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ABSTRACT OF DISSERTATION 

NORTHERN GOSHAWK HABITAT 

ON THE KAIBAB NATIONAL FOREST IN ARIZONA: 

FACTORS AFFECTING NEST LOCATIONS AND TERRITORY QUALITY 

The northern goshawk has been at the center of controversy over its habitat 

management in the southwestern United States for the past decade. Fire suppression, 

grazing, and especially logging in coniferous forests are thought to be responsible for 

altering the composition and structure of forest habitat used by goshawks and their prey, 

thereby resulting in population declines. Conservation efforts for goshawks have focused 

on restoring forest structure to pre-settlement conditions using a combination of 

mechanical (logging) and natural (fire) methods. 

Many studies of goshawk habitat requirements have focused on the hawks’ 

habitat use, food habits, movements, distribution, demographics, and diets; however, no 

studies have attempted to use spatially explicit models to describe the spatial dynamics 

between goshawks and their environment, which is of critical importance to their 

survival. In this study, I develop a dynamic spatial simulation model to assess the spatial 

relationships between goshawk habitat cornposition and structure and the location of 

active nests (Le., in which eggs were laid), and I examine the relationships between the 

amount and arrangement of habitat elements surrounding nests in high quality territories. 

Prior to assessing these relationships, I developed models of vegetation composition and 
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structure for the study area and assess the models’ performance. The location of 

goshawk nests and assessments of territory quality estimated from reproductive 

performance are based on a population of banded goshawks on 101 territories studied 

from 1991 through 2000 on the Kaibab National Forest (North Kaibab Ranger District) in 

northern Arizona. 

Suzanne Merideth Joy 
Graduate Degree Program in Ecology 
Colorado State University 
Fort Collins, CO 80523 
Fall 2002 
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INTRODUCTION TO DISSERTATION 

WILDLIFE-HABITAT RELATIONSHIPS 

Integral to any study of wildlife species are the relationships that exist between the 

species and its habitat. This relationship provides insights into the distribution and 

abundance of individuals, and can be used to predict species occurrence and responses to 

habitat changes on the landscape. On a broader level, the understanding of wildlife-habitat 

relationships and the functional role a species plays in its environment provide a knowledge 

platform for maintaining biologically diverse and viable ecosystems. This understanding is 

also essential to managing landscapes for population persistence. Most wildlife species 

occupy a range of habitats that differ in the resources necessary to reproduce and survive. 

Typically, animals settle into high quality habitats first and, as these fill, settle into 

progressively lower quality habitats. Whereas high quality habitats confer sufficient survival 

and reproduction for population persistence or growth, low quality habitats may not. In the 

latter, populations may not produce sufficient young to balance mortality. Measures of 

habitat quality should therefore be based on the vital rates (reproduction and/or survival) of 

individuals in the population expressed over their lifetimes. In this dissertation, I used spatial 

modeling techniques, to characterize a species’ environment and .explore the relationships 

between the species and its habitat in order to answer fundamental questions about factors 

affecting the species’ distribution, abundance, population performance. These issues, and 

their management implications, are outlined in the following chapters of the dissertation. 
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The northern goshawk (Accipiter gentiZis atricupillus; hereafter referred to as 

goshawk) is a forest-dwelling hawk that occurs throughout North America, Asia, and Europe 

(Johnsgard 1990, Squires and Reynolds 1997). In North America, it  breeds in boreal and 

temperate forests, using a variety of forest types and structures for nesting and foraging. 

Goshawks prey on small to medium-sized birds and mammals, such as song birds 

woodpeckers, jays, game birds, chipmunks, squirrels, and rabbits. Its long tail, short rounded 

wings, and short perchhhort flight foraging tactics are morphological and behavioral 

adaptations for living in vegetation-filled environments. 

During the past decade, the goshawk has become the focus of research in forests of 

North America due to apparent conflicts between population performance and forest 

management practices (Reynolds 1983, 1989, Crocker-Bedford 1990, Reynolds et al. 1992, 

Kennedy 1997, Peck 2000). Habitat loss due to changes in forest structure and composition 

,(Reynolds 1983, 1989, Speiser and Basakowsh 1984, Crocker-Bedford 1990, Reynolds et al. 

1992) are thought cause population declines. As a result, goshawks are considered a 

“sensitive” species by most National Forests, “special status species” by most National Parks, 

and “Category 11” species by the Fish and Wildlife Service (FWS). Since 1992, the FWS has 

been petitioned three times to list the goshawk as “threatened.” 

Because goshawks occupy a variety of forest types that differ in the types and 

availabilities of resources, one would expect differential vital rates among pairs occupying 

the range of habitat conditions. This association has particular import for goshawks because 

they display high site fidelity (Reynolds et al., in review); once they choose a breeding 

location, they rarely change sites. This behavioral attribute has large ecological and 
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management implications because individual pairs may not respond to habitat alterations by 

moving to new breeding sites. Population persistence should be evaluated on the 

demographic performance of individual pairs, rather than on presence alone. 

MANAGEMENT ON THE KAIBAB NATIONAL FOREST 

The study area is the Kaibab National Forest’s (KNF) North Kaibab Ranger District 

(NKRD) on the Kaibab Plateau in Arizona. The forest on the study area is composed of 

ponderosa pine, mixed conifer, spruce, fir, and aspen trees, all of which are used by the 

goshawk and its prey. Single-tree selection cutting began on the NKRD in the 1920s. This 

cutting practice continued, along with small (0.1 km2) clearcuts in the central part of the 

Kaibab Plateau, mtil the late-1 970s when intensive stand-level management began. 

Shelterwood, seed, salvage, removal, and thinning cuts persisted until 1991 when the NKRD 

implemented forest treatments designed to restore the habitat of goshawks and their prey 

(Reynolds et .al* 1992). Livestock grazing was common on the NKRD between the late 

1 800s and the mid-1 920s. Reduction in the frequency of natural ground fires since the early 

1900s through road building, grazing, and fire suppression has affected the composition and 

structure of all forests on the NKRD by allowing the regeneration of pine and shade-tolerant 

tree species; therefore, much of the forest on the NKRD has been altered. 

Some management-related changes in the forest appear to have affected the 

distribution and abundance of goshawks by decreasing the amount of available habitat or by 

altering the composition and abundance of prey resources. For example, the Kaibab squirrel 

(Sciurus aberti kaibabensis), a primary goshawk prey species, depends on ponderosa pine for 

food (cambium, apical buds, cones) and nest sites (Hall 1981). Lack of sufficient ponderosa 
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pine regeneration in mixed-conifer forests resulted in a gradual decline of this tree, loss of the 

squirrel in these forests, and a reduction of the carrying capacity for goshawks. 

The management guidelines (Management Recommendations for the Northern 

Goshawk in the Southwestern United States, Reynolds et al. 1992) by which forests on the 

NKRD are currently governed describe desired forest conditions within three spatially 

explicit areas of the goshawk’s nesting home range (24.3 km2): the nest (0.12 h2), post- 

fledging family (1.70 km2), and foraging (2 1.9 km2) areas. These areas encompass the 

movements and behavior of goshawks associated with nesting, pre-independence of 

fledglings, and foraging, respectively. The guidelines advocate thinning and prescribed fire 

to achieve landscape-scale changes in the vegetation that simulate natural ecological 

processes that support the goshawk and its prey. 

OVERVIEW OF DISSERTATION 

The overall objective of my dissertation was to assess the relationship between the 

abundance, distribution and demographic performance of goshawks, and the range of habitat 

conditions supporting the population (Fig. 1.1). I accomplish this by first developing fine- 

scale (1 0-m xl O-m spatial resolution) habitat models for the study area. The spatial 

arrangeinent of vegetative components (forest species composition and structure) that 

characterize the goshawk’s habitat and the distribution of nests on the study area are 

described using a Gibbsian pairwise potential model. The vegetation is then linked to the 

spatial arrangement of paired individuals using a dynamic spatial simulation model to assess 

the influence of habitat and territoriality on goshawk distribution. Finally, I evaluate the 

habitat correlates of territory quality. The goshawk population of interest occurs in northern 
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Figure I. 1. Overview of the process leading to the dynamic spatial simulation used to predict the location of active northern goshaw' 

nests and the assessment of territory quality. 
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Anzona on 1,2S1 km2 of the NKRD above 2,182 m in elevation. This population is 

considered relatively closed, with little emigration or immigration of adult, banded 

goshawks (Reynolds et a]., in review). 

Characterizing goshawk habitat (Chapters 1 I 2) required developing habitat 

models for the study area at a spatial resolution meaningful to the grain of interest, i.e., 

that of nest sitedareas. Chapters 1 and 2 are devoted to modeling forest species 

composition and structure, respectively, to a 10-m spatial resolution, reflecting nearly a 

century of management history on the NKRD. In Chapter 1, I used decision trees to 

model the vegetative types. The models are based on field data, remotely sensed 

imagery, and measures of topography, In Chapter 2, I used a combination of trend 

surface models, regression trees, and logistic regression to model forest structure from 

field data, remotely sensed imagery, measures of topography, and the map of vegetation 

types developed in Chapter 1. Both modeling procedures (composition, structure) used 

fine-grain field data to improve the resolution of the remotely sensed data on which the 

classifications are based, a novel and cost-saving approach for classifying large study 

areas. All models are also evaluated extensively for their performance. The accuracy 

each model of vegetative type was assessed using independent aerial photo interpretation 

and a post-stratified, multivariate composite estimator. Models of forest structure were 

validated using a stratified 1 1 -fold cross-validation method. 

In Chapter 3, I simulate the spatial interaction of goshawks with conspecifics and 

their forest environment using a Gibbsian pairwise potential model (Ogata and Tanemura 

1989). The model describes the spatial dependency (1) among goshawk nest locations on 

the study area and (2) between nest locations and forest cornpositiodstructure within 10- 
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m x 10-m areas containing nests. Although spatial modeling techniques have been used 

to investigate wildlife-habitat relationships, no studies have examined multi-way, 

dynamic relationships that occur among individuals in a population, and between the 

individuals and their environment. Nonetheless, models based on multi-way, dynamic 

relationships are integral to understanding how populations respond to changes in habitat, 

such as those resulting from forest management. The dynamic modeling effort presented 

here, referred to as a dynamic spatial simulation, is unique in its approach in that it uses 

both the hawk's temtorial behavior and habitat conditions interactively to simulate the 

spatial distribution of nests and to investigate whether the availability of nest habitat 

limits, or otherwise affects the distribution and abundance of, goshawks. Using logistic 

regression, I then model the probability of an occurrence of an active nest within a 10-rn 

x 10-m area. By correlating the location of known nests with environmental variables 

that account for the large-grain variability in the landscape, I identified habitat that is 

more likely to contain active nests. 

In Chapter 4, I address an important ecological question about goshawk 

' population performance; namely, whether habitat differences occur among goshawk 

territories with high and low reproductive performance and random sites. Habitat 

correlates are measured as the proportion of vegetation types (results of Chapter 1) and 

diversity around active nests within territories. Logistic regression models are then 

developed to predict the probability that a site contains a goshawk territory and that the 

territory will have high reproductive potential. To date, no goshawk studies have been 

conducted at sufficiently large temporal (8-1 0 years) or spatial (landscapes encompassing 

>50 territories) scales to infer goshawk territory quality from demographic performance. 
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This study represents 10 years of goshawk population monitoring, including 101 

territories, on a relatively isolated landform, the Kaibab Plateau. 

Each of the following chapters in my dissertation was written as a manuscript for 

peer-reviewed Journals. Chapter 1 has been accepted by the International Journal of 

Remote Sensing. Chapter 2 is in review with Forest Science. Chapter 3 is in review with 

Ecological Modeling. I am currently revising Chapter 4 for publication in an 

ornithological or wildlife journal. Chapters 1-3 reflect the inclusion of co-authors (Robin 

M. Reich, Richard T. Reynolds). 
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CHAPTER ONE 

A NON-PARAMETRIC, SUPERVISED CLASSIFICATION 

OF VEGETATIVE TYPES ON THE KAIBAB NATIONAL FOREST 

USING DECISION TREES 

ABSTRACT 

Traditional land classification techniques that use remotely sensed imagery are 

typically limited to the fixed spatial resolution of the sensors (e.g., 30 m for Landsat 

Thematic Mapper (TM) imagery). However, the study of some ecological processes 

requires land cover classifications at finer spatial resolutions. In this paper, we model 

forest vegetation types on the Kaibab National Forest (KNF) in northern Arizona to a 10- 

m spatial resolution with field data, using topographical information (elevation, slope, 

aspect, landform) and Landsat 5 TM imagery as auxiliary variables. Vegetation types 

were identified by clustering the field variables total basal area and proportion of basal 

area by species, and then using a decision tree based on the auxiliary variables to predict 

the vegetation types. Use of additional variables (canopy closure, height of the 

herbaceous and s h b  understory vegetation, presence of small, young trees in the 

understory, and proportion of ground covered by vegetation) did not improve the model. 

Vegetation types modeled included pinyon-juniper, ponderosa pine, mixed conifer, 

spruce- and deciduous-dominated mixes, and openings. Results of the decision tree had a 

resubstitution accuracy of 87%. To independently assess the accuracy of the final 

vegetation maps, we used a post-stratified, multivariate composite estimator. Overall 
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accuracy was 74.5% with a Kappa statistic of 49.9%. Sources of error included 

differentiating between mixed conifer and spruce-dominated forest types and between 

openings in the forest and deciduous-dominated mixes. Inclusion of a larger sample of 

field plots in our study design might have mitigated these classification dilemmas. 

Overall, our non-parametric classification method successfully identified dominant 

vegetation types on the study area at a finer spatial resolution than can typically be 

achieved using traditional classification techniques. 

INTRODUCTION 

Habitat changes due to forest management (e.g., tree harvests, fire suppression) 

are thought to be responsible for declining populations of northern goshawks (Accipiter 

gentilis atricapillus; hereafter referred to as goshawk) in the North America (Reynolds 

1983,1989, Speiser and Basakowski 1 984, Crocker-Bedford 1990, Reynolds et al. 1992). 

An accurate description of habitat is, therefore, paramount to'understanding the 

relationship between goshawk demographic performance and its changing habitat. 

Modeling habitat characteristics is often difficult when a study area is large and diverse 

and complete sampling of environmental variables is unrealistic. Remote sensing 

technology, however, may be used as an indirect means of obtaining information on the 

biophysical characteristics of large areas, 

Traditional land classification techniques incorporate information derived from 

remotely sensed data, such as satellites (e.g., Landsat TM sensors), to develop models of 

land cover and are limited to the fixed spatial resolution of those data (e.g., 30 m). In 

addition, land cover classifications are frequently driven by (supervised classification) or 

' 1 1  



defined by (unsupenised classification) the interpretation of photography or by incidental 

knowledge of the study area. The former requires a high level of skill to reduce 

interpretation error, while the latter may not provide cornprehensive coverage of the 

study area. Ground sampling at select points, assumed to be error free, is often used as 

auxiliary information to validate the classification, increase the precision of the 

classification parameters, and/or compute a classification error rate. Disadvantages of 

traditional classification techniques are the expertise required to carry out and interpret 

the initial classification and the inability to interpolate the classified data to a scale finer 

than the spatial resolution of the pixel associated with the imagery. 

Herein, we describe a method for modeling the composition of goshawk habitat 

on the Kaibab National Forest (KNF‘) in northern Arizona using non-traditional 

classification techniques. Vegetative classes are first derived from a cluster analysis of 

the field data. Decision trees are then used to model the vegetation throughout the study 

area using independent variables such as Landsat TM bands, slope, aspect, elevation, and 

landform. Advantages of using a decision tree over traditional remote sensing 

classification techniques (Fried1 and Brodley 1997, De’ Ath and Fabricius 2000) include 

the non-parametric nature of the test, the test’s invariance to transformations of the 

independent variables, ease of interpretation, and the robustness of results. Unlike many 

supervised and unsupervised parametric classification algorithms, decision trees can be 

used to describe non-linear interactions. Individual splits in a decision tree may also be 

checked for physical justification. In comparative analyses with equivalent linear models 

(analysis of variance, linear regression) (De’Ath and Fabricius 2000) and maximum 

likelihood estimators (Hansen et al. 1996, Friedl and Brodley 1997), decision trees 
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outperformed both classificatlon techniques. The major disadvantage associated with 

decision trees, and one that may hinder their widespread application for developing 

vegetation maps, is the need for large sample sizes (200 or more sample plots; S.M. Joy, 

pers. obs.) when dealing with complex data sets (ie., those with non-linear or high-order 

interactions). Despite this limitation, decision trees have been used effectively to classify 

remotely sensed imagery (Michaelson et al. 1994, Fried1 and Brodley 1997), validate 

cluster-driven classification algorithms (Iiiiguez ZOOO), and explore and interpret 

ecological data (Baker 1993, De’Ath and Fabricius 2000). 

In our study, we used more than one source of data to assess the accuracy of the 

estimated vegetation map, Field data, considered ‘error-free’, were used with photo- 

interpreted data to independently assess model accuracy. However, combining data from 

several such ‘sources’ increased the complexity of the accuracy assessment as different 

sampling protocols were used. Consequently, we used a composite estimator (Green imd 

Strawdeman 1990) that combines information from our various sampling sources’to 

estimate accuracy. We discuss the application of ow multivariate composite estimator to 

assess the accuracy. of the classification procedure used to identify the major vegetation 

types on OUT study area. 

