Perhaps a better, but uninvestigated, alternative would have been to compute a 

single set of model selection criteria and Akaike weights based on both stages of models; this 

could be a topic for future research. 

The importance of applying an information-theoretic, model selection approach to a set 

of candidate models was particularly evident in our stock-recruitment model results.  That is, the 

stock-recruitment model containing a common Ricker a was the only plausible model for these 

data.  This is somewhat surprising because of the apparent soundness of the biological rationale 

for using stock-specific Ricker a values, being a measure of fish productivity at low stock sizes, 

to help discern differences in spawning/rearing habitats across stocks of chinook salmon that are 

at their lowest recorded levels.  However, there apparently was not a strong enough signal 

contained in these ia  to warrant inclusion of an additional 24 parameters into the model.  

 Another important result of our analyses was simply that we were able to detect a signal 

in the data, which is noteworthy given its inherent level of noise.  This lends support to the idea 

that, despite the uncertainty involved, analyses of broadscale data can be worthwhile.  It is not 

surprising that kilometers of perennial and intermittent streams in spawning/rearing areas would 

exhibit a strong positive relationship with maximum recruitment.  One would expect that, on 

average, more stream habitat would result in more fish.  More notable is the negative relationship 
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between maximum recruitment of chinook salmon and weighted percent of surrounding 

subwatersheds categorized as predominantly containing USFS and private forests with moderate 

to high impact management practices (i.e., managed forests).  Because these results are based on 

correlative data, our interpretations are necessarily speculative.  Nonetheless, based on findings 

from previous studies, it seems reasonable that logging (and associated road building) and 

grazing practices could increase fine sediment inputs into nearby streams (Platts et al. [1989], 

Myers and Swanson [1995]) and hence increase stream turbidity and reduce extent and quality of 

spawning habitat by filling interstitial spaces in the spawning gravel (Chapman [1988]).  

Increased turbidity will decrease penetration of light and has been linked to decreased primary 

and secondary production as well as decreased fish production (Lloyd et al. [1987]).   

Timber harvest also could reduce maximum recruitment of chinook salmon in their 

spawning/rearing habitats over time by adversely affecting quantity and quality of large woody 

debris (Ralph et al. [1994], Hauer et al. [1999]), which is an important component of salmonid 

stream habitat (Lisle [1986], Cederholm et al. [1997]).  Although clear-cutting a forest stand may 

create an initial pulse of large woody debris into a nearby stream system (Murphy et al. [1986]), 

the lack of large trees for recruitment into the stream as woody debris in the near future would 

reduce the long-term habitat quality and hence maximum recruitment of salmonids (Andrus et al. 

[1988], Murphy and Koski [1989], Connolly and Hall [1999]).         

In contrast to managed forests, mean annual air temperature was positively related to 

maximum recruitment.  Increased temperatures may be associated with increased primary 

production in streams and thereby increased food available to young fish rearing in those areas 

and increased maximum recruitment. 



 22 

 Although we deemed it to be of marginal biological importance, the negative relationship 

between weighted percent of surrounding subwatersheds categorized as predominantly 

containing wilderness and maximum recruitment of chinook salmon may seems counterintuitive 

and therefore deserves comment.  That is, one might expect spawning/rearing streams within 

wilderness areas to be essentially unaffected by human influence and therefore support higher 

numbers of fish than streams within managed forests.  A possible reason why this may not be the 

case is that wilderness areas in the Columbia River basin are typically located at higher 

elevations and contain headwater streams with relatively low productivity.  For instance, 

Scarnecchia and Bergersen [1987] reported an inverse relationship between elevation and stream 

production.  Inspection of the plot of percent wilderness area versus predicted values (Fig. 7) 

reveals an apparent regional effect; higher percentages of wilderness area are associated with 

index stocks in the Snake region.  Subwatersheds containing index stocks within the Snake 

region have a higher mean elevation ( ]EŜ[77m1857 ± ) than those in either the lower Columbia 

( 176m1285 ± ) or mid-Columbia ( 56m1176 ± ) regions.  Lower stream productivity is 

exacerbated further by much reduced inputs of nutrients from low numbers of spawning adults, 

which are considerably lower than previously recorded levels, particularly in the Snake region.  

Salmon carcasses likely played a key role in supporting and maintaining these stream systems 

historically (Bilby et al. [1998], Wipfli et al. [1998], Cederholm et al. [1999]).  In addition, as 

mentioned previously, the correlative nature of the data prohibited us from drawing conclusions 

regarding cause and effect relationships between landscape-level attributes and maximum 

recruitment of chinook salmon.  Such conclusions would have required field experimentation or 

an experimental management approach (Walters [1986]) at a broad scale.  In the case of 

weighted percent of subwatersheds predominantly categorized as wilderness, we cannot be sure 
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if the observed negative relationship is due to this variable or another single or set of variables 

correlated with it (e.g., mean elevation).  Thus, there is potential for confounding that cannot be 

adjusted for due to the nature of the data. 

