US Forest Service Research & Development
Contact Information
  • US Forest Service Research & Development
  • 1400 Independence Ave., SW
  • Washington, D.C. 20250-0003
  • 800-832-1355
You are here: Home / People / Profile


Umesh Agarwal

Umesh P. Agarwal

Research Chemist
One Gifford Pinchot Drive
United States

Phone: 608-231-9441
Contact Umesh P. Agarwal

Current Research

Current research interests are extended in a number of areas. The focus is on both applied and fundamental investigations. Understanding the roles of lignin and cellulose-crystallinity in the enzyme hydrolysis of wood is an area that will have impact on the biofuel economy. Advances in wood cell wall nanostructure will permit better understanding of the complex ultrastructural interactions incorporating cellulose nanofibril, hemicellulose and lignin. Past and ongoing Raman spectroscopy research at FPL has made it possible to obtain useful information when cellulose and lignin based materials are analyzed. Such analysis can now be carried out both at macro- and micro-levels. For determining the crystallinities of nano-celluloses and other cellulose containing materials, including wood, development of new methods based on Raman spectroscopy is an active area of research. For lignin analysis, a new method based on use of silver metal particles was recently developed that lets trace amounts of lignin to be detected. Development and utilization of Raman spectroscopy for characterization of cellulose nanomaterials and their composites is an area of interest. Lastly, the objective of the Raman database project is to generate information from the lignin models that will help decipher lignin spectrum in a material.

Research Interests

  • Understanding roles of lignin and cellulose-crystallinity in enzyme hydrolysis of wood
  • Wood cell wall nanostructure
  • Advancing Raman spectroscopy for characterzation of nanocelluloses, nanocellulose composites, and woody tissue
  • Methods for estimating crystallinity of cellulose containing materials
  • Using nano- and micro-particles of silver and other metals in lignin analysis
  • Raman database of lignin model compounds and spectral interpretation

Why This Research is Important

Understanding roles of lignin and cellulose-crystallinity in enzyme hydrolysis of wood: For the conversion of wood to ethanol, the enzymatic hydrolysis of cellulose via glucose and fermentation is one of the most practical approaches and therefore, is an important area of research. Cellulose and lignin are essential components of wood but due to the inaccessibility of cellulose to enzymes within the complex cell wall matrix cellulose is not easily hydrolyzed. In addition to accessibility to cellulose its crystallinity remains an issue. Therefore, effects of cellulose crystallinity and lignin removal are two factors important that need to be the focus of investigation.Wood cell wall nanostructure: The problem of composition and architecture of wood cell wall is an important research topic and efforts over the years have revealed that the ultrastructure is complex and remains inadequately understood. The research objectives of the project “understanding the nanostructure of the wood cell wall” consist of (1) characterizing, non-invasively, plant cell wall in a number of tissue types, at the molecular level using Raman mapping and (2) understanding distribution and organization of lignin and cellulose in various morphological regions of woody tissues. The findings are expected to have important implications for several areas of research. A few examples of where such information may be of significance are, “structure-property relationships of cell-wall and wood-fiber”, “lignin biosynthesis and topochemistry”, and “deconstruction of plant cell walls” (where the recalcitrance of plant biomass to degradation is a function of how polymers crosslink and aggregate within walls). Advancing Raman spectroscopy for characterizing, nanocelluloses, nanocellulose-polymer composites, and woody tissue: Cellulose nanocrystals (CNCs) and cellulose nanofibers (CNFs) are important new materials in field of cellulose science and technology. These materials have generated remarkable excitement in the scientific community. The materials have unique physicochemical properties and have been used as reinforcing components in nanocomposites. Additional benefits arise from the fact that they are derived from the biomass that is both renewable and sustainable. Methods for accurately estimating crystallinity of nanocelluloses and cellulose containing materials: Crystallinity has an important effect on the physical, mechanical, and chemical properties of cellulose based materials. Raman spectroscopy has become an important analytical technique for nondestructive, qualitative, and quantitative analysis of cellulose-containing materials. Recent research performed in the scientist's group has shown it is possible to develop Raman spectroscopy based methods to accurately estimate crystallinity of plant based biomaterials. However, further research is needed to fully develop this approach and address a number of remaining issues. Using nano- and micro-particles of silver and other metals in lignin analysis: Because of the heterogeneous nature of lignin structure, the structures of lignins have proven to be difficult to study even in their native states. Lack of detailed information on lignin structures has hindered progress in a number of science and technology fields. Although a number of Raman techniques have been used to study lignin, the focus under this project is to develop Surface-enhanced Raman scattering (SERS) for this purpose. Raman database of lignin model compounds and spectral interpretation: The objective is to develop a Raman database of lignin model compounds which will be ideal for interpretation and classification of spectra of lignins and/or lignocellulosics. Such information is deemed essential for analyzing the spectra of woods and other lignin containing materials.

Featured Publications & Products


Last updated on : 11/23/2015