STUDY -A 

The Kaibab Plateau, in northern Arizona, is an oval-shaped (95 km x 55 km), 

limestone plateau that rises from a shrub-steppe plain at 1750 m above mean sea level 

(ad) to its highest point at 2800 m. Surface weathering has produced gentle drainages 

and moderately sloping valleys on the landform. The Plateau is bounded by escarpments 
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of the Grand Canyon of the Colorado River on its south side, by steep slopes on the east, 

and gentle slopes on the north and west sides that descend to the shrub-steppe plain. The 

study area, which occupies the northern two-thirds of the Plateau, includes all of the 

Kaibab National Forest (KNF), above 21 82 m as1 (Fig. 1. I), or about 128,500 ha 

[estimated from digital elevation models (DEM) using ARC/TNFO@ (ESRI, 1995)J. The 

KNF is managed by the North Kaibab Ranger District (NKRD; Fredonia, Az). 

Pinyon (Pinus edulis)-juniper (Juniperus spp.) woodlands occur at elevations 

below 2075 m asl, Ponderosa pine (P, ponderosa) forests occur between 2075 and 2450 

m asl, mixed conifer (P. ponderosa, Pseudotsuga mensiesii, Abies concolor, and Picea 

pungens) forests between 2450 and 2650 m asl, and spruce (Picea engeZmannii)-fir (A. 

Zasiocarpa) forests between 2650 and 2800 m as1 (Rasrnussen, 1941, White and Vankat, 

1993). At transition zones of forest types, associated tree species typically intermix 

because of differences in slope and aspect. A series of narrow meadows containing 

grasses and herbaceous vegetation occur on the Plateau. 

Each forest type has been altered by some form of management: livestock 

grazing, fire suppression, thinning, shelterwood, seed-tree and sanitation cuts, and 

clearcuts. Prior to the introduction of livestock grazing (late-1 800s), fire suppression 

(beginning in the early 1900s), and intensive logging (beginning in the 1980s), many 

trees were in mature size classes, and occurred singly or in groups (Rasmussen 1941). 

Forest understories were dominated by grasses (Poa, Sitanion, and Muhlengergia spp.) 

and typically free from smaller trees (Rasmussen 1941 , Merkle 1962). Currently much of 

the ponderosa pine type understory is dense with pine reproduction and, at higher 

elevations, with white frr reproduction. 
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Figure 1.1. 1997 Landsat TM image (bands 4, 3, and 2) ofthe Kaibab National Forest 

(North Kaibab Ranger District), Arizona. above 21 82 m In elevation. Points indicate 

spectr-allyderived (syuar-c), random (circle), a i d  northcrn goshawk ncst (triangles) plots. 



METHODS 

Data Collection 

Field Data 

Field sampling occurred between July and September 1997. A total of 272 field 

plots (Fig. 1 .I 1 obtained fiom three sources were used to develop a vegetation map of the 

study area: 

Spectrallv-derived plots - To capture the spectral variability on the study area, we 

used an unsupervised classification procedure [(CLASSIFICATION; IMAGINE’ version 

8.3, ERDAS 1997) (ISODATA algorithm, Tou and Gonzalez 1974)] on a 1994 Landsat 

TM scene of the study area (16 July, centered on Path 37and Rows 34 and 35) to identifi 

50 spectral classes. The ISODATA algorithm computes the minimum distance between 

spectral signatures to identify clusters of pixels with similar spectral characteristics. Use 

of additional spectral classes might have captured more of the spectral variability in the 

image; however, we believed that 50 classes sampled a reasonable spectral range and that 

the remaining plot sources (below) would capture any residual spectral variability. To 

sample the corresponding vegetative characteristics in the field, we generated 100 

random coordinates, two per spectral class (EVALUATE CLASSIFICATION; 

IMAGINE@, ERDAS 1997). Each coordinate represented.the center of a 3 x 3 pixel (90- 

m x90-m) ‘window’ of like spectral class. Due to steep terrain, we sampled 98 of the 100 

plots. 
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Goshawk nest plots - Goshawks typically lay eggs in two or more ‘alternate’ nests 

withm their territories among bI-eedjng years (Reynolds et al. 1994). To estimate the 

range of vegetative characteristics at goshawk nest areas, a sample plot, centered on the 

nest tree, was established at one randomly chosen alternate nest in 95 goshawk territories 

that had been identified on the KNF between 1991 and 1997. Due to data collection 

errors during field sampling, 92 of the 95 nest tree plots were used in analyses. 

Randomlv located plots - One hundred sample plots were located randomly to 

capture the remaining vegetative and topographic variability on the study area. The 

sample plots were established irrespective of temtones and nests. Due to steep terrain or 

the remoteness of plots and time constraints, 85 of the 100 sample plots were measured, 

The majority (1 3 of 15) of plots not measured were at the edge of the study area where 

access was dificult due to steep slopes or cliffs. 

Each plot was oriented in a north-southleast-west direction and divided into a 

cluster of nine 10-m x 10-m subplots corresponded to a 30-m x 30-rn pixel on a Landsat 

TM image. In developing this vegetation map, we used only data from the central 10-m x 

10-m subplot on each plot (Fig. 1.2). The remaining eight subplots were sampled to 

model forest structure (canopy closure, total basal area, proportion of pine, spruce-fir, and 

aspen basal area, maximum height of the understory vegetation, and presence or absence 

of small trees in the understory) on the study area (see Chapter 2). 

Coordinates for the spectrally-derived and nest plots were assigned to the center 

of the plot because of the geographic specificity of the unit (Landsat TM pixel or nest 

tree) on which the plots were based. Coordinates for random plots were systematically 

assigned to the lower left-hand corner of each plot. A Trimble Navigation PathfinderTM 

17 



UI OE 



Asset Surveyor Global Positioning System (GPS) with an estimated accuracy of 

1-3 rn was used to ascertain actual plot locations and account for orienteering errors. 

hlleasurements taken on plots included canopy closure [estimated with,a concave, 

spherical densiorneter ( L e m o n  1956, 1957)], overstory species, total basal area by 

species [estimated with a 4.6 (metric) factor prism], height of the understory vegetation, 

% ground cover, and presence of seedling and sapling trees. 

Digital maps were generated to assist with the orienteering of sample plots on the 

ground. Each digital map was composed of a digital elevation model (DEM) (USGS, 

1 :24000,30-m spatial resolution) overlaid with digital line graphs of NKRD roads (R. 

Crawford, pers. comm.) and the sample plots. 

Landsat TM and GIs Data 

We obtained a cloud-fiee, 22 June 1997 TM image (Path 37, Row 35) of the study 

area that corresponded with the timing of field data collection. Band layers 1-5 and 7 

were exported as ARC/I"FO@' (ESRI 1995) grid coverages and resampled (RESAMPLE, 

nearest neighbor, GRID Module) to 10 my corresponding to the spatial resolution of the 

field data. The value of each pixel was averaged by passing a 3 x 3 moving window 

(FOCALMEAN, GRID Module) over the resampled grids. Thus, averaging occurred 

every 10 m to smooth the spectral transition between features. This resulted in a grid 

with a piecewise, continuous surface where every 10-m x 10-m pixel represented the 

average of the surrounding 3 0-m x 3 0-m pixels, including the central 10-m pixel of each 

original Landsat TM pixel whose value did not change. This was done to reduce 

potential registration errors and to reflect changes in forest structure and vegetative 

classes among the nine1 0-m x 10-m subplots measured on the ground. Resampling was 
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also important because not all of the forcstcd plots fell within spectrally distinct areas; 

some plots were in transition zones between spectral classes. Average DN (digital 

nu~nber) values associated with the 272 sample plots were extracted from each of the six 

Landsat TM gnds using a customized Arcview@ (ESRI 1998) application. 

Elevation, slope, aspect, and landform (McNab 1989) were also determined for 

each sample plot from DEMs. Landform (McNab 1989) is an index that expresses 

surface shape as a measure of surface concavity or convexity (computed as the mean 

slope gradient from the original cell to adjacent cells in 4 directions) creating a 

continuous variable. Prior to extracting the cell values, each grid was resampled to 10 m 

as described above. 

Photographic Data 

True color aerial photography (1 : 12,000, 1991, NKRD), infrared National High 

Altitude Photography ("AP) (1 :58,000, 1980, USGS), Digital Orthophoto Quadrangles 

(DOQs) (1 :24,000, 1992, USDA Forest Service Geometric Service Center, USGS), and 

photographs taken during field sampling were used in the assessment of classification 

accuracy. Information on forest management activities [Resource Information System 

(RIS) data] aided in identifying management treatments that occurred subsequent to the 

acquisition of the photography and was provided by the NKRD (?L Fuelling, D. 

Steffensen, pen. corn.) .  

Image Classification. 

A hierarchcal clustering algorithm (HCLUST; S-PLUS@, Statistical Sciences 

1999, based on group averaging, was used to group the field data into clusters with 

similar vegetative characteristics (ie., species composition, basal area, canopy closure, 



understory vegetation, etc.). The algorithm produces a two-dimensional dendrogam 

representing the fusion of clusters at each successive stage of the analysis. At each stage, 

the two ‘nearest’ clusters are combined to form one bigger cluster (initially each cluster 

contains a single sample plot). This process continues until only one group containing all 

of the observations remains. Empirical studies have shown that when there are an 

unequal number of observations per cluster, group averaging is more successful at 

identifymg clusters than other hierarchical clustering methods (Everitt 1993). Group 

averaging also has superior performance when the data contain evidence of a distinct 

cluster structure (Everitt 1993). 

The resulting field data clusters were assigned to modified Anderson Level It 

(‘opening’ class only) or 111 (all other forest types) (Anderson et al. 1976) land cover 

classes (Table 1.1). Anderson Levels I1 and 111 were assumed to be sufficient for 

modeling dominant goshawk habitat. S-PLUS@ (TREE; Statistical Sciences 1995) was 

used to generate a stepwise decision tree (Breiman et al. 1984, Friedl and Brodley 1997, 

De’Ath and Fabricius 2000) that identified independent variables (Landsat TM bands, 

elevation, slope, aspect, or landform) that were important in discriminating among 

vegetation types. The decision tree uses a binary partitioning algorithm that maximizes 

the dissimilarities among groups to compare all possible splits among the independent 

variables and splits within each independent variable to partition the data into new 

subsets. Once the algorithm partitions the data into new subsets, new relationships are 

developed to split the new subsets. The algorithm recursively splits the data in each 

subset until either the subset is homogeneous or the subset contains too few observations 

(< 5 )  to be split further. To prevent over fitting the data, a pruning algorithm (Friedl and 
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Table 1.1. Modified land cover classification system (Anderson et al., 1976) for 

vegetation types on the Kaibab National Forest (North Kaibab Ranger District), Arizona. 

Characteristics at higher levels are nested within the lower level. 

Land Cover 

Level I k v e l  11 Level 111 

Forest Coniferous Ponderosa pine 

Mixed Conifer 

Deciduous 

Mixed 

Deciduousdominated mix 

Pinyon-Juni per 

Spruce-dominated Mix 

Non-Forested Opening 
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Brodley 1997) was used to eliminate subsets that were fit to noise in the data. Decision 

tree criteria were used as ‘training’ statistics to classifying the 1997 Landsat image. The 

classification was achieved using Arc Macro Language [AML (CON; ARCmJFO@, ESRl 

1995)] to produce the final vegetation map. 

A ccuracy Assessment 

A sample-based assessment of accuracy (i.e., that based on the same data used to 

generate the classification) for the decision trees was calculated by weighting the 

classification m o r  associated with a given vegetation type proportional to its area, a 

process referred to as post-stratification (Cochran 1977:134-135). To assess a model’s 

classification accuracy independently, field data alone may be used if the data were not 

involved in the classification procedure or came from a sufficiently large sample. 

However, if the sample of field data is small or the data were used in developing the 

classification procedure (such as here), independent auxiliary information is needed in 

conjunction with the field data to estimate accuracy. When data fiom different sources 

are combined in this manner, the complexity of the accuracy assessment increases due to 

different sampling protocols, A composite estimator (Green and Stawderman 1990) may 

be used to combine the data from the different sources and improve estimates of model 

accuracy (APPENDIX). Czaplewski (2000) provides detailed discussion on the use of 

auxiliary information to assess the accuracy of vegetation maps derived from remotely 

sensed data (see also Kalkhan et al. 1996, 1998). 

To independently assess the accuracy of our classification using the multivariate 

composite estimator, we generated 498 random points as auxiliary data using simple 

random sampling. The location of the 498 random points and 269 of the 272 field plots 

23 



@hotographic data were unavailable for three of the field plots) were transferred to aerial 

photographs, "AP, and/or DOQs. An independent photo interpreter (i.e., one with no 

knowledge of the classification) identified the dominant vegetation type corresponding to 

each 1 O m  x IO-m sample location (random photo points, field plots). Grid values were 

then extracted from the vegetation map for each location using a customized Axview@ 

(ESRI 1998) application. 

In this study, because we used three selection criteria (spectrally-derived, nest- 

based, and random plots) to sample the field data, increasing the complexity of our 

analysis as formulas used in summarizing these data depended on sampling design 

(Stehman 1999). When vegetation types associated with the sample data are proportional 

to the true values, the sample data should provide good estimates of the overall accuracy, 

as a simple random sample distributes itself approximately proportionally among strata 

(Cochran 1977:134-135). However, because of the nesting requirements of the goshawk, 

the vegetation types associated with nest-tree plots are not likely to be in proportion to 

those observed on the study area outside of nest areas. Also, because spectrally-derived 

plots were designated based on reflectance values, they may not be in proportion to the 

vegetation types observed on the study are. As a result, the combination of these data 

may lead to poor estimates of the overall model accuracy. Stehman (1 996) points out, 

however, that if simple random sampling is combined with a post-stratified estimator, the 

estimator is nearly as efficient as a proportionally-allocated stratified design. A post- 

stratified estimator combined with simple random sampling should also perform nearly as 

efficiently as an optimally-allocated stratified design for estimating overall accuracy 

(Stehman 1999), assuming a large enough sample, because an optimally-allocated 
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stratified design is usually only slightly more precise than a proportionally-allocated 

stratified design (Cochan 1977:327-335). 

To compensate for differences in the selection probabilities associated with our 

three sets of sample data, we adjusted the joint probability matrix associated with the 

three sampling procedures using post-stratification. This adjusted error matrix was used 

to calculate a Kappa statistic to estimate the difference between the classified and 

ground-verified themes, and the agreement contributed by chance. Because of the 

complexity of our sampling design, the usual formula for calculating the variance of the 

Kappa is not appropriate, as the data do not follow a multinomial distribution. Under 

these conditions, bootstrapping techniques can be used to construct confidence bands 

around the estimates of Kappa (Kalkhan et al. 1997). As we were not testing hypotheses 

or making comparisons, this was not done. 

' 

RESULTS ' 

Image Classification 

Preliminary analysis indicated that the accuracy of the classification could be 

increased by modeling pure ponderosa pine forests separately from the other vegetation 

types. Sample plots with 100 % of basal area in ponderosa pine were assigned a value of 

1 and all other plots were assigned a value of 0 when fitting the decision tree (Fig. 1.3). 

The final decision tree had 25 terminal nodes. Discriminating variables included 

elevation, slope, aspect, landform, and Landsat TM bands 1-5 and 7. The initial split, 

which maximized the distance between the response variables (pinelother), was based on 

elevation (2579 m) and separated the higher elevation spruce-fir forests from the pine and 



I 
I 

1 

Figure 1.3. Decision tree classifier for ponderous pine (1) and other dominant vegetative 

types (0) on the Kaibab National Forest (North Kaibab Ranger District), Arizona. 

Independent variables (and units) used in the classification procedure include elevation 

(m), slope (%), aspect (degrees), landform (index), and Landsat TM bands 1-5 and 7 

(digital number). 
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pinyon-juniper forests that occun-ed st lower elevations. Ninety-eight % (1 4811 SI )  of the 

pure pine plots and 86 % (1 04/12 1) of “other” forest type plots (i.e., ponderosa pine 

mixed with other species, spruce, fir and deciduous vegetation, openings) were correctly 

classified for an overall resubstitution model accuracy of 92 %. 

After we developed the decision tree for pure ponderosa pine, the pure pine 

sample plots were removed kom the data set. We identified six additional vegetation 

classes from the remaining data by clustering the proportion of basal area associated with 

the remaining species. Vegetation classes included pinyon-juniper, mixed conifer, fir- 

dominated mix, spruce-dominated mix, deciduous-dominated mix, and openings. We 

later consolidated mixed conifer and fir-dominated mix into the mixed conifer class to 

improve the model. 