 The lower predictive ability of our composite model at lower observed maximum 

recruitment values probably indicated that variables other than those included in this model were 

important for predicting lower maximum recruitment of chinook salmon in their 

spawning/rearing areas.  Unfortunately, these are also the stocks of greatest interest because they 

are the ones whose continued persistence is particularly in doubt.   

 When considering our results, one should keep in mind that inferences based on 

landscape-level variables are obviously scale dependent.  That is, inferences are limited to the 

scale of our predictor variables.  Localized physiographic, geophysical, and anthropogenic 

variables that may be affecting maximum recruitment of chinook salmon may not be discernible 

at the landscape scale.  For instance, a negative relationship between the managed forest variable 

and maximum recruitment of chinook salmon should be interpreted relative to index stocks at the 

subwatershed level and across the Columbia River basin rather than applying it on a finer scale, 

such as attempting to apply our results to a particular stream reach.  
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Table 1.  Category, name, and description of landscape-level variables initially included in a set of linear regression 

models attempting to predict maximum recruitment of 25 index stocks of spring/summer chinook salmon in their 

spawning/rearing areas within the Columbia River basin.  The term weighted indicates that the variable was 

weighted by spatial areas of the subwatersheds where the spawning/rearing area of a particular stock occurred, i.e., 

if the spawning/rearing area (ST_LNGTH) stretched over more than one subwatershed.  

 

Category 

 

Variable Name 

 

Description 

Class   

 REGION Variable subdividing the Columbia River basin into three 

sections: lower Columbia (LC), mid-Columbia (MC), and 

Snake (SN).  Each index stock, as denoted by stream name or 

section, was categorized based on these subdivisions (Fig. 1). 

Physiographic and 

Geophysical 

  

 WPPRECIP Weighted mean annual precipitation (mm) (PRISM model; 

Daly et al. [1994]) 

 WMTEMP Weighted mean annual air temperature (oC) 

 WELEV Weighted mean elevation (m) 

 WERO Weighted surface erosion index 

Anthropogenic   

 WGEODENS Weighted geometric mean road density (km/km2) 

 MNG_FOR Weighted percent of subwatersheds containing a 

spawning/rearing area that were predominantly categorized as 

U.S. Forest Service and private forests with moderate to high 

impact management practices (i.e., logging and grazing; see 

text for details)  

 MNG_FW Weighted percent of subwatersheds containing a 
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spawning/rearing area that were predominantly categorized as 

U.S. Forest Service managed wilderness areas (see text for 

details) 

Area   

 ST_LNGTH Kilometers (km) of perennial and intermittent streams within 

the spawning/rearing area of each index stock of 

spring/summer chinook salmon 
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Table 2.  Formula, number and name, and description of Ricker-type models composing the candidate set that were 

fitted with spawner-recruit data from 25 index stocks of spring/summer chinook salmon in the Columbia River 

basin.  Water transit time (WTT) is the number of days, on average, required for water to pass from the head of 

lower Granite Dam reservoir to Bonneville Dam during salmon spring migration (Deriso et al. [1996]; Fig. 1).  

REGION is described in Table 1; all other terms in the equations are defined in the text.  

 

Model Formula 

 

Model Number and Name 

 

Description 

ittititiitit mSbaSR ,,,, lnln εδ +−−++=  (1) Stock-specific Ricker a Same as Eq. 7; in-river 

passage mortality ( tm ) is 

the sum of two terms: 1) 

actual number of dams 

encountered ( d ) times the 

passage mortality for each 

dam ( X ), and 2) net dam 

passage mortality from 

both mid-Columbia and 

Snake River stocks ( tµ ). 

ittitititit mSbSR ,,,0, lnln εδβ +−−++=  (2) Common Ricker a Same as Model (1) except 

Ricker a is assumed to be 

the same across all stocks, 

and is contained in the 

intercept term, 0β . 

ittititiitit mSbaSR ,
*

,,, lnln εδ +−−++=  (3) Stock-specific Ricker a, 

common tµ  

Same as Model (1) except 

the net dam passage 

mortality (
*
tµ ) within the 
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in-river passage mortality 

term ( *
tm ) is assumed to 

be the same for the mid-

Columbia and Snake 

regions. 

ittitititit mSbSR ,
*

,,0, lnln εδβ +−−++=  (4) Common Ricker a,  

common tµ  

Same as Model (3) except 

Ricker a is assumed to be 

the same across stocks and 

is contained in the intercept 

term, 0β . 