The final decision tree (Fig. 1.4) for the “other” (Le., non-pure pine) vegetation 

classes had 20 terminal nodes. Important variables in the partitioning criteria included 

elevation, slope, aspect, and Landsat TM bands 1,2,4, 5, and 7. The initial split was 

again based on elevation (241 8 m) and separated pinyon-juniper and some deciduous- 

dominated classes and openings from higher elevational forest mixes. Landsat TM band 

7, representing the mid-infiared (2.08-2.35 p M) spectral range, further distinguished 

openings from the majority of higher elevatjonal forest mixes. Eighty-seven % (14116) of’ 

the pinyon-juniper sites were correctly classified (Table 1.2)* Similarly, 88 % (29/33) of 

the mixed conifer sites, 87 % (27/3 1) of the spruce-dominated sites, 90 % (1 8/20) of the 

deciduous-dominated sites, and 76 % of the openings (1 6/21) were correctly classified. 

The overall resubstitution accuracy of this decision tree was 86 %. The combined model 

(pure ponderosa pine and other vegetation classes) correctly classified 93 % (20/272) of 
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Figure 1.4. Decision tree classifier for dominant vegetative types other than pure 

ponderosa pine on the.Kaibab National Forest (North Kaibab Ranger District), Arizona. 

Vegetation types include pinyon-juniper (l) ,  mixed conifer (2), spruce-dominated mixes 

(3), deciduous-dominated mixes (4), and openings ( 5 ) .  Independent variables (and units) 

used in the classification procedure include elevation (m), slope ((!A), aspect (degrees), 

and Landsat TM bands 1, 2,4, 5 and 7 (digital number). 
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Table 1.2. Resubstitution classification error rates of the decision bee for the vegetation 

types on the Kaibab National Forest florth Kaibab Ranger District), Arizona. Error rates 

were adjusted (post-stratified) for the propodions of the vegetation classes on the study 

area. 

Post-stratified 

Misclassified Total Classification Classification 

Vegetation Type Plots Plots Error Rate Error Rate 

Pinyon-Juniper 2 16 0.125 0.010 

Ponderosa Pine 3 151 0.020 0.01 1 

Mixed Conifer 4 33 0.121 0.014 

Spruce-dominated mix 4 31 0.129 0.01 3 

Deciduous-dominated 2 20 0, IO0 0.009 

Mix 

Openings 5 21 0.238 0.014 

Colunn Totals 20 272 

Overall Error 0.125 0.07 1 
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the sample plots. Overall post-stratified resubstitution accuracy for the model was also 

93% (Table 1.2). Ln both models (pure ponderosa pine and all other vegetation types), 

the use of additional variables (e.g., canopy closure, height of the understory vegetation, 

presence of seedling and sapling, and proportion of ground covered) tended to obscure 

the cluster structure and did not improve our ability to identify major vegetation types. 

On the final vegetation map (Fig. 1 .SI, ponderosa pine occupied the majority 

(55.5%) of the study area (Table 1.3) and occurred at lower elevations, with mixed 

conifer (1 1.3%) and spruce-dominated mixes (1 0.1 %) occurring at higher elevations. 

Pinyon-juniper (8.2%) was found predominantly along lower elevational edges of the 

study area and where crown-destroying fire and intensive management (e.g., sheltenvood 

and seed-tree cuts) had occurred at lower elevations. Deciduousdominated mixes (8.8%) 

and openings (6.1 %) occurred throughout the study area. All field plots, except goshawk 

nests, were sampled in relatively close proportion to the occurrence of vegetation type in 

the model (Table 1.3). 

A ccuracy Assessment 

The overall accuracy of the classification model when compared to the photo 

interpreted data was 62.8%, with a Kappa of 32.9% (Table 1.4). The low Kappa. statistic 

suggests a poor relationship between the classification derived from the decision tree and 

the photo interpreted classification. Low accuracy estimates associated with mixed 

conifer, spruce-dominated mixes, and openings contributed largely to the low overall 

accuracy (Table 1.4). Errors associated with coniferous species were attributed to 

difficulties in distinguishing among mixed stands of  pine, fir, and spruce on the 

photographs, especially in small (5 100 m2) patches of individual species. Photo 
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Figure 1.5. Dominant vegetative types on the study area in Arizona. 
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Table 1.3. Distribution of sample plots by vegetation type on the Kaibab National Forest (North Kaibab Ranger District), Arizona. 

Number of Spectrally- Goshawk Randomly All Photo 

Pixels Proportion of Derived Nest Located Field Interpretation 

Vegetation Type (10 m x 10 m) Total Area Plots Plots Plots Plots Plots 

Ponderosa Pine 7,137,947 0.56 0.45 0.70 0.59 0.58 0.58 

Mixed Conifer 1,454,207 0.1 1 0.14 0.12 0.10 0.12 0.11 

Spruce-dominated Mix 1,300,085 0.10 0.1 I 0.12 0.09 0.1 1 0.1 1 

Deciduou s-domi n ated Mix 1,124,89 1 0.09 0.09 0.06 0.07 0.07 0.10 
w 
td 

P inyon-Juniper 1,055,726 0.08 0.10 0.00 0.06 0.05 0.07 

Openings 778,865 0.06 0.11 0.00 0.09 0.07 0.03 

Column Totals 112,851,721 1.00 1.00 i .oo 1 .oo 1 .oo I .oo 



TabIe 1.4. Joint probability error matrix for the vegetation types and photo-interpretation of 767 sample plots on the Kaibab 

National Forest (North Kaibab Ranger District), Arizona. 

Vegetation Types (Classified Map) 

Row 

Vegetation Type (Photographs) PJ PP MC SD D OP Totals Accuracy 

Pi nyon-Juniper (PJ) 0.03 13 0.0222 0.0000 0,0000 0.0000 0.0078 0.06 I 3  0.5106 

Ponderosa Pine (PP) 0.0222 0.4003 0.01 17 0.0104 0.0261 0.0078 0.4785 0.8365 

Mixed Conifer (MC) 0.0026 0.0561 0.0469 0.0130 0.0143 0.0039 0.1368 0.3429 

Spruce-dominated Mix (SD) 0.0000 0.0209 0.0326 0.0717 0.0169 0.0026 0.1447 0.2687 
bJ 
LJ 

Deciduous-dominated Mix (D) 0.0013 0.0378 0.0104 0.0052 0.023 5 0.009 1 0.0873 0.4955 

Openings (OP) 0.0052 0.0430 0.0091 0.0078 0.01 17 0.0143 0.09 1 1 0.1571 

Column Totals 0.0626 0.5803 0.1 107 0.1081 0.0925 0.0455 0.9997 

Overall Accuracy = 62.82% Standard Error = 0.99% 

Kappa = 32.90% 



interpretation of these forest types using mid-summer, true color aerial photography and 

black and white DOQs was difficult. The large enor associated with openings was a 

result of forest regeneration following tree harvests or fire subsequent to the acquisition 

of photography and to the misclassification of openings containing a small arboreal 

component. Spectral similarities between deciduous and open forest vegetation also 

contributed to the error estimate for openings. Narrow (< 800 m) meadows comprised of 

grasses and forbs were often classified as deciduous-dominated vegetation, rather than as 

openings. 

After using the multivariate composite estimator (APPENDIX) to adjust for 

differences in the photo-interpretation of random points and field plots, and adjusting for 

the proportion of vegetation types (i.e., post-stratification) on the study area, the 

performance of the classification procedure improved to 74.5% (Table 1.5). All 

vegetation types except openings had an estimated accuracy greater than 50%. This level 

of accuracy is comparable to results achieved with traditional classification techniques 

that use a larger (typically 900 m’) per-pixel area. Our Kappa statistic for the 

classification model was approximately 50%, which indicated good agreement between 

the classification model and observations on the ground. 

The upward adjustment in the overall accuracy and Kappa statistic after correcting 

for classification errors in photographic interpretation indicated a larger classification 

error associated with the independent photo-plots compared to the error of classifymg 

field plots. There was no indication of any subjective bias associated with the photo- 

interpretation of the sample plots to suggest a loss of efficiency in estimating the weights 

of the composite estimalor. If a bias were to exist, an alternative composite estimator 
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Table 1.5. Joint probability error matrix for the decision tree for vegetation types and the field data. Probabilities were corrected 

for differences in the photo-interpretation of random points and field plots using the multivariate composite estimator and adjusted 

to the proportions of the vegetation classes on the Kaibab Nationai Forest (North Kaibab Ranger District), Arizona. 

Vegetation Types (Classified Map) 

Row 

Vegetation Type (FieId Data) PJ PP MC SD D UP Totals Accuracy 

Piny o n J u  ni per (PJ) 0.0374 0.0133 0.0000 0.0000 0.0000 0.01 15 0.0622 0.6014 

b.) Ponderosa Pine (PP) 0.0149 0.4956 0.0100 0.0035 0.01 18 0.0102 0.5460 0.9076 

Mixed Conifer (MC) 0.0000 . 0.0308 0.0667 0.0192 0.0046 0.0000 0.1213 0.5499 

0.5017 

Deciduous-dominated Mix (D) 0,0000 0.0261 O . O l q 0  0.0038 0.0402 0.0000 0.0801 0.5838 

ui 

0.1261 Spruce-dominated Mix (SD) 0.0000 0.0179 0.0197 0.0736 0.0139 0.0010 

Opening (OF) 0.0000 0.0163 0.0055 0.0089 0.0057 0.0279 0.0643 0.433 3 

Column Totals 0.0523 0.6000 0.1 119 0.109 0.0762 0.0506 1.0000 

Overall Accuracy = 74.47% (Overall Standard Error = I .56%) 

Kappa = 49.87% 



proposed by Green arid Strawdeman ( 3  990) could be employed. This estimator behaves 

as well as the usual precision-weighted multivariate composite estimator when auxiliary 

data are unbiased, yet is superior when the auxiliary information is severely biased. 

DISCUSSION AND CONCLUSIONS 

Goshawks occur in a wide range of forest types and structures throughout their 

geographic range in North America. Qualitative differences among the habitats occupied 

may be measured in terms of the fitness of individuals who occupy the range of habitat 

conditions (Fretwell and Lucas 1970, Van.Horne 1983). To understand how goshawks 

are influenced by their environment, the relationships between their demographic 

performance on territories and the composition and spatial arrangement of vegetation 

within their territories need to be determined. Thus, we need to accurately model the 

vegetation to adequately characterize goshawk habitat use on the study area. 

Dominant vegetation types on the study area included pinyon-juniper, ponderosa 

pine, mixed conifer, spruce-dominated mixes, deciduous-dominated mixes, and openings. 

Stands of pure ponderosa pine were identified with high (91%) resubstitution accuracy. 

Differentiating between mixed conifer and spruce-dominated forest types and between 

deciduous-dominated mixes and openings was difficult due to their spectral andor 

physical similarities: Auxiliary variables (canopy closure, understory vegetative species 

and height, proportion of ground covered, and presence of seedlingkapling) did not 

improve the accuracy of the model because these variables tended to reflect differences in 

stocking levels, and not differences in species composition. Modifymg our sampling to 

include additional field plots in these vegetation classes might have mitigated these 
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classification dilemmas. Our efforts to model vegetation typey however, were incidental 

to the primary sampling objective, which was to model forest structure on the study area 

to a IO-m spatial resolution (Chapter 2) and so we were limited by the protocol thereby 

established. 

Use of independent data.(i.e., those not used in the classification procedure) to 

assess the accuracy of a classification of remotely sensed data is now common practice. 

The assessment procedure should take into consideration the sampling design, sample 

size, and the classification scheme (Congalton 1991). Our method of accuracy 

assessment uses photo-interpretation as a relatively inexpensive source of independent 

reference data to assess the accuracy of our vegetation map. Use of the multivariate 

composite estimator also takes into account our multiple sampling schemes, by 

combining the independent set of photo-interpreted sample data with our field data to 

obtain a more efficient estimate of the overall classification accuracy (74.5%). This 

method corrected for photo-interpretation errors such as misclassification and incorrect 

plot locations, which can confound the assessment (Czaplewski 2000). However, the 

overall accuracy of our map may be slightly higher or lower than this because of 

registration errors between the Landsat TM image and the field data (Reimann et al. 

2000). We feel that registration errors were negligible in our case. 

Overall, the non-parametric classification method presented here successfully 

identified dominant vegetation types at a smaller spatial resolution than is typically 

achieved using traditional classification techniques. We used this model to aid in the 

description of forest structure on the study area (Chapter 2). We are also currently 

correlating our model of vegetative composition with a ranking of goshawk territories 
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based on the hawk’s long-term demographic performance to identify forest characteristics 

of goshawk habitat quality (Chapter 4). 
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APPENDIX: 

Applicaion of the Multivariate Composite Estimator Used to Assess 

Classification Accuracy 

Estimators that combine information from various sources are referred to as 

composite estim’ators (Green and Strawderman 1990). To apply the multivariate 

composite estimator to assess the accuracy of our classification procedure, we collected 

the data in two phases. In phase one, n ’ (296 field and 498 random) plots were located on 

aerial photographs. Each of the n ’ photo plots were classified by photo interpretation into 

one of k classes. This information was used to construct a k x k matrix of joint 

probabilities of all possible classification outcomes associated with the interpretation of 

plots on the photographs and the classification procedure under evaluation. To 

implement the composite estimator, we stacked the colurnns of the k x k error matrix of 

joint probabilities on top of each other to create a k2 x 1 vector (x 3, along with a k2 x I? 
variance-covariance matrix of V(x’). 

In phase two, the field plots (n, a sub-sample of YE ’) were dassified into one of k 

classes associated with the classification outcome. This information was combined with 

the photo interpretation and classification outcome on our map to construct a k x k x k 

matrix of joint probabilities associated with the three classification procedures. This 

matrix of joint probabilities was re-arranged to create the k x 1 vector, y ~ ,  and k x k 

variance-covariance matrix V( y ,  ). Given an appropriately structured k x k matrix of 

zeros and ones (HJ,  the vectory, can be collapsed to provide t h d  x 1 vector, x =ff ,y ,  , 

44 



of joint probabilities associated with the photo interpretation of field plots and the 

classification procedure being evaluated. Next, the composite estimator was used to 

combine these two sources of information to obtain a more efficient k x 1 vector: 

y ,  = y1 + K ( x ' - x )  [A.1 .l] 

of joint probabilities associated with the three classification procedure, where 

K = yb, H,;, [H,,GI >H; f w)y [A.1.2] 

is the k x k weighting factor, H, is a k x k matrix of zeros and ones used to s u m  the 

joint probabilities within the appropriate groups to form the desired k ' x k I vector y = 

Hyyc ofjoint probabilities associated with the classification of the field plots and the 

classification procedure, and Hy ' is the transpose of H,. In equation A. 1.1, (x '--x) is an 

estimate of the difference in the classification errors association with the photo 

interpretation in the first and second phases of sampling. If there are no differences (ie. 

x' = x), the most efficient estimation of the classification error is based on the data 

collected in the second phase of sampling. If there are differences, the classification 

errors are adjusted accordingly (equation A. 1.1) to take these differences into 

consideration. 
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CHAPTER TWO 

MODELlYG FOREST STRUCTURE 

ON THE KAIBAB NATIONAL FOREST JN AMZONA 

ABSTRACT 

Models based on the classification of Landsat Thematic Mapper (TM) imagery 

are typically limited by the 28.5-m spatial resolution of the satellite’s sensors. Using a 

combination of multiple linear regression models and binary regression trees, or logistic 

regression, we modeled forest structure to a 10-m spatial resolution to identify habitat 

structural components associated with northern goshawks on the Kaibab National Forest 

in northern Arizona. We spatially interpolated field data from our 1 ,285-km2 study area 

using Landsat TM imagery, elevation, slope, aspect, landform, and vegetation class as 

auxiliary information. Spatial autoregressive models were used to adjust for the presence 

of spatially autocorrelated residuals. Our models accounted for 45-83% of the variability 

in spatial structure of canopy closure, total basal area, proportion of ponderosa pine, 

spruce& and aspen basal areas, height of the understory vegetation, and presence of tree 

regeneration. Cross-validation showed that each model had nominal prediction bias and 

that the estimation error variance could be used to assess uncertainty for new 

observations. Finally, we provide an example of how the models may be used to obtain 

unbiased estimates of forest structure where no sample plots are located. 
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WTR ODUCTION 

The way in which an animal perceives its environment, and thus selects habitat, 

ranges from general landscape features that define its broad surroundings to fine-scale 

habitat characteristics that result in specific use of a site (Svardson 1949, Hilden 1965). 

An understanding of a species’ habitat requirements, therefore, entails knowing the 

extensive and intensive features responsible for habitat choice, Models of wildlife- 

habitat relations attempt to mimic these decisions at appropriate scales. However, it is 

typically site-specific knowledge of an animal’s relationship to its habitat that leads to 

useful, predictive models about habitat use (Morrison et al. 1992, p. 119). Although 

generally sensitive to local conditions, such models provide the foundation for more 

general, theoretical models that may include fine, as well as broad scale, habitat 

information (Van Home 2002). 

Detailed habitat models are typically limited by the spatial resolution of the data 

on which the models are based. For wide-ranging animals, obtaining sufficient spatial 

coverage hurther complicates the modeling process, as time and resource limitations 

preclude detailed sampling over large areas. Use of remotely sensed information, such as 

multi-spectral satellite imagery, allows one to derive large amounts of habitat-based 

information over large areas; however, these sensors gather information at a fixed spatial 

resolution (e.g., 28.5 x 28.5-m’s for Landsat satellite imagery) and some habitat choices 

(such as nest tree selection) may occur at scales finer than the spatial resolution of those 

data. Both Metzger (1997) and Joy et al. (2001, Chapter 1) improved the spatial 

resolution of satellite-based classifications of forest structure and composition, 

respectively, using fine-scale field data to drive the classification procedure. 
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Here, we describe the variability associated with forest structural componmts on 

the Kaibab National Forest (KNF) in h z o n a ,  where a population of northern goshawks 

(Accipiter gentilis; hereafter referred to as goshawk) has been studied for 12 years 

(Reynolds et al. 1994, Joy et al. 1994, Reynolds and Joy 1998). Nearly all of the KNF 

has been altered by some form of management during the past 100 years (Crocker- 

Bedford 1990, White and Vankat 1993, Burnett 1991, Anonymous 2000). Our models of 

forest structure were based on field measurements at random locations and goshawk nest 

sites, and included Landsat TM bands, topographic measures such as slope, aspect, 

elevation and landform, and vegetation classes as auxiliary independent variables. 

We first modeled the variability in forest structure using multiple linear regression 

models, We then modeled the residuals from the regression models using binary 

regression trees. The residuals for each model were assessed for spatial correlations. The 

final models predicted forest structural components thought to be important in goshawk- 

habitat decisions across the study area. To evaluate the predictive performance of the 

models, we used 1 1 -fold cross-validation (Breiman et al. 1984, Efron and Tibshirani 

1993:237-255, Guisan and Zimmermann 2000, Steele 2000). We then quantified and 

evaluated the feasibility of using the estimation error variance to explain estimation 

uncertainty. Binary data (presencdabsence) of forest regeneration were modeled using 

logistic regression and evaluated using receiver operated characteristic curves (Egan 

1975:142- 149). Finally, we demonstrate the application of our models for estimating 

forest structure where no sample plots are located. The models we developed formed the 

foundation for further study of the spatial relationships between goshawk habitat use and 

the hawk’s changing environment. 
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STUDY AREA 

Our study was located on the Kaibab Plateau, an isolated and forested plateau in 

north-central Arizona. The study area (1,285 km’) includes all KNF lands on the North 

Kaibab Ranger District (NKRD) above 2,182 rn in elevation (Fig. 2.1). The study area 

was bounded on the south by the Grand Canyon National Park and escarpments of the 

Grand Canyon of the Colorado hve r ,  to the west and east by slopes that descend to 

tributary canyons of the Colorado River and shrub-steppe plains, and to the north by 

gentle slopes that descend to the plains. Five vegetation classes dominate the study area 

(Joy et al. 2001, Chapter 1): (1) pinyon (Pinus &lis)-juniper (Juniperus spp.) 

woodlands (1 06 h2) occur at lower elevations (2,182-2,250 m) and mix with ponderosa I 

pine (P. ponderosa) at higher, transitional zones; (2) ponderosa pine comprises over SO% 

(714 km2) of the forested area and occurs between 2,250 and 2,550 m; (3) mixed conifer 

(145 km2), which occurs between 2,550 and 2,650 m, is comprised of ponderosa pine 

mixed with white fir (Abies concolor), Douglas-fir (Pseudotsugu mensiesii) andor aspen 

(Populus tremuloides), and spruce (Picea pungens, P. englemannii) at higher elevations; 

(4) spruce-dominated stands occur with sub-alpine fir (A. lasiocarpa) (130 km2) above 

2,650 m; (5 )  deciduous (aspen, Quercus garnbeZi)-dominated mixes (1 12 km2) occur 

throughout the forest and are common where extensive disturbance (fire, logging) has 

occurred. A series of long, narrow meadows containing grasses and herbaceous 

vegetation occur within the forest. 

The KNF receives about 64 cm of precipitation annually (White and Vankat 

1993), with winter snowpacks of 2-3 M. A drought period typically occurs in May and 

June, followed by mid- to late-summer thunderstorms with frequent showers. 
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Forest management began on the NliRD in the 1920s in the form of sanitation 

cuts a i d  single-tree selection. These continued, along with occasional small (0. I km2) 

clcarcuts, until the late-] 970s when intensive stand-level management began. 

Sheltenvood, seed, salvage, removal, and thinning cuts continued until 1991 when the 

NKRD implemented forest treatments (Reynolds et al. 1992) designed to enhance the 

habitat of goshawks and their prey. Livestock grazing was common on the NKRD 

between the late 1800s and the mid-1 920s. The suppression of naturally-occurring fires 

started in the early 1900s and continues today. 

,METHODS 

Datu Collection 

Field Data 

During August and September 1997, we sampled (Fig. 2.1) the forest vegetation 

throughout the study area. We located 100 random plots, irrespective of goshawk 

territories. Despite our inability to sample 15 of the 100 plots along the edge of the study 

area due to steep terrain, plots at random sites were expected to capture the range of 

variability in forest structure on the study area. To sample structural components within 

goshawk nests sites, 95 plots at nest sites were also measured. Because goshawks use 2-7 

alternate nests within territories (Reynolds et al. 1994, Reynolds and Joy 1998), we 

randomly selected one alternate nest within each of the 95 goshawk territories identified 

between 1991 and 1998 (Reynolds et al., in review) to measure the vegetative 

characteristics at nest sites. Due to data collection errors, only 92 of the 95 nest plots 

were used in the analyses. Although goshawk nest sites have been described as relatively 
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homogeneous (Reynolds et al. 1982, Moore and Henny 1983, Spieser and Bosakowski 

1987, Hayward and Escano 1989), goshawks on the KNF appeared to nest in a variety of 

forest conditions (e.g., pure pine, mixed conifer, aspen, spruce-fir, etc.), reflective of the 

conditions available to them, reducing the potential for sampling bias towards 

homogeneous plots. 

Random and nest-site plots (Fig. 2.1) were comprised of nine 10-m x 10-m sub- 

plots (Fig. 2.2) that, together, corresponded to a resampled 30-m x 30-m pixel on a 

Landsat TM image. Sub-plots within plots were considered correlated and dependent; 

Departures from independence are common in spatial data, and are accounted for in 

robust terms in the modeling process (Cressie 1991 :3-4). Plots were established 

systematically in a north-south, east-west manner and their locations verified with a 

Trimble Navigation PathfinderTM Asset Surveyor Global Positioning System with an 

estimated accuracy of 1-3 m. Vegetative characteristics measured on the sub-plots 

included basal area by tree species (rn2 ha-’, measured with a 4.6 factor prism), maximum 

height of the understory vegetation (ie., grasses, forbs, shrubs; m), the presence or 

absence of seedling and/or sapling trees (hereafter, referred to as “regeneration”), and 

percent canopy closure measured using a spherical densiorneter (Lemon  1956, 1957). 

Canopy closure was estimated by averaging four readings, one from each cardinal 

direction. The decision to use the densiometer’s wide angle of view to estimate canopy 

closure was based on the desire to include the depth of canopy over a large area that 

corresponded somewhat with the remote sensing imagery (Jennings et al. 1999), while 

minimizing the influence of the height to the base of the live crown on the estimates 

4 
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Figure 2.2. Layout of the field plots used on the Kaibab National Forest (North Kaibab 

Ranger District), Arizona, showing the arrangement of sample sub-plots.. 
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(Bunnell and Vales 1990). Total basal area was calculated for each sub-plot, and basal 

area of each tree species was expressed as a proportion of the total basal area. 

GIs  and Landsat TM Data 

For each sub-plot we derived GIS gnds of elevation, slope, aspect, and landform 

from digital elevation models (1 :24,000,30-m x 30-rn spatial resolution; US Geological 

Survey) using Arcview@ (ESRI 1998). Landform (McNab 1989) is an index that 

expresses surface shape as a measure of surface concavity (negative values) or convexity 

(positive values) creating a continuous variable. Surface shape was computed as the 

mean slope gradient from the original cell to adjacent cells in 4 directions using Avenue 

(ESRT 1998) code. Prior to generating grid coverages for each topographic variable, the 

elevation grid was resampled (RESAMPLE, nearest neighbor, Grid Module; 

ARC/INFO@, ESRI 1995) to a 10-rn spatial resolution, corresponding to the resolution of 

the field data. Grids of spectral bands 1-5 and 7 from a cloud-fm, 1997 Landsat TM 

image (22 June, Path 37, Row 35) were georectified to sub-pixel accuracy and resampled 

to a 30-m pixel resolution using cubic convolution (USDA Forest Service, Remote 

Sensing Lab., Albuquerque, NM; pas. corn.). We then resampled (nearest neighbor) 

each grid to a 10-m spatial resolution and averaged (FOCALMEAN, Grid Module; 

ARCKbFO@, ESRI 1995) the data values by moving a 3 x 3 pixel window over the 

resampled grids. Each IO-m x 1 O m  pixel of resampled h d s a t  data therefore 

represented an average of the surrounding 30-m x 30-m pixel, including the central 10-m 

pixel of the original 30-m Landsat pixel, whose value did not change. It was necessary to 

average the Landsat information because some sample plots fell within transition zones 

between vegetation classes and structural composition. Tne FOCALMEAN function 

. 
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(ARC/INFO@, ESRI 1995) was preferred over other averaging techniques (e.g., bilinear 

interpolation, cubic convolution) because the averaging window did not alter the data 

values to the extent that weighted averaging (bilinear interpolation) or curve fitting (cubic 

convolution) did, resulting in loss of infomation. The chosen averaging method was 

intended to improve the relationship between the Landsat bands and dependent variables. 

A grid of six vegetation classes, modeled to a IO-m spatial resolution, was derived 

from cluster analyses and decision trees (Joy et al. 2001, Chapter 1). Values for all grid 

layers of information were derived for each 10-m sub-plot using Avenue (ESRI 1998) 

code. 

Modeling Forest Structure 

Modeling of forest structure followed Metzger (1 997), where the classification of 

remotely sensed imagery was based primarily on field data, and the corresponding spatial 

resolution at which those data were collected, and not on the resolution of the spectral 

scanners. Multiple linear repssion analysis (OU; Reich and Davis 1998; S-PLUS@, 

Statistical Sciences 2000) was used to explore the coarse-scale variability in continuous 

measures of forest structure (elevation, slope, aspect, landform, Landsat TM bands, and 

vegetation class). The base model to which all other models were compared was for 

ponderosa pine. To account for differences in the models for ponderosa pine and other 

vegetation classes with respect to the independent variables (elevation, slope, aspect, 

landform, and the six Landsat bands), dummy variables were included in the models 

meter et al. 1985:329-330). The inclusion of dummy variables allowed us to quantify 

classes of vegetation, model the different vegetation classes simultaneously, and test for 

significance among vegetation classes. For each component of forest structure modeled, 
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we used a stepwjse procedure (elimination was based on ap-value 5 0.1 0) to identi@ a 

set of independent variables to include in the regression models. 

We modeled the error (i.e., residuals) associated with the multiple linear regression 

models using binary regression trees (RT) (TREE; S-PLUS@, Statistical Sciences 2000). 

The RT is a non-parametric approach to regression that compares all possible splits 

among the independent (continuous) variables using a binary partitioning algorithm that 

maximizes the dissimilarities among groups (Hansen et al. 1996, De’Ath and Fabricius 

2000). Once the algorithm partitions the data into new subsets, new relationships are 

developed, assessed, and split into new subsets. The algorithm recursively splits the data 

in each subset until either the subset is homogeneous or the subset contains too few 

observations (e.g., < 5 )  to be split further. Interpolation using RTs is relatively 

insensitive to missing data (Friedl and Brodley 1997, De’Ath and Fabricius 2000). 

Independent variables considered in the RT included elevation, slope, aspect, landform, 

Landsat TM bands, and vegetation class, the latter being treated as a categorical variable. 

Classification trees have been used successfully to interpret Landsat imagery in the past 

(Michaelson et al. 1994, Hansen et al, 1996, Friedl and Brodley 1997). To avoid over- 

fitting the models, a 1 0-fold cross-validation procedure (De’ Ath and Fabricius 2000) was 

used to estimate the prediction error for a given tree size. Estimates of the prediction 

error were then plotted against the sequence of tree sizes. The tree was then pruned to the 

size that minimized the deviance (prediction error) (De’Ath and Fabricius 2000). 

Although, we recognize that cross-validation does not identify the absolute minimum 

deviance associated with the trees, we used cross-validation as a guideline to select the 

best tree size that would approximate the minimum deviance. 
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Semi-vanograms were used to evaluate spatial dependencies among the residuals 

Erorn the various models. If the residuals exhibited spatial dependencies, a spatial 

autoregressive (SAR) model was used to obtain generalized least squares estimates of the 

regression coeffcients (Upton and Fingleton 1985:349-373). The model residuals were 

then reevaluated to ensure the removal of the spatial dependencies. In fitting the SAR 

models, a spatial weight matrix (i.e., a block diagonal matrix) was used in which diagonal 

elements represented the spatial arrangements of sub-plots within each cluster plot. We 

adapted the queen's definition of contiguity to define the spatial dependency among the 

sub-plots (Upton and Fingleton 1985:349-373). Off-diagonal elements were assigned a 

value of zero, which assumed no spatial dependency between cluster plots. This 

assumption was reasonable as all but one pair of cluster plots were more than 100 m apart 

(interquartile range = 1006-1 925 m). 

Grids representing the various components of forest structure were generated 

(CON; Grid Module, ARC/INFO", ESRI 1995) using the estimated model parameters. 

Similarly, grids representing the error in each multiple linear regression model were 

generated (CON; Grid Module, A.RC/rNFO@, ESRI 1995) by passing each grid for the 

appropriate independent variable through the RTs. Our final, predicted surfaces for each 

continuous variable of forest structure were obtained from the SUM of the grids associated 

with the multiple linear regression models and RTs. 

The effectiveness of the final models was evaluated using a goodness-of- 

prediction statistic (G) (Agterberg 1984, Kravchenka and Bullock 1999, Guisan and 

Zimmermann 2000, Schloeder et al. 2001). The G-value, measures how effective a 
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prediction might be relative to that which could have been derived using the sample mean 

(Agterberg 1984): 

where 2, is the observed value of the i* observation, ii is the predicted value of the ith 

observation, and 2 is the sample mean. A G-value equal to 1 indicates perfect 

prediction, a positive value indicates a more reliable model than if one had used the 

sample mean, a negative value indicates a less reliable model than if one had used the 

sample mean, and a value of zero indicates that the sample mean should be used to 

estimate 2. 

We used a logistic regression model (GLM; S-PLUS@ Statistical Sciences 2000) 

to predict the probability of observing tree regeneration. A categorical variogram (Soares 

1992) was used to test for spatial dependencies in regeneration on the sample plots, prior 

to fitting the logistic regression model, and to account for spatial dependency that might 

exist among the sample plots when fitting the logistic regression model. We used a 

combination of forward and backward elimination to identify the independent variables 

that were important in discriminating between the presence and absence of regeneration. 

A receiver operated characteristic curve (ROC) (Egan 1975:142-149), which shows the 

true-positive rate (TPR) versus the false-positive rate (FPR), was used to evaluate the 

performance of the model for different thresholds of prediction: 
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2 (I - xi ) 
i=l 

In the above equations, TPR is equal to the number of sub-plots where the estimated 

probability of regeneration presence is greater than the threshold, b, (0 5 b 5 1) for sites 

where regeneration was truly present (x  = l), divided by the total number of sub-plots 

where regeneration was truly present. FPR is equal to the number of sub-plots where the 

estimated probability of regeneration presence is greater than the threshold, b, for sites 

where regeneration was truly absent (x = 0), divided by the total number of sub-plots 

where regeneration was truly absent. The greater the height of the ROC curve above the 

TPR=FPR line, the better the model discriminates between true presence and true 

absence. The threshold value, 21, that maximized the distance between the ROC curve 

and the TPR=FPR line was used to generate a surface showing the presence or absence of 

regeneration on the KNF. The classification of this Surface was performed in 

ARC/INFO@ (ESRI 1995) using AML (CON; Grid Module). 

Model Evaluation 

Stratified 1 1 -fold cross-validation (Efion and Tibshirani 1993:237-255) was used 

to estimate the prediction error for each component of forest structure, except 

regeneration. The data were sorted apriori by sampling method (random and fixed) and 

cluster number to mimic the sampling protocol used in the field (Kish and Frankel 1974). 

The data were split into K=l 3 parts consisting of approximately 17 clusters each. For 
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each kth part: the regression and RT models were fitied to the remaining K-1=10 parts of 

the data. The fitted model was used to predict the kth (i.e., removed) part of the data. 

This process was repeated 13 times so that each observation was excluded from the 

model construction step and its response predicted. 