it

ititiitit

WTTREGION
SbaSR

,

,,,

*
lnln

ε
δ

+
−−++=

 
(5) Stock-specific Ricker a, 

REGION*WTT 

Same as Model (1) except 

the in-river passage 

mortality term ( tm ) is 

replaced by the interaction 

between REGION and 

water transit time (WTT). 

it

itititit

WTTREGION
SbSR

,

,,0,

*
lnln

ε
δβ

+
−−++=

 
(6) Common Ricker a, 

REGION*WTT 

Same as Model (5) except 

Ricker a is assumed to be 

the same across stocks and 

is contained in the intercept 

term, 0β . 

itititiitit WTTSbaSR ,,,, lnln εδ +−−++=  (7) Stock-specific Ricker a, 

common WTT 

Same as Model (1) except 

the in-river passage 

mortality term ( tm ) is 

replaced by water transit 

time (WTT). 
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ititititit WTTSbSR ,,,0, lnln εδβ +−−++=  (8) Common Ricker a, 

common WTT 

Same as Model (7) except 

Ricker a is assumed to be 

the same across stocks and 

is contained in the intercept 

term, 0β . 
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Table 3.  Model description, AICc values, ∆AICc values, and Akaike weights ( iw ) for two sets of Ricker-type 

models generated with and without spawner-recruitment data of spring/summer chinook salmon from pre-1974 John 

Day Middle Fork.  Akaike weights represent relative plausibility of each model given the data.   

  

With pre-1974 John Day  

Middle Fork Data 

  

Without pre-1974 John Day 

Middle Fork Data  

 

Model  

 

AICc 

 

∆AICc 

 

iw  

  

AICc 

 

∆AICc 

 

iw  

 

Common Ricker a 

 

2011.78 

 

    0 

 

0.96 

  

1970.60 

 

    0 

 

>0.99 

Stock-specific Ricker a, common tµ  2018.13 6.35 0.04  1984.57 13.97 <0.01 

Common Ricker a, common tµ  2028.79 17.01  <0.01  1985.76 15.16 <0.01 

Stock-specific Ricker a 2031.50 19.72  <0.01  1995.81 25.21 <0.01 

Common Ricker a,  REGION*WTT 2201.90 190.12  <0.01  2162.65 192.05 <0.01 

Stock-specific Ricker a,  REGION*WTT 2222.94 211.16  <0.01  2187.12 216.52 <0.01 

Common Ricker a,  common WTT 2252.84 241.06  <0.01  2208.92 238.32 <0.01 

Stock-specific Ricker a, common WTT 2257.81 246.03  <0.01  2213.34 242.74 <0.01 
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Table 4. Predictor variables, AICc values, ∆AICc values, Akaike weights ( iw ), and proportions of largest 

weight for the set of candidate models linking maximum recruitment of spring/summer chinook salmon with 

landscape variables.  Akaike weights represent degree of plausibility of each model given the data.  Predictors 

contained in models whose proportions of the largest Akaike weight were at least 0.125 (1/8) were included in 

the composite model (Table 5). 

 

 

 

Predictor Variables 

 

 

 

AICc 

 

 

 

∆AICc 

 

 

 

iw  

 

Proportion 

of Largest 

wi 

 

MNG_FOR, MNG_FW, ST_LNGTH 

 

390.06 

 

      0 

 

0.58 

 

1.00 

WMTEMP, WGEODENS, ST_LNGTH 392.21 2.15 0.20 0.34 

WPPRECIP, MNG_FOR, MNG_FW, ST_LNGTH 393.75 3.69 0.09 0.16 

WGEODENS, MNG_FOR, MNG_FW, ST_LNGTH 393.75 3.69 0.09 0.16 

WPPRECIP, WMTEMP, WERO, WGEODENS, 

ST_LNGTH 

 

398.28 

 

8.22 

 

0.01 

 

0.02 

WPPRECIP, WERO, MNG_FOR, ST_LNGTH 398.88 8.82 0.01 0.02 

ST_LNGTH 399.13 9.07 0.01 0.02 

WGEODENS, ST_LNGTH 399.72 9.66      <0.01    <0.01 

WPPRECIP, WMTEMP, ST_LNGTH 401.68     11.62      <0.01    <0.01 

WPPRECIP, ST_LNGTH 401.74     11.68      <0.01    <0.01 

WPPRECIP, WERO, WGEODENS, MNG_FOR, 

ST_LNGTH 

 

403.07 

 

    13.01 

 

     <0.01 

 