To evaluate the effectiveness of the models, we computed various measures of the 

prediction error. Prediction bias (Williams 1997) was calculated for each validation data 

set as a percentage of the true value: 

12.31 p; 
i=l 

where Zi is the observed value, and 2Fk(') denotes the estimated value for observation i 

(i = 1,2, . . ., n) computed with the k(i)* part of the data removed. Accuracy (Kravchenko 

and Bullock 1999, Schloeder et al. 2001) was measured by the mean absolute error 

(MAE), which is a measure of the sum of residuals (ie., actual minus predicted): 

and the root mean squared error (RMSE), which measured of the square root of the sum 

of squared residuals: 

Small MAE values indicate a model with few errors, while small values of RMSE 

indicate more accurate predictions on a point-by-point basis (Schloeder et al. 2001). To 

assess the estimation mcertainty in the mode!s (Isaaks and Srivastava 1989:23 1-234) we 
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calculated the estimation error variance (EEV), 8,2(-'('))! for each observation in the k" 

part of the data: 

0; - 2 ( - k ( i ) )  = MSE* [ ( X ~ ' ( ' ) ) ( X * ' X '  xX;k(i))+ I]+ MSE(RT)+ 2Cov(f,fl), [2.6] 

where MSE* is the regression mean squared error for the TS model fitted using K-1 parts 

of the data, X* is a matrix of independent variables associated with the K-1 parts of the 

data, X,?) is a vector of independent variables associated with the th observation in the 

k* part of the data, MSE(RT) is the mean squared error of the RT used to describe the 

error in the multiple linear regression model, and Cov(f,Q) is the covariance between the 

estimated values, (f ), from the TS model and the predicted residuals, (Ti) ,  from the RT 

for the K-1 parts of the data. The consistency between the EEV (e;(-'('))), and the 

observed estimation errors (i.e., true errors), 

the standard mean squared error (SMSE) (Hevesi et al. 1992): 

= (Zi - Z;k(i)),  was calculated using 

EEVs were assumed consistent with true errors if the SMSE fell within the interval 

[l 2 ( 2 / r ~ Y ' ~ ]  or [0.928 - 1.0721 (Hevesi et al. 1992). Paired t-tests (a= 0.05) were used 

to test for differences between the mean estimation errors and zero. The EEVs were also 

used to construct 95% confidence intervals around individual estimates. Coverage rates 

were calculated as the propdrtion of individual confidence intervals that contained the 

true value. 

Ten-fold cross-validation was performed to evaluate the predictive performance 

of the logistic regression model in discriminating between the presence and absence of 
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tree regeneratjon. A Kappa statistic, which estimates the difference between the obsenred 

and estimated values, and the agreement contributed by chance, was calculated for both 

the fitted model and prediction based on cross-validation. 

Estimating Means and Variances 

In addition to being able to assess the level of uncertainty associated with our 

models, it is also important that the models are capable of providing unbiased estimates at 

any spatial scale or level of support. It is also important that we are able to place bounds 

on the error of estimation. To demonstrate this concept, we wili assume that one is 

interested in estimating a mean (e.g., canopy closure, basal area, height understory 

vegetation, etc.) per sub-plot and placing a bound on the error of estimation. A sample of 

n 30-m x 30-m cluster plots consisting of m = 9 10-m x 10-m sub-plots are randomly 

selected from one of the modeled surfaces. The modeled surfaces are used to provide an 

estimate ( f ) on each of the nm sub-plots, along with the model prediction variance (6 * ) 

using Eq. 2.6. An estimate of the mean value per sub-plot ( FSp) is given by 

where S i j  is the estir ated ralue on the j th  sub-plot from cluster i, and gj is the average 

for the ith cluster. If clusters of the same size are sampled, the total sum of squares 

associated with estimating the mean can be partitioned into the within-cluster sum of 

squares (SSW) and between-cluster sum of squares (SSB) (Scheaffer et al. 1996:299- 

301). With appropriate divisors, these sum of squares become the usual mean squares of 

an analysis of variance. The within-cluster mean square (MSW) is given by 
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where 2 2 (zg - Zi )2 is the MSW one would typically use in cluster sampling 
n(m-1) i=l j=l , 

1 " "  
nm i=l j=I 

and 7y,y,6,; is its equivalent using the EEV formula. The between-cluster mean 

square (MSB) is given by 

[2.10] 

1 " "  2 m "  where - (F, - Fsp ) is the general formula for calculating the MSB and - 6,; n - 1 i=l ?I j=I 

is its equivalent using the EEV formula. The MSB can be used to calculate the variance 

of gsp as follows: 

[2.11] 

The estimates of the population mean possess special properties when all of the cluster 

plots are of equal size (ie., 30 m x 30 m), First, the estimator gsp is an unbiased 

estimator of the population mean; and second, e(;sp) is an unbiased estimator the 

variance of 2sp. If cluster plots ofunequal sizes are used, alternative formulas need to be 

applied to estimate the mean and variance, and these estimates may be biased due to the 

unequal cluster sizes (Scheaffer et al. 1996:299-301). 
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RESULTS 

Modeling Forest Structure 

Summary statistics associated with the topographic variables used in modeling 

forest structure varied as expected (Table 2.1) based on digital elevation models (U.S. 

Geological Survey) for the study area. Slopes ranged from 0.5% to 32%, with steeper 

areas found along the edges of the study area, and in canyons and drainages. Elevations 

ranged from 2,182 m to 2,805 m at subplots, with higher elevations represented in the 

south-central portion of the KNF, near the border with Grand Canyon National Park. 

Landform indices at subplots indicated greater concavity (5.6) than convexity (-2.8), and 

were highly variable (CV%=603.4). 

The Landsat TM scanners simultaneously collected radiance +slues [recorded as 

digital numbers (DN)] from the study area surface in each of the 6 bands of interest 

(Table 2.1), which included the blue-green (band l), green (band 2), red (band 3), near- 

infrared (band 4), and mid-infrared (bands 5 and 7) wavelengths (Avery and Berlin 

1992:141). Reflectance values measured by each band had a maximum range of 22-214 

digital numbers (DN): band 1 - 65-148 DN; band 2 - 25-83 DN; band 3 - 23-129 DN; 

band 4 - 54-124 DN; band 5 - 50-214 DN; band 7 - 22-124 DN, 

The final models used to describe forest structure on the KNF (Fig. 2.3,2.4) 

included the continuous variables: percent canopy closure (CC), total tree basal area 

(TBA), proportion of ponderosa pine (PPB) and sprucelfir (PSB) basal areas, and 

maximum height of the understory vegetation ("V), and the binary variable for the 

presence/absence of regeneration. Due to the sparseness of deciduous forest types (Le., 

aspen or oak) on the sample plots (aspen occurred on 25 % and oak on 1 % of the 
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Table 2.1. Summary statistics [minimum, mean, maximum, standard deviation (SD), and percentage coefficient of variation (CV%)] 

showing the range of observed topographic and remotely sensed data from I556 sample subplots on the Kaibab National Forest (North 

Kaibab Ranger District), Arizona. 

Var i ab1 e Minimum Mean Maximum SD CV% 

ToPog~PhY 

Slope (%) 0.480 7.202 32.53 4.930 68.45 

Aspect (degrees) 0 186.7 . 358.4 116.5 62.39 

Elevation (m) 2182 2482 2805 156.2 6.290 

Land for rn -2.800 0.137 5.600 0.826 603.4 

Landsat TM (Digital Numbers) 

Band 1 (0.45-0.52 pm) 

Band 2 (0.52-0.60 pm) 

Band 3 (0.63-0.69 pm) 

Band 4 (0.76-0.90 pm) 

65.22 75.25 148.0 9.029 

24.67 31.77 83 .OO 5.919 

23.44 36.54 129.3 11.09 

53.67 71 2 3  123.7 9.G23 

12.00 

18.G3 

30.35 

13.51 
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S l I h p l o f S ) .  l','c' IYCT'C TI01 : I h l i .  10 lli(.ldL'1 t h y  ~ ~ I ~ O ~ l ~ l I ~ ~ i ~ J l  ~ ~ ~ ' ~ ~ ~ ~ ~ ~ i ( ~ ~ 1 0 L l S  basal 3rC3 t i iTCCt lv .  

Howcvcr. hcciiuse aspen n'x tlic ~lrily other doiii i~imt \.cgctatjon class encnuntcrcd on the 

study mx~, o t l m  than the clnsxs \\'e iiiodclcd (note 1h3t components of the mixed conifer 

class we,re accountcd for in the l "3  and PSB structural classes), we estimated the 

yropor-tion of rispcn basal x e a  as 1 -( PI-'B+PSB). Slope, elevation, landform, and hiidsat 

TM Bands 3 and 7. and mixed conifer and SIiruce-domjnated vegetation classes were the 

most frequently occurring variables (Table 2.2) in the multiple linear regression models. 

All independent variables were used in one or inore of the TS models, All of the 

topographic, Landsat TM, and vegetation class variables (Table 2.3) were also used in 

RTs to describe the error in one or more of the multiple linear regression models. 

Notably, however, none of the vcgctation classes contributed to classifymg residuals in 

the models for the proportion of sprucelfir basal area and maximum understory height, 

indicating that the regression tree models for these components could not account for 

additional structural variability due to species cornpasition. Vegetation classes were 

important in nearly all other models of forest structure, however. The tree sizes selected 

to minimize the deviance (prediction error) in the RTs ranged from 23 to 49 splits (Fig. 

2.5). 

The overall contribution of the lincar regression and binary regression tree models 

(Table 24) in describing forest structure varied with the model. The multiple linear 

regression models alone explained 36% (HUV) to 76% (PPB) of the observed variability 

in forest structural components. The RT rnodels accounted for an additional 4% (PSB) to 

18% (CC) of the unexplained variability in the rnultiple linear repession models, based 

on the proportion to which the IIT contritiuted to the final effectiveness of the models. 



70 



Table 2.2. (continued) 

BI - band 1, B2 - band 2 ,B3  - band 3, B4 -band 4, B5 - band 5,  B7 -band 7. 

3 PJ - pinyon-juniper, MC - mixed conifer, SD - spruce-dominated mix, DD - deciduous-dominated mix, OP - opening. 

Proportion. 4 

Presencelabsence. 5 



Table 2.3. Topographic characteristics, Landsat TM data, and vegetation classes used in regression trees to describe the residuals i n  

the multiple linear regression models of forest structure on the Kaibab National Forest (North Kaibab Ranger District), Arizona. 

Landsat TM Data' 
~~~~~ 

Model Topography ' Vegetation c 1 a ss3 

I32 3 3  B4 B5 B7 S A Residuals 

_..-- : I :  Canopy ~ ~ o s u r e ~  

Total Basal Area (BA) (RZ/ac) 

PJ PP MC SD 

Ponderosa Pine BA4 

SpruceEir BA4 
4 
N 

Understory Height 

I B 1  E DD OP 

B1 - band I ,  B2 -band 2, B3 - band 3, B4 -band 4, B5 - band 5,  B7 - band 7. 2 

3 PJ - pinyon-juniper, PP - ponderosa pine, MC - mixed conifer, SD - spruce-dominated mix, DD - deciduous-dominated mix, OP - 

opening. 

Proportion. 4 
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TshIe 2.4.  C h w a l l  effectiveness (G-value) of the multiple linear regression models (LS) 

and regression trees (RT) w e d  to describe continuous variables of forest spatial structure 

on the Kaibab National Forest (North Kaibab Ranger District), Arizona, LS models were 

fit using either ordinary least squares or spatial autoregressive (SAR) models. The small 

standard errors s( i )  associated with the spatial autocorrelation coeficients from the S A R  

~nodels suggested that use of the S A R  models was appropriate. 

G-stati sti c SAR2 

A 

LS (LS f RT) h s ( 0  
Model 

Canopy ~ ~ o s u r e '  0.534 0.712 - - 

Total Basal Area @A) (m2/ha) 0.397 0.565 

Ponderosa Pine BA' 0.763 0.830 0.407 0.025 

spmce/fir BA' 0.736 0.772 0.354 0.026 

Understory Height (m) 0.361 0.452 0.452 0.02s 

Proportion. 

2 "  R = spatial autocorrelation coefficient (- 1 5 i 5 l), s ( i )  = estimated standard error. 
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Overall model performance ranged from a low of 0.45 for HUV to a high of 0.83 for 

PPB. The remaining three models had G-values ranging from 0.56 to 0.77. 

The analysis of residuals from the individual models data indicated that three of 

the models (PPB, PSB, H U V )  had spatially autocorrelated residuals. The regression 

models for these components were refitted using a SAR model (Table 2.4). The small 

standard errors, s( 2 ), associated with the estimates of the spatial autocorrelation 

coefficient (i ) for the PPB, PSB, and HUV models suggested that use of the S A R  model 

was appropriate. All model residuals were approximately normally distributed. We 

identified no significant spatial correlations in the sample data for the presence of 

seedlinghapling trees (Fig. 2.6). 

Model Evaluation 

Summary statistics for the various components of forest structure modeled in this 

study (Table 2.5) were consistent with what was expected based on forest inventory data 

on the KNF (Resource Information System, NKRD; IC Fuelling, D. Steffensen, .pen. 

comm.). Mean observed canopy closure was 62%, and ranged from no canopy 

(openings) to 100% closure. Total observed tree basal area ranged from 0 to 96 m2 ha-’ 

on the sample subplots, while the mean observed proportions of total basal area by 

species ranged from a high of 0.62 (PPB) to a low of 0.17 (PSB). On individual sample 

plots, the proportions of the total basal area by species ranged from 0.0 to 1 .O. The 

understory vegetation reached a mean maximum height of 0.56 m. The coefficient of 

variation was also reasonably small for all classes of forest structure, excqt  PSB 

(observed CV% = 349), which was large. Spruce and fir generally made up only a small 

proportion of the total basal area on a given sample plot, but there were some sample 
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Figure 2.6. Semi-variogram plots for residuals from the multiple linear regression models of percent canopy closure, total basal area, 

proportion of ponderosa pine and sprucelfir basal areas, and maximum height of the understory vegetation, and the logistic regression 

of seedling and/or sapling presence on the Kaibab National Forest (North Kaibab Ranger District), Arizona, after correcting for spatial 

correlations in the residuals.. 



Table 2.5. Summary statistics and prediction bias showing the level of agreement between observed (obs) and estimated (est) 

models of forest structure on the Kaibab National Forest (North Kaibab Ranger District), Arizona. Prediction bias, based on 

estimated values from 10-fold cross-validation procedures, was nominal for all models. 

cc’ TBA] P F B I * ~  PSB’* ’ HUV” 

Stat istic Obs Est Obs Est Obs Est Obs Est Obs Est 

Number I556 1555 1556 1556 1556 1556 1556 1556 1556 1556 

Mean 0.625 0.625 29.27 28.88 0.623 0.643 0.166 0.168 0.565 0.564 

SD 0.264 0.214 18.67 ’ 15.04 0.421 0.352 0.286 0.247 0.425 0.376 

CV(%) 42.20 34.30 14.61 11.93 67.60 54.70 349.1 147.2 22.93 66.70 

Minimum 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

First 

quartile 
0.489 0.498 13.74 19.88 0.133 0.306 0.0 0.0 0.305 0.382 

Median 0.692 0.687 27.48 27.59 0.857 0.828 0.0 0.039 0.381 0.475 
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plots on w h c h  spruce or fir dominated. I-esulting in distributions highly skewed to the 

right. The mean predicted proportion of aspen basal on the study area was 2.0 (range 0.0- 

1.0, SD = 0.32). 

Prediction bias was nominal (Table 2.5) for all models. Minimum, maximum, 

and quartile values showed that estimated and observed value distributions were similar 

for all models. Because only three (CC, PPB, and PSB) of the five models of continuous 

data had similar units, further comparisons of performance were possible only for those 

three models. Estimation errors (Table 2.6) for the proportional variable CC had the 

p a t e s t  spread compared to the estimation errors for the models of PSB and PPB. 

Except for the PPB model, the mean estimation errors for the models did not differ 

significantly from zero (p-value 2 0.05). MAE values for the models (Table 2.6) 

suggested that PPB was the least accurate model of the thee compared, while the model 

for PSB was most accurate. RMSE results showed that the model for CC resulted in 

more accurate predictions on a point-by-point basis than the other models. The 

distribution of errors from the cross-validation were approximately normally distributed 

(Fig. 2.7). 

Except for the PSB model, the EEV overestimated the true errors (SMSE < 1) by 

as much as 14% (Table 2.6). The 0.95 confidence interval coverage rates for these 

models ranged from 93% to 96%. The lowest coverage rate (90%) was associated with 

the PSI3 model in which the EEV underestimated the true errors by 13% (SMSE > I). 

These results suggest that the EEV could be used to assess estimates of uncertainty for 

new observations and to insure a 95% confidence interval around our estimates. 
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Table 2.6. Suinmary statistics for the estimation e m m  of the models of forest structure’ 

on the Kaibab National Forest (North Kaibab Ranger District), Anzona, based on )@fold 

cross-validation of the models. Mean estimation errors for all models, except the 

proportion of ponderosa pine basal area, did not differ (p-value 2 0.05) from zero. 

Statistic cc TBA PPB2 PSB2 Huv2 

Number 1556 1556 1556 1556 1556 

Mean 0.002 0.333 -0.020 -0.004 0.001 

Interquartile range 0.248 22.02 0.236 0.049 0.364 

MAE3 0.163 13.99 0.192 0.128 0.3 19 

M S E 4  

SMSE~ 

0.2 13 18.25 0.292 0.232 0.506 

0.856 0.870 0.867 1.131, 0.907 

0.95 confidence 0.954 0.958 0.926 0.902 0.939 

interval coverage rate 

’ CC - proportion of canopy closure, TBA - total basal area rn2/ha), PPB - proportion 

ponderosa pine basal area, PAB - proportion aspen basal area, PSB - proportion 

spruce-fir basal area, HUV - height of understory vegetation (m). 

Models accounting for the presence of spatially autoconelated errors, 

Mean absolute error. 

Root mean squared error. 

Standardized mean squared error. 

4 
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Figure 2.7. Histograms showing the distribution of errors from the 1 1 -fold cross-validation of the models of percent canopy closure. 

total basal area, proportion of ponderosa pine and sprucelfir basal areas, and maximum height of the understory vegetation 011 the 

Kaibab National Forest (North Kaibab Ranger District), Arizona, after correcting for spatial correIations in the residuals. 



The ROC curve (Fig. 2.8) used IO evaluate the logistic regression model of tree 

understory presence showed that a high true-positive rate of prediction could be achieved, 

but only at the expense of an increased false-positive rate. The threshold value, b, that 

maximized the difference between the ROC curve and the TPR = FPR line was 0.485. 

Using this threshold value, the overall accuracy of the logistic regression model in 

discriminating tree understory presence from absence was 74% (Table 2.7). The Kappa 

statistic was 0.30. Accuracies ranged from 35% (absence)'to 92% (presence) for the 

individual classes. The greatest confusion in fitting the model was associated with the 

absence of regeneration, which was confused with the presence of regeneration. Ten-fold 

cross-validation (Table 2.7) yielded similar results. Overall cross-validation accuracy 

was 72% (Kappa = 0.22), with accuracies for individual classes ranging from a low of 

24% to a high of 94%. Again, the greatest confusion was associated with predicting the 

absence of regeneration. 

Estimating Means and Variances 

The models developed in this paper can be used to obtain unbiased estimates of 

forest structure at a IO-m spatial resolution anywhere on the study area, and place a 

bound on the error of estimation. We demonstrate the process using the model for canopy 

closure, but any component of forest structure could be used. Grid values horn our 

canopy model were extracted at n plots. For comparative purposes, we randomly select 

the same number of plots (n = 174 30-m x 30-rn cluster plots consisting of m = 9 10-m x 

10-m sub-plots) as in our original sampling scheme, but any number of plots could be 

used. 
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ROC Curve 

0.0 0.2 0.4 0.6 0.8 1 .o 
False positive rate 

Figure 2.8. Receiver operated characteristic curve used to discriminate between the 

presence and absence of seedlings and/or sapling trees on the Kaibab National Forest 

(North Kaibab Ranger District), Arizona. The threshold value that maximized the 

difference between the true positive and false positive discrimination rates was equal to 

0.485. 
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Table 2.7. Accuracy assessment for the logistic regression model and cross-validation 

predicting the presence of seedling and/or sapling trees on the Kaibab National Forest 

(North Kaibab Ranger District), Arizona. Columns represent the field data and the rows 

represent the model classification. Greater accuracy was achieved predicting 

seedlinghapling presence than absence. 

Fitted Model Cross-validation 

Presence Absence Presence Absence 

Presence 985 317 1003 3 64 

Absence 86 1.68 68 119 

Producer's accuracy 92% 3 5% 94% 24% 

User's accuracy 76% 66% 73% 64% 

Overall accuracy 74% 72% 

Kappa statistic ' 0.30 0.22 
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Wlie,n compared with the field data used to generate the original model (Table 

2.8), estimates based on the cross-validation of canopy closure yielded similar estimates 

of average canopy closure on the individual cluster plots. The canopy closure model 

slightly underestimated the MSW and overestimated MSB, compared to the estimates 

obtained using the field data. Ninety-five percent confidences interval for canopy closure 

(Table 8) estimated from the mean variances of the field data (0.627 2 0.033) and the 

error estimation associated with the model (0.624 2 0,034) were similar. However, 

because we are using a model to estimate canopy closure, more conservative confidence 

intervals (e.g,, Bonferroni simultaneous prediction limits) may be more appropriate 

(Neter et al. 1985), Conservative intervals for our estimates of canopy closure would 

therefore become 0.624 2 0.064. 

DISCUSSION AND CONCLUSIONS 

Our models of forest structure provide detailed estimates of structural components 

at a fme-scale (1 0-m spatial resolution) with relatively high accuracy. These models are 

superior to traditional forest mapping techniques based on stand data, because the latter 

are ineffective at predicting structural changes within a given stand (Le., predictions are 

limited to the spatial resolution of the stand). 

The models presented here described 45% (height of the understory vegetation) to 

83% (proportion of pine basal area) of the variability in forest structural components 

observed on sample plots. The poor ability of the understory vegetation model to 

describe understory height may be due to inaccessibility of the understory vegetation to 

the satellite’s scanners resulting from the presence of forest canopy. All models provided 
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Table 2.8. Comparison of sample statistics for estimating zverage canopy closure on the 

Kaibab National Forest (North Kaibab Ranger District), Arizona, using field data and the 

canopy model. 

Statistic Field Data Canopy Model 

Number of plots 

Minimum 

First quartile 

Median 

Mean 

Third quartile 

Maximum 

MSW' 

MSB 

c(2J 3 

0.95 bound on the error of estimation 

174 

0.000 

0.523 

0.671 

0.627 

0.780 

0.993 

0.0071 

0.444 

0.00028 

0.033 

174 

0.000 

0.525 

0.680 

0.624 

0.763 

0.966 

0.0066 

0.481 

0.0003 1 

0.034 (0.064) 

' MSW - within-cluster mean squared error. 

MSB - between-cluster mean squared error. 

q(.?#) - variance of average canopy closure per sub-plot. 

Bonferroni simultaneous prediction limit. 4 
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unbi::scd (p-value > 0.05) or marginally biased cstiniates of the forest structural 

components. Notably, the latter bias was not large enough to hinder use of the models for 

predictive purposes. 

Results of 1 1 -fold cross-validation indicated that estimated error variances for the 

models provided statistically consistent estimates of the true prediction errors associated 

with the models. These findings suggest that the estimated error variances could be used 

to assess estimates of uncertainty when the models are applied to non-sample plot 

locations. 

Our ability to calculate estimation uncertainties allows us to develop GIS layers 

showing the computed estimation errors, as well as place confidence intervals around OUT 

estimates, which may be more useful than the estimates themselves because each 

prediction is associated with a stated level of certainty. We assume that the estimation 

uncertainties are at, or near, their lower limit because the field and most of the auxiliary 

data were assumed to be error free. Other sources of error that could have influenced the 

performance of our models included the sparseness of field plots, errors in vegetation 

classes (Joy et al. 2001, Chapter I), structural variations in the forest at spatial scales 

finer than 1 0-m, registration errors between remotely sensed and field data, and mapping 

errors. Because there may be a lower limit (e.g., 15-m) to the spatial accuracy of the 

Landsat image, some registration errors are likely, where pixels on the resampled image 

may not have correspond exactly to the IO-m based field data. 

The inclusion of abiotic factors such as soils, moisture gradients, climatic and 

existing forest inventory data could add additional explanatory power to the models for 

predicting forest structure. Fujisawa (2002) successfully used Landsat TM data, 
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e l e l ~ ~ t i o n .  and Soil Survey Geographic Data (NIiCS 1995) to predict the spatial 

distribution of white locoweed (Osly~ropis s e i k e a )  in Larimer County, Colorado. 

Siinilarly, Kallas (1 997:172-175) evaluated the use of climatic, Landsat TM, elevation, 

and forest inventory data to predict the probability of observing Armilaria root disease on 

sample plots randomly located on the Black Hills National Forest in South Dakota. In 

this study, moisture gradients were correlated with elevation and one could have used 

either variable in the model. However, difficulties associated with using soil, moisture, 

climate or forest inventory data are that they generally have a coarse spatial resolution 

and that coverage may not exist (or be current) for the area of interest. Because of these 

problems, we decided not to use theses types of data in developing our models. 

Our models of forest structure can be used to obtain, estimates and associated 

standard error of predictions for any specified geographical region (i.e, nest site, forest 

stand, management unit, forest) within the KNF using the appropriate formula. This 

approach to estimating forest structural components is more cost efficient than estimates 

based on field sampling alone, where plots may or may not be available to provide an 

estimate, especially if the area of interest is remotely located, small, or irregularly shaped. 

All modeling approaches to wildlife habitat are essentially anthropocentric in 

nature. We model habitat elements at spatial scales thought to be important in describing 

observed patterns of wildlife-habitat relationship (Van Home 2002). Our initial interest 

in developing and evaluating models of forest structure to a fine (1 0-m) spatial resolution 

on the KNF was to generate a predictive model of the location of nesting goshawks 

within the landscape (Chapter 3). We therefore modeled forest structure to a scale (small 

clusters of trees) thought to provide better insight into nest habitat choices made by 



goshawks. The spatia1 detail provided by these models over large, contiguous areas also 

3llows us to identify habitat determinants of goshawk territory quality at various spatial 

scales, where territory quality is based on a ranking of territorjes derived from the hawk’s 

long-term demographic performance (Chapter 4). Although the spatial scales at which 

goshawks select habitat features for nesting and foraging are unknown, we can 

hypothesize about the scales (fine to large grain) that influence the hawk’s behavior and 

test for correlations between forest structural components and territory quality. 

ACKNOWLEDGEMENTS 

We thank the many field assistants who contributed to this study: C.M. Erickson, 

M.A. Gavin, L.J.H. Hunt, A.M. Iiiiguez, J.M. Iiiiguez, M.A. Kalkhan, D.C. Laing, J.S. 

, Lambert, J.L. Nelson, S.R. Salafsky, J.C. Seyfiied, G.S. Stamatellos, R.A. Steffensen, 

V,L. Thomas, J.D. Wiens, L.E. Williams. R.T. Reynolds provided ldgistical support and 

insights into the use of habitat by northern goshawks. P.L. Chapman and R.M. King 

provided valuable advice on cross-validation techniques. The manuscript was improved 

with comments from W.J. Gangloff, R.M. King, R.T. Reynolds, M.S. Williams, and 3 

anonymous reviewers. This work was financed by Regions 3 (Albuquerque, NM) and 

the Rocky Mountain Research Station (Fort Collins, CO) of the USDA Forest Service. 

The North Kaibab Ranger District (Fredonia, AZ) kindly provided housing during the 

field season. 

89 



~,ITCIZA‘I’LRE CITED 

Anonymous. 2000. Resource hfomiation System, North Kaibab Ranger District, 

Fredonia, AZ 

Agterberg, F.P. 1984. Trend surface analysis. P. 147-171 in Spatial statistics and 

models, Gaile, G.L., C.J. Willinott (eds.). Reidel, Dordrecht, The Netherlands. 

Avery, T.E., and G.L. Berlin. 1992. Fundamentals of remote sensing and airphoto 

interpretation. Macmillan Publ. Co., New York. 472 p. 

Breiman, L., J. H. Friedman, R.A. Olshen, and C.J. Stone. 1984. Classification and 

Regression trees, Wadsworth Ind. Group, Belmont, CA. 358 p. 

Bumell, F.L. and D.J. Vales. 1990. Comparison of methods for estimating forest 

overstory cover: differences among techniques. Can. J. For. Res. 2O:lOl-107. 

Burnett, H. 1991* Green island in the sky. Am. For. 97:44-47. 

Crocker-Bedford, C. 1990. Goshawk reproduction and forest management. Wildl. SOC. 

Bull. 181262-269. 

De’Ath, G. and ICE. Fabricius. 2000. Classification and regression trees: a powerful yet 

simple technique ‘for ecological data analysis. Ecology 81 :3 178-3 192. 

Efron, B. and R.J. Tibshirani. 1993. An introduction to the bootstrap. Chapman & Hall, 

New York. 436 p. 

Egan, J.P. 1975. Signal detection theory and ROC-analysis. Academic Press, New York. 

277 p. 

ESRT. 1995. ARC/INFO@ Software and on-line help manual. Environmental Research 

Institute, Inc., Redlands, CA. 

ESRl. 1998. Arcview@ 3.1. Environmental Research Institute, hc., Redlands, CA. 

90 



Friedl, M.A., and C.E. Brodley. 1997. Decision tree classification of land cover from 

remotely sensed data. Rem. Sens.Environ. 61 :399-409. 

Fujisawa, H. 2002. Predicting spatial distribution of white locoweed (Oxyti-upis sericea) 

in Larimer County, Colorado. MSc.  thesis, Colo. State. Univ., Fort Collins. 61 p. 

Guisan, A., and N.E. Zirnmeniiann. 2000. Predictive habitat distribution models in 

ecology. Ecol. Model. 135:147-186. 

Hansen, M., R. Dubayah, and R. Defies. 1996. Classification trees: an alternative to 

traditional land cover classifiers. J. Remote Sens. 17:1075-1081. 

Hayward, G.D., and R.E. Escano. 1989. Goshawk nest-site characteristics in western 

Montana and northern Idaho. Condor. 91: 476-479. 