   <0.01 

WPPRECIP, WERO, ST_LNGTH 404.27     14.21      <0.01    <0.01 

REGION, ST_LNGTH 404.80     14.74      <0.01    <0.01 

REGION, WPPRECIP, WMTEMP, WERO,     
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WGEODENS, MNG_FOR, MNG_FW, ST_LNGTH  

(Global Model) 

 

405.36 

 

    15.30 

 

    <0.01 

 

    <0.01 

WPPRECIP, WERO, WGEODENS, ST_LNGTH 405.38     15.32     <0.01     <0.01 

REGION, WGEODENS, ST_LNGTH 406.51     16.45     <0.01     <0.01 
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Table 5.  Model-averaged results for the composite model linking maximum recruitment of spring/summer 

chinook salmon spawning/rearing areas with various landscape-level variables.  The scalar ( c ) was based on the 

sample standard deviation of the predictor variable (rounded to the nearest unit) and was applied to make the 

magnitude of change in average maximum recruitment more biologically meaningful; the formula for the 95% 

confidence interval was )ˆE(Ŝˆ
975.0,24 i

tcic ββ ••±•  (modified from Hosmer and Lemeshow [1989]).  Scalars 

for MNG_FOR and MNG_FW were set to the same value to facilitate comparison between them. 

     

95% Confidence Interval 

 

Model 

Parameter 

Model-Averaged 

Regression 

Coefficient ( EŜ ) 

 

 

Scalar ( c ) 

Scaled 

Regression 

Coefficient 

 

 

Lower Bound 

 

 

Upper Bound 

 

Intercept 

 

1104.63 (703.27) 

 

- 

 

- 

 

- 

 

- 

WPPRECIP         - 0.15 (0.55) 225         - 33.75     - 290.10 222.60 

WMTEMP        238.32 (71.88)           2 476.64 179.92 773.36 

WGEODENS      - 195.39 (145.05)           1       - 195.39     - 494.78 104.00 

MNG_FOR        - 15.28 (3.77)         33       - 504.24     - 760.95      - 247.53 

MNG_FW        - 10.81 (4.33)         33       - 356.73     - 651.66       -  61.80 

ST_LNGTH            1.92 (0.39)       250 480.00 278.24 681.76 
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Fig. 1.  Location of twenty-five index stocks of spring/summer chinook salmon in the Columbia 

River basin that provided stock-recruitment data used in our analyses.  Stocks are categorized by 

REGION, where the stippled area contains lower Columbia stocks ( EA − ), the cross-hatched 

area contains mid-Columbia stocks ( HF − ), and the gray area contains Snake stocks ( YI − ).  

Main stem dams are shown as triangles, with Bonneville Dam and Lower Granite Dam labeled to 

illustrate water transit time (WTT). 

Fig. 2.  Effects of different Ricker a (slope near 0) and Ricker b (peak of curve) values on the 

Ricker stock-recruitment curve.   Figure 2a illustrates the effect of a constant Ricker b 

( 005.0=b ) and different values of Ricker a (open circle: 1=a ; filled circle: 5.1=a ; and 

triangle: 2=a ) on the Ricker curve.  Figure 2b displays a constant Ricker a ( 5.1=a , which 

translates into 200 spawners) and different values of Ricker b (open circle: 005.0=b ; filled 

circle: 00375.0=b ; and triangle: 0025.0=b ). 

Fig. 3.  Plot of observed versus predicted values of maximum recruitment of 25 index stocks of 

spring/summer chinook in their spawning/rearing areas within the Columbia River basin. 

Fig. 4.  Mean annual air temperature (oC) and predicted values of maximum recruitment of 25 

index stocks of spring/summer chinook in their spawning/rearing areas within the Columbia 

River basin. 

Fig. 5.  Kilometers of perennial and intermittent streams within spawning/rearing areas and 

predicted values of  maximum recruitment of 25 index stocks of spring/summer chinook within 

the Columbia River basin. 

Fig. 6.  Weighted percent of surrounding subwatersheds categorized as predominantly containing 

U.S. Forest Service and private forests with moderate to high impact management practices and 

predicted values of maximum recruitment of 25 index stocks of spring/summer chinook in their 
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spawning/rearing areas within the Columbia River basin.  Letters refer to the lower Columbia 

(L), mid-Columbia (M), and Snake (S) regions. 

Fig. 7.  Weighted percent of surrounding subwatersheds categorized as predominantly containing 

U.S. Forest Service managed wilderness areas and predicted values of maximum recruitment of 

25 index stocks of spring/summer chinook in their spawning/rearing areas within the Columbia 

River basin.  Letters refer to the lower Columbia (L), mid-Columbia (M), and Snake (S) regions. 
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