Hevesi, J.A., Istok, J.D. and Flint, A.L. 1992. Precipitation estimation in mountainous 

terrain using multivariate geostatistics. Part I: structural analysis. J. Appl. 

Meteorol. 3 1 :661-676. 

Hilden, 0. 1965. Habitat selection in birds. Ann. Zool. Fennici 253-75. 

Isaaks, E.H., and R.M. Srivastava. 1989. An introduction to applied geostatistics. 

Oxford,University Press, New York. 561 p. 

Jennings, S.B., N.D. Brown, and D. Sheil. 1999. Assessing forest canopies and 

understory illumination: canopy closure, canopy cover and other measures. 

Forestry 72:59-73. 

Joy, S.M., R.M. Reich, and R.T. Reynolds. 2001. Modeling small-scale variability in the 

composition of goshawk habitat on the Kaibab National Forest. Proc. (CD-ROM) 

Eighth Biennial USDA For, Sew. Remote Sensing Applications Conference, J.D. 

Greer (ed.), 10-14 April, 2000, Albuquerque, NM. 3 1 p. 

91 



Kallas, I d .  1997. Armillaria root disease on the Black ?-MIS National Forest. M.Sc. 

thesis, Colo. State. Univ., Fort Collins. 172 p. 

fish, L. and M.R. Frankel. 1974. lnference from complex samples (with discussion). 

J.R. Stat. SOC. B. 36:l-37. 

Kravchenko, A. and Bullock, D.G. 1999. A comparative study of interpolation methods 

for mapping soil properties. Agon. J. 91 :393-400, 

Lemmon, P.E. 1956. A spherical densiometer for estimating forest overstory density. 

For. Sci, 2:3 14-320. 

L e m o n ,  P. E. 1957. A new instrument for measuring forest overstory density. J. For. 

551667-668. 

McNab, W.H. 1989. Terrain' shape index: quantifylng effect of minor landforms on tree 

height. For. Sci. 35:91-104. 

Metzger, K. 1997. Modeling forest stand structure to a ten meter resolution using 

Landsat TM data. M.Sc. thesis, Colo, State. Univ., Fort Collins. 123 p. 

Michaelson, J., D.S. Schmiel, M.A. Friedl, F.W. Davis, and R.O. Dubayah. 1994. 

Regression tree analysis of satellite and terrain data to guide vegetation sampling 

and surveys. J. Veget. Sci. 53673-686. 

Moore, ICR., and C.J. Henny. 1983. Nest site characteristics of three co-existing 

accipiter hawks in northeastern Oregon. Raptor Research. 17: 65-76. 

Morrison, M,L., B.G. Marcot, and R.W. Mannan. 1992, Wildlife-habitat relationships: 

concepts and applications. University of Wisconsin Press, Madison. 364 p. 

Neter, J,, W. Wasserman, and M.H. Kutner. 1985. Applied linear statistical models. 

Irwin, Inc., Homewood, IL. 1127 p. 

92 



NIICS. 1995. Soils Su17;ey Geographic (SSURGO) Data Base. National Soils Survey 

Center, Natural Resource Conservation Service. 

Reich, R.M., S.M. Joy, and R.T. Reynolds. In review. Predicting the location of 

northern goshawk nests: modeling the spatial dependency between nest locations 

and forest structure. Ecol. Model. 

Reich, R.M., and R.A. Davis. 1998. On-line spatial library for the S-PLUS@ statistical 

software package. Colo. State Univ., Fort Collins. 

Reynolds, R.T., R.T. Graham, M.H. Reiser, R.L. Bassett, P.L. Kennedy, D.A. Boyce, Jr., 

G. Goodwin, R. Smith, and E.L. Fisher. 1992. Management recommendations 

for the northem goshawk in the southwestern United States. USDA For. Sew. 

Gen. Tech. Rep. RM-217. 90 p. 

Reynolds, R.T. and S.M. Joy. 1998. Distribution, territory occupancy, dispersal, and 

demography of northern goshawks on the Kaibab Plateau, Arizona. Final Report, 

Ariz. Game and Fish Heritage Project No 194045. 76 p. 

Reynolds, R.T., S.M. Joy, and D.G. Leslie. 1994. Nest productivity, fidelity, and 

spacing of northern goshawks in northern Arizona. Studies Avian Biol. 16: 106- 

113. 

Reynolds, R.T., S.M. Joy, J.D, Wiens, S.R. Salafsky, and J.C. Sewed. In review. 

Territory and mate fidelity and breeding dispersal in the northern goshawk. 

Condor. 

Reynolds, R.T.; E.C. Meslow, and H.M. Wight. 1982. Nesting habitat of coexisting 

Accipiter in Oregon. J. Wildl. Manage. 46: 124-1 38. 

93 



Schlneder, C.A., N.E. Zimmennann, and M.J. Jacobs. 2001. Comparison of methods for 

interpolating soil properties using limited data. Soil Sci. SOC. Am. J.  65:470-479. 

Scheaffer, R.L., Mendenhall, W. and Ott, R.L. 1996. Elementary survey sampling. 

Duxbury Press, Belmont, CA. 501 p. 

Soares A. 1992. Geostatistical estimation of multi-phase structures. Math. Geol. 

24~49-160. 

Speiser, R., and R. Bosakowski. 1987, Nest site selection by northern goshawks in 

northern New Jersey and southeast New York. The Condor. 89: 387-394. 

Statistical Sciences. 2000. S-PLUS@ 4.0 Statistical software package for personal 

computers. StatSci Division, MathSoft, Inc., Seattle, WA. 

Steele, B.M. 2000. Combining multiple classifiers: an application using spatial and 

remotely sensed information for land cover type mapping. Rem. Sens. Environ, 

74545556. 

Svardson, G. 1949. Competition and habitat selection in birds. Oikos 1:157-174. 

Upton, G.J.G. and Fingleton, B. 1985. Spatial data analysis by example. Vol. 1,  Point 

pattern and quantitative data. John Wiley and Sons, New York. 409 p. 

Van Home, B, 2002. Approaches to habitat modeling: the tensions between pattem and 

process and between specificity and generality. P. 63-72 in Predicting species 

occurrences: issues of accuracy and scale, Scott, J.M. et al. (eds.). Island press, 

Washington, DC. 

White, M.A., and J.T. Vankat. 1993. Middle and high elevation coniferous forest 

communities of the North Rim region of the Grand Canyon National Park, 

Arizona, USA. Veget. 109:161-I 74. 

94 



Williams, M.S. 1997. A regression technique accounting for heteroscedastic and 

asymmetric error. 3. Agricult., Biol., and Environ. Stat. 2:108-129. 

95 



CLCAI’TER THREE 

PREDICTING THE LOCATION OF NORTRERN GOSHAWK NESTS: 

MODELJNG THE SPATLAL DEPENDENCY BETWEEN 

NEST LOCATIONS AND FOREST STRUCTUFS, 

ABSTRACT 

Northern goshawks interact with each other and their environment in a spatially 

dependent manner. However, predicting the location of active nests (e.g., where eggs are 

laid) in a given year is difficult due to the secretive nature of the hawks in their forest 

environment, their annually variable attempts at nesting, and the extent of the area within 

a home range where they will nest. We used a Gibbsian pairwise potential model to 

describe the spatial dependency (1) among nest locations and (2) between nest locations 

and the environment for a large population of goshawks on the Kaibab National Forest’s 

(KNF) North Kaibab Ranger District (NKRD). Nest locations in a given year were 

regularly distributed at a minimum distance of 1 A km between active nests; however, as 

the spatial scale increased (Le., as distance between the nests increased), the degree of 

regularity decreased. Important forest predictors for nest locations included canopy 

closure, total basal area, proportion of basal area in ponderosa pine, spruce, fir, and 

aspen, maximum height of the understory vegetation, and presence/absence of seedlings 

and saplings. The probability of an occurrence of an active nest within a 1 0-rn x 10-m 
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area was modeled using 10,giStiC regression. Spatial analysis, using nest spacing and 

habitat variables, indicated that potential active nest locations were abundant and 

randomly distributed throughout the NKRD. This supports the supposition that the 

availability of locations with high potential for nests is not limiting the goshawk 

population on the study area. Instead, territoriality, and what appear to be non- 

compressible territories, sets the upper limit to the population. If the forest is managed 

improperly, however, suitable nest habitat may become rare. Choice of nest location was 

probably constrained by the availability of high potential locations within spaces defined 

by neighboring territories. Overall territory density, on the other hand, may reflect the 

abundance, quality, and accessibility of prey on the study area. This model can be used 

to evaluate the influence of forest management activities on the goshawk population on 

the NKRD. 

INTRODUCTION 

The northern goshawk (Accipiter gentilis atricapillus; hereafter goshawk) has 

been the focus of intensive research for the past decade (Block et al. 1994, Kennedy 

1997, Peck 2000) because of suspected population declines due to loss of habitat 

(Reynolds 1983, 1989, Kenward and Widtn 1989, Speiser and Basakowski 1984, 

Crocker-Bedford 1990, Widen 1997) and changes in forest structure (Reynolds et al. 

1992), both resulting from forest management. Many goshawk studies in North America 

and Europe have focused on the hawks’ habitat use, food habits, movements, distribution, 

demographics, and diets (Block et al. 1994); however, no studies have attempted to use 

spatially explicit models to describe the spatial dynamics between goshawks and their 
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envi~-oii~nent. Spatiall~r explicit models take inro consideration the spatial dependency 

among objects in the model. 

Goshawks interact with conspecifics and their habitat in a spatially dependent 

manner (Widh 1985, Selis 1997: Reynolds and Joy 1998). By first describing the 

spatial distribution among active goshawk nests (i.e., nests in which eggs are laid) within 

a goshawk population and then modeling the interaction between nest locations and forest 

structure, it may be possible to predict the location of active nests in a given year. 

Locating active nests is extremely difficult due to the secretive nature of the birds and 

their annually variable attempts at nesting (Reynolds and Joy 1998), nest concealment, 

and the extent of area within their home ranges where they will nest. 

Spatial statistics have not been used to their fullest potential in animal ecology 

due to a lack of understanding of these techniques. Although some researchers have used 

spatial techniques to explore wildlife-habitat relationships (Baker et al. 1995, Augustin et 

al. 1996, Ripple et al. 1997, van Manen and Pelton 1997, Mladenoff et al. 1999, Swindle 

et al. 1999, Thome et al. 1999, Pearce and Ferrier 2000, Finn et al. 2002), few have 

recognized their value in exploring manifold spatial dependencies, such as those between 

species and their environment as well as among species, or among individuals (Reich et 

al. 2000). The Poisson process has been used widely to describe random spatial patterns, 

but the model does not take into account the effects of spatial interactions. The Gibbs 

point process (Diggle et al. 1987, Ripley 1990, Cressie 1991 :674-678) is a flexible 

alternative in which “competitive” intra- or inter-specific interactions are taken into 

account and described by a pairwise potential function, The Gibbsian pairwise potential 

model may also be expanded by including environmental variables to identify potential 
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habitat for a species in a landscape (Reich et al. 1997). h this paper, we fit a Gibbsian 

painvise potential model to describe the spatial variability among goshawk nests and their 

association with forest structure on the NKR.D in northern Arizona. We also identify 

habitat that is more likely to have nests by correlating the location of known nests with 

environmental variables that account for the coarse-scale variability across the landscape. 

STUDY AREA 

The study area includes NKRD lands above 2,182 m elevation above sea level 

(asl). This land comprises the northern two-thirds of the Kaibab Plateau in northern 

Arizona. The NKRD is bound by the Grand Canyon National Park to the south, steep 

slopes to the east, and gentle slopes to the north and west that descend a shrub-steppe 

plain. This 1,285 km2 area comprises nearly 100% ofthe tall coniferous forests [excludes 

most of the low elevation pinyon (Pinus eduZis)-juniper (Juniperus spp.) woodlands] on 

the NKRD. Six vegetation classes (Fig* 3.1) dominate the study area (Joy et al. 2001, 

Chapter 1): 1) pinyon-juniper woodlands (106 km2, 8%) occur at lower elevations 

(2,182-2,250 m asl) and mix with ponderosa pine (P. ponderosa) at transitional zones; 2) 

ponderosa pine comprises 55% (704 km2) of the forested area and occurs between 2,250 

and 2,550 m asl; 3) mixed-conifer, comprised of ponderosa pine, white fir (Abies 

concolor), Douglas-fir (Pseudotsuga rnensiesii), and quaking aspen (PopuZus 

tremuloides) (1 45 km2, 1 1 %), occurs between 2,550 and 2,650 m elevation asl; 4) spruce 

(Picea pungens, P. englemannii)-dominated mixes (1 30 km2, 1 O%), primarily with 

subalpine fir (A. lusiocaipa), occurs above 2,650 m elevation asl; 5 )  deciduous (quaking 

aspen, Gamble’s oak [Quercus gambeli1)-dominated mixes (1 12 km2, 9%) occur 
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rmeters 

Figure 3.1. Distrihiition and ari-aiigeix)ent of ncst plots (triangles) and random plots 

(circles ) used to model forest structure displayed ai~-iong dominant vegetation classes on 

the North Kaihah Kiiiiger Distr.icl, Kaibab National Forest, Arizona. 
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throughout the forest and are c o ~ n ~ i i o n  ivliere extensive disturbance has occun-ed (Fig. 

3.1); and 6) openings (90 km2, 7%) that contain grasses and herbaceous vegetation 

include a series of long, narrow meadows and various smaller gaps in the canopy which 

are scattered throughout the forest. 

Nearly all of the KNF has been altered by some f o m  of management during the 

past 100 years (Pearson 1950, Burnett 1991). By the early-1 900s livestock grazing was 

common and fire suppression had been established. A long-term policy of fire exclusion 

has resulted in large numbers of shade-tolerant seedlings and saplings throughout the 

forest creating fuels and closing-in of the hstorically more-open understory (Weaver 

1951). Organized tree harvests in the form of sanitation cuts and single-tree selection 

began in the 1920s. These harvest regimes continued, along with occasional, small (0.1 

km2) clearcuts in the mixed-conifer, until the late-1970s. Intensive forest management at 

the stand level (sheltenvood, seed, salvage, removal, and thinning cuts) began in the 

1980s and continued until 1991 , when the NKRD implemented forest management 

prescriptions designed to enhance the habitat of goshawks and their prey (Reynolds et al. 

1992). 

The NKRD receives about 67.5 cm of precipitation annually, with winter 

snowpacks of 2.5-3.0 m ( m t e  and Vankat 1993). A drought period typically occurs in 

May and June, followed by mid- to late-summer thunderstorms and heavy showers. 
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hIETH0ODS 

Die Data 

The data layers used to model spatial dependencies among goshawks and their 

environment included the location of active nests (i.e., nests in which eggs were laid), 

Landsat Thematic Mapper (TM) imagery, field measurement, and GIS-derived 

topographic variables. Nest locations were used to describe the spatial distribution of 

nests; whereas, the field measurements, Landsat imagery, and topographic variables were 

used to model forest composition and structure to a IO-rn spatial resolution. 

Goshawk Nest Locations 

Searches for active goshawk nests began in 1991 and continued through 1998. 

Nests were found by (1) searching on foot (Reynolds 1982), (2) systematically 

broadcasting goshawk vocalizations from predetermined stations and transects (Kennedy 

and Stahlecker 1993, Joy et al. 1994), and (3) visiting active nests found in prior years of 

the study. When the status of a previously-active nest remained unknown, searches of 16 

and 24 km2 areas around that nest were carried out on foot or by broadcasting, 

respectively, to locate an alternate active nest within the territory. Goshawks may use 

more than one nest within their territories among breeding years (Reynolds and Wight 

1978, Reynolds et al. 1994, Reynolds and Joy 1998). Nest searches began in April and 

ended after the post-fledging period. Each year, the overall search area on the NKRD 

was expanded to include more territories. A ‘‘territov’ (approx. 1.5 km radius) is the 

area used and defended by a single pair of goshawks during the nesting season and may 

contain one or more alternate nest trees (Reynolds et ai. 1994). When eggs were laid in a 

nest, the nest (and temtory) was considered “active.” At each active nest, adults and 
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juveniles were captured and banded with a USDJ Fish and Wildlife Senrjce aluminum leg 

band and an anodized aluminum colored leg band, the latter marked with unique 2- 

character alpha-numeric codes readable at up to 50-80 m with 20-40 power spotting 

scopes. Identifyng the individual goshawks allowed us to correctly associate new nests 

with individual territories. On the study area, territoriality is maintained even in non- 

breeding years by marked individuals who continue to defend their territory (Reynolds et 

al. 1994). 

Field Data 

Models of forest structure were based on the spatial interpolation (see below) of 

habitat attributes at both active nests and randomly selected plots (Fig. 3.1): 

Goshawk nest plots: We measured the forest vegetation immediately surrounding 

the nest tree at one nest within each of 92 goshawk territories being studied through 1998. 

In territories containing multiple alternate nests that had been active since 1991, we 

randomly selected one alternate at which to measure the forest characteristics. At single- 

nest territories, we measured the vegetation at that nest tree. 

Randomly located plots: To describe all the spatial/structural variability on the 

NKRD, we located 85 random plots throughout the study area. We placed no constraints 

on the location of random plots (ie., they were placed irrespective of territories and 

nests), because we considered all habitat to be potentially available to goshawks for nest 

site use. 

GIs and Landsat TM Data 

The GIs database consisted of four topographic variables (elevation, slope, 

aspect, and landfonn), 6 bands ( 3  -5 ,  and 7) of Landsat TM data (1997; 22 June; Path 37, 
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Row 35) ,  and s e w n  irariables representing stand structure (percent canopy closure; total 

basal area; proportions of (a) ponderosa pine, (b) spruce/fir, and (c) zspen in the total 

basal area; maximum height of the understory vegetation; and the presence of seedlings 

or saplings). All habitat-related variables were believed to be important to goshawk nest 

tree selection, Elevation was obtained from USGS digital elevation models (DEM) and 

used to derive aspect and slope. The DEM was also used to calculate a landform index 

(McNab 1989), which expresses surface shape as a measure of surface concavity or 

convexity (computed as the mean slope gradient from the original cell to adjacent cells in 

4 directions), a continuous variable. Grid coverages for elevation, slope, aspect, and 

landform were resampled to 10 rn, corresponding to the spatial resolution of the field data 

(below). Grid coverages representing forest structure were developed by spatially 

interpolating the random and nest-based field data to a 10-m spatial resolution using trend 

surface models and regression trees (Chapter 2). Landsat Bands 1-5 and 7, and 

topographic data were used as predictor variables. All grid manipulations were 

performed in Arcview@ (ESRI 1998). 

Field Measurements 

Because the spatial variability in forest structure can vary at scales smaller than 

those determined by the spatial resolution of Landsat TM imagery (i.e,, < 30 rn), we 

designed our field sampling to classify forest structure to a 1 O m  spatial resolution. 

Sample plots consisted of a cluster of nine 10-m x IO-m subplots that corresponded to a 

30-m x 30-m pixel on our Landsat TM imagery, the location of which was verified using 

a Trimble Navigation PathfinderTM Asset Surveyor Global Positioning System (estimated 

accuracy = 1 -'3 m). Field measurements were collected during August and September of 
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1997. Each plot was cstsblished in a north-south, east-west fashion with the coordinate 

systematically assigned to either the center (nest tree plot) or lower left comer (random 

plots) of the plot. Vegetative characteristics were recorded on each of the nine 1 O m  x 

10-m subplots and included canopy closure [measured with a concave, spherical 

densiometer (Lemmon 1956, 1957)], overstory species, total basal area by species 

(measured with a 20 factor prism), height of the understory vegetation, and the presence 

of seedlings and saplings. 

Spatial Distribution of Active Goshawk Nests 

To model the distribution of active goshawk nests, we selected a large (528 h2) 

rectangular region within the NKRD. A rectangular region was selected to simplify the 

algorithm required to adjust for edge effects, while the shape of the rectangular was 

selected to include as many nests as possible. The spatial location of all active nests in 

1998 within the rectangular region B (Fig. 3.2) was assumed to represent the spatial 

relationship between.active goshawk nests and forest structure when the population is at 

or near full occupancy. In 1998 active nests attained the most continuous spacing (i-e., 

fewest gaps due to non-nesting territorial pairs or individuals) among all the breeding 

years studied (Fig. 3.3). 

Using the spatial location of each nest in the rectangular region B, a Monte Carlo 

test (Besag and Diggle 1977) based on the CramCr-von Mises type statistic (Cressie 

1991 542) 

was used to test the null hypothesis of complete spatial randomness (csr); i.e., whether 

the arrangement of nests witlun a circular region of radius R, does not differ significantly 
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Figure 3.2. Bounded region (B) showing the relative location of 27 active northern 

goshawk nests from 1998 used to model the spatial relationship between active nests and 

forest structure. 
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Figure 3.3. The location of active northern goshawk nests between 1991 and 1998 on the North Kaibab Ranger District, Kaibab 

National Forest, Arizona. 



fiom t1i:it expected under the assumption of csr. This was done at 14 spatial scales 

ranging fiom 2 km to 16 k m  in increments of 1 km by simulating values of the test 

statistic under csr and comparing them to the corresponding statistic calculated from the 

observed pattern of active goshawk nests. For each simulation, we calculated the 

empirical K-functionk, (h)(Ripley 1977), corrected for edge effect (Cressie 1991 :616), 

and the Cramer-von Mises statistic k. The significance @-value) of the test was 

calculated as I; = (R -t 1 - r)/R, where R is the number of simulations, and r is the rank of 

the test statistic associated with the, observed point pattern, A small p-value supports the 

alternative hypothesis of a non-random spatial pattern. All tests were based on 200 

realizations of a spatial Poisson process to allow for the calculation of ap-value to the 

nearest one percent. 

Traditional nearest neighbor statistics, which are often used to test nest spacing 

(e.g., Newton et al. 1977), assume that the nearest neighbors are independent (Cressie 

1991 :603-606). If applied to mapped data sets such as nests, however, the nearest 

neighbor measurements are not independent, and one would tend to reject the null 

hypothesis of csr too often (Cressie 1991:610). In contrast, the K-function and the 

Cramer von-Mises goodness-of-fit test do not assume that distance measurements are 

independent. Furthemore, they use information on many spatial scales because they are 

based on squared distances to the first, second, third,. , ., kth nearest neighbors. 

Gibbsian Pairwise Potential Model 

The Gibbsian painvise potential model is a Markov point process, a flexible class 

of models in that they simulate both regular (inhibition) and aggregated (contagious) 

patterns. The primary use of such models has been in the study of regular point patterns 
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such as those exhibited by the noithern goshawk (Reynolds and Joy 199s: Widen 1985), 

other accipiters (Newton et al. 19771, as well as other raptors (Cade 1960, Ratcliffe 1962, 

Newton 1979). 

The most extreme form of regularity is the direct exclusion from a given area, 

whether by complete occupancy, allelopathy, or territoriality. Models that describe such 

phenomenon are termed hard-core models. Every individual in the population has a 

circular neighborhood or radius 2R within which no other individual can exist, For 

biological populations that display plasticity of size and shape, the hard-core model may 

be too extreme. As an alternative, a soft-core model with fixed-range interactions may 

be used that are less extreme, in that within a given neighborhood of radius R inhibition 

is not complete, but a competitive effect (ie., territoriality) is experienced. The degree of 

territoriality may or may not be a function of the distance between individual pairs (h). 

Potential Energy of Goshawk Nests 

The location of all N goshawk nests within the bounded region B were assigned 

coordinates X={X;=(xi , y ; )  E B, i = 1,2, ... , N) * To model the spatial distribution and 

association of individual territorial goshawk pairs (Leq, nests), we assumed that the 

territorial influence between pairs depended on the relative, and not the absolute position 

of nests. This assumption implies a homogeneous environment. The territorial 

interaction, or potential energy, Y, can be modeled as a function of the Euclidean 

distance hij = IK. - 411 between pairs of nests in which the temtorial influence between 

individual pairs decreases with increasing distance. Thus, the total potential energy for 

the point process is defined as (Cressie 3 991 :677): 
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where V, , (X)  can be thought of as the total energy required to add a nest to the point 

patiern. The observed point pattern of goshawk nests can, therefore; be regarded as being 

distributed according to a Gibbs canonical distribution: 

f (4 = exP[-UN Z ( Y  N )  9 P 3 1  

where Z( 'y;N) is a normalizing constant where the joint probability density integrates to 

1. If the normalizing constant exists, the point pattern is said to be stable. A strictly 

positive painvise potential (i.e., inhibition process) always yields a stable process, while 

those with negative potential energy at some specified distances (i.e,, contagious process) 

are generally unstable (Cressie 199 1 :678). The sign and shape of the potential functions 

are determined by whether there is inhibition or attraction between nests. Positive values 

indicate inhibition, while negative values represents attraction. If there are no 

interactions between nests, the value of the potential function is zero. 

Model Parameter Estimation 

Consider a family of parameterized painvise potential functions { y/e(h); 8 E O}. 

Given a finite set of points in the bounded region B, the likelihood of the potential 

function !P&) is given by the Gibbs canonical distribution (Eq. 3.3). The maximum 

likelihood estimate of €J is obtained by finding a e" that maximizes Eq. 3.3. 

Maximization requires computing the normalizing constant Z( 

available in closed form (i.e., where an explicit solution exists). Ogata and Tanemura 

(1 981) use the cluster-expansion method of statistical mechanics (Ogata and Tanemura 

198 1, Cressie 1991 :682) to obtain an approximation of the normalizing constant, 

conditioned on the number of points in 13: 

N), which is not usually 

z (v / ;N)  =I B 1" (I - .(e)/ I B I ) ~ ( ~ - ' ) ' ~  



where 

is the second cluster integral, and IBI is the area of the bounded region B. In their 

approximation, only painvise interactions were considered; higher order interactions were 

assumed to be negligible. Cressie (1 991 :683)  points out that this approximation holds 

only for stable pair-potentials, and may not be valid for unstable pair-potentials that 

require higher-order interactions such as a Markov cluster process. Combining Eq. 3.3 

and 3.4 leads to the approximate log likelihood function: 

which can be solved using nonlinear optimization procedures. 

To use this relationship in describing the spatial distribution and association of 

individual nests, one must be able to mathematically describe the interaction potentials of 

a spatial point pattern. Three parameterized potential functions proposed by Ogata and 

Tanemura (1 98 1 and 1985) are available to describe the interactions observed in the 

distribution of the goshawk nests: 

PF1: I,Y,(~)= -log[l+ (a h -l)e-B62] 8 = (a, P),a 2 0, p > 0 C3.71 

PF2 : yo@)= - log[l +(a - l )e -P” ]  8 = (a, P),a 2 0, > 0 ~3.81 

PF3: yo@)= P(~/h) ’~-a(oh)~  O = ( a , p , G ) , p  > O .  W I  

All three potential functions can model both repulsive and attractive forces, The 

parameter, a, controls the type of force between a pair of points, while /3 and 0 are 

scaling parameters. The potential function PFl represents a purely repulsive potential 

when a = 0, and has both repulsive and attractive potentials when cc > 0. The potential 
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function PF2 is repulsive when 0 5 cy < 1, independent n-hen a = 1 ~ and attractive when a 

> I .  The potential for PF3 is purely repulsive when a< 0, and attractive when a > 0. The 

second cluster integral, a (6 ) '  for the three potential functions are given by: 

PF1: a(a, f i )  = ( d p ) ( l -  am/2) [3.10] 

PF2 : a(a, p)  = n( 1 -a)@ [3.11] 

[3.12] 

The painvise potential models PFI-PF3 were fit to the point data of the individual 

nests using a nonlinear least squares procedure to obtain an estimate of the parameter 

vector 8 = (a, p) or 8 = (a, /3, 0) that maximized the approximate log'likelihood (Eq. 

3~5). Akaike's (1 977) AIC, was used to select the best model among the three possible 

models (PFl -PF3). 

Potential Energy Between Nests and, Forest Structure 

To include environmental heterogeneity in the model, the total potential energy 

was redefined as follows: 

[3.13] 
i< j i=l 

where @(zi) is a measure of the interaction of individual nests with the environment (i.e*, 

forest structure). If we assume that the presence, or absence, of an individual nest is 

correlated to a set of known environmental variables we can, for example, define the 

probability of observing a goshawk nest at a given location as n, The potential energy 

associated with this location can be expressed as (Reich et al. 1997): 

1 
7c 

@(z) = - - I = f (environmental variables). [3.14] 
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Large positive values indicate “poor” nest locations wliile ~rnall values indicate “good” 

nest locations. We define a “good” area as one that has a higher probability of containing 

an active nest (as in, the probability of finding an active nest is better) than other areas. 

Good areas, however, do not necessarily confer greater fitness on the birds using those 

sites (Van Home 1983, Vickery et al. 1992). Rather, reproductive success and other 

measures of fitness are influenced by habitat characteristics, food, and life history 

strategies used throughout the home range (Newton et al. 1977, Reynolds et al. 1992, 

Kostrzewa 1996). Furthermore, the presence of good habitat alone does not guarantee 

that a nest will be present because the value of an area as a nest location is dependent 

upon the arrangement ofboth the fine- and coarse-scale ( i s ?  landscape scale) variability 

in the landscape (Ricklefs 1987), territoriality, and population density. 

Modeling Nest Site Suitability 

To model the potential energy associated with forest structure we used a multiple 

logistic regression model (Homer and Lemeshow 1989, Manly et al. 1993): 

[3.15] 

where 7t is the probability of obsenring a goshawk nest, 21, . . ., zk are independent 

predictor variables, and PI,  . . ., are logistic coefficients. Independent variables 

considered in the model included topographic data (elevation, slope, aspect, landfom) 

and forest structure (total basal area, proportion of pine, aspen, spruce-fir basal area, 

height of understory vegetation, and presence of seedlings). The final fonn of the model 

was based on a forward selection process that eliminated independent variables with high 

p-values. Coefficients from the logistic regression model indicate the direction of change 

(positive - increase, negative - decrease) required by an independent variable to maximize 
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the prohability of an occurrence of an active nest, given the topographic and 

environmental constraints imposed by other independent variables. 

Preliminary analysis indicated that the functional form of the logistic regression 

model differed among vegetation classes in that not all of the independent variables were 

important in all vegetation classes. To account for these differences, we added dummy 

variables to the model, After fitting the logistic regression, a final model, composed of 

significant variables and coefficients, was used to create a map of the probability 

distribution of nest locations. We standardized meter et al. 1985:262) the regression 

coefficients for the logistic model to compare the relative strength of individual variables 

within each model, as well as across vegetation classes. 

We used classification error rates to evaluate the fit of the model. To calculate 

classification rates, we compared the probability fiom the logistic regression models, a 

continuous variable, to a cutoff value. Each 10-m x 10-m pixel of the NKRD was 

categorized into a dichotomous variable with a value of 1 or 0, representing good and poor 

nest locations, respectively. To determine the optimal cutoff value, we compared model 

results to those that would be obtained from a random process. The optimal cutoff value 

was selected by maximizing the improvement of model predictions over a null model of 

random habitat selection [ie., maximizing the difference between the proportion of nest 

pixels correctly classified and the proportion of the NKRD classified as good nest habitat 

(Pierera and Jtami 1991, Ozesrni and Mitsch 1997)l. This process considered the trade off 

between maximizing the correct classification of good nest habitat by selecting a lower 

cutoff value, and minimizing the area classified as good habitat by selecting a higher cutoff 

value. 
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Leave-one-out cross-validation (Efron and Tibshirani 1993; 240) was used to 

generate the mean cutoff value and its associated standard deviation. This mean optimal 

cutoff value was used to generate a grid surface showing the location of good and poor 

nest locations. All grid cell values over the optimal cutoff value were assigned a value of 

1 , while cell values less than the optimal cutoff were assigned a value of 0, The logistic 

regression model was also used to generate a grid surface of potential energy associated 

with forest structure (Eq. 3.14). 

Simulating the Spatial Distribution of Goshawk Nests 

To simulate a point pattern of goshawk nests in a given year, the point process 

was conditioned on N, the total number of nests observed in the bounded region, B. 

Using an algorithm proposed by Ogata and Tanemura (1 989) the following steps were 

used to simulate the two components (spatial interactions among nests and forest 

structure) of the spatial distribution of goshawk nests: 

Step 1. Randomly locate the first nest ( t  = 1) within the bounded region 13. If forest 

structure is taken into consideration, the location (X = {xt, yt E €3; t = 1 }) of the first nest 

is selected proportional to exp[-Ul(X)J, where U,(X) is the potential energy associated 

with forest structure (Eq. 3.14). The nest site is selected with probability proportional to 

the suitability of the site, which is based on the logistic regression model. A low 

potential energy would indicate a good site, while a high potential energy would indicate 

a poor site for a nest. If forest structure in not considered in the location of nest sites, the 

location of the nest is chosen fi.orn a uniform distribution on the bounded region B. 
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- S U .  For the second and successive s~eps  ( t :  t = 2: 3, ...A'): tnro additional locations are 

chosen: Xt' = (x t 'y t '  E B; t = 2, ..., N) and A'; = {x, , y I  E B; t = 2, ..., 

procedures outlined in Step 1. 

* *  
using the 

Step 3A. If the spatial interaction between nests is not being considered, the total 

potential energies, Vt'(X, and V,'(X), associated with the two locations obtained in Step 2 

are computed (Eq. 3.14) and compared. The location, X, ' or X:, that minimizes the total 

potential energy is selected as the new location to add to the point pattern. 

Step 3B. If the spatial interaction between nests is taken into consideration, the total 

potential energies, Ui'(X) and Ut*(X), associated with the two locations obtained in Step 2 

are computed using Eq. 3.13. If min { Ut '(q, U*(X)} < q-1 (3, the new location, X+I is 

taken as min{ u'(4, V,*(X)). Ifmin{ Ut'Fr), V;"(X)> 2 Un-l (t), a uniform random 

number, k, on the interval (0,l) is computed, If 6 is less than exp[Q-l (4 - min{ vt'(x>, 

V,*(X)} J , location Z+l is taken to be min {Ut '(X), U;(X)}. Otherwise, no new nest is 

added to the point pattern in this step. 

Steps 2 and 3 are repeated until all N nests have been located within the bounds of the 

population. 

Step 4. The last step in the simulation was to apply the Metropolis algorithm (Cressie 

1991 :679, Ogata and Tanemura 1989) to adjust the initial point pattern to a state of 

equilibrium. This is accomplished by randomly selecting one of the N simulated nest 
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7 ,  locationsX,’= {x l  ; y r  E B; t = 1, ..., A?. K a t :  a new location is randomly selected in 

such a way that the coordinates {xt*,yt*} lie in a square with vertices at the 

point xi k 6 and yi f 6 , while all other AT-1 nests have the same position. The total 

potential energies associated with the two point patterns are computed and compared 

using the procedures described in Step 3B. If the total potential energy for the point 

pattern with one of the nest moved slightly is less than the potential energy for the 

original point pattern, the nest is moved to ths  new location. This process is repeated 

until the point pattern converges to a state of equilibrium. To ensure this convergence, 6, 

the maximum single step displacement allowed in passing from one state to the next, was 

selected so as to reject one-half of the trial states (Cressie 1991:680). Other than this 

recommendation, no information is available in the literature on how many steps are 

required for convergence (Cressie 1991 :680). In simulating the spatial distribution of the 

nests we used 78 x 200 Monte Carlo steps and a 6 = 30 m. 

Ogata and Tanemura (1 985) suggest one way to evaluate the equilibrium 

assumption is to examine the stationarity of the time series (t) of the total potential energy 

of the simulated point pattern. If we graph the change in total .potential energy as a 

function of time, one would expect the sample mean of the time series to equal zero 

(Ogata and Tanemura 1985) If a significant bias exists, this would indicate the point 

process is non-stationary and alternative models should be considered. 

The goodness-of-fit of the point process model was assessed by comparing the 

transformed empirical K-function (&)= { k ( h ) /  >,;’) (Ripley 1977), corrected for 

edge effect (Cressie 1991 ~515-61 S), to the transformed K-functions from 200 simulated 

realizations of the model. The simulations were used in constructing confidence 
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envelopes based on the miniinurn and maximum transformed K-fbnction to test the null 

hypothesis of no significant differences at the a= 0.005 level. If, for any distance, the 

observed transformed K-function falls above or below the confidence envelopes the null 

hypothesis is rejected at the appropriate level of significance. 

The first set of evaluations was based on the point process model describing the 

spatial interaction between individual northern goshawk nests. Next, we evaluated the 

component describing the spatial relationship between individual nests and forest 

structure. Finally, we combined the two components together to simulate the spatial 

distribution of goshawk nests based on the spatial interaction between individual nests 

and forest structure. To assess the degree of agreement between the distribution of 

predicted nest points and that of active nests, I used a chi-square goodness-of-fit test to 

assess differences in the probabilities of locating a nest between the predicted points and 

active nests in 1998. 

RESULTS 

Modeling Nest Site Suitability 

The mean optimum probability cut off fiom the logistic regression used to 

distinguish good from poor nest locations was 48% 21.5% (95% confidence intervals; 

SD=0.008). Based on this threshold, approximately one-third (410 km2, 33%) of the 

NKRD was classified as good nest hdbitat (Fig. 3.4). None of the pinyon-juniper sites 

were classified as good (Table 3. I), while 38% (267 km’) and 35% (45 km’) of pure 

ponderosa pine and spruce-dominated sites were classified as good, respectively. Only 

24% (35 km2) of mixed-conifer sites were classified as good nest locations; whereas, 
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Table 3.1. Distribution of estimated good and poor northern goshawk nest habitat by 

vegetative class on the North Kaibab Ranger Distrkt, Kaibab National Forest, Arizona. 

Vegetation Class Good (%) Poor (99) 

Pin yon-Juniper 0 100 

Ponderosa Pine 

Mixed-conifer 

Spruce-Dominated Mix 

Deciduous-Dominated Mix 

38 

24 

35 

48 

62 

76 

65 

52 

Opening 14 86 

All Vegetation Classes 33 66 
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48% (54 km2) of deciduous sites provided good nest locations. Open areas obviously do 

not contain trees for nests; however, in our model 14% (13 h2) of openings (Table 3.1) 

were classified as good nest locations. 

Trends in Nest Habitat Use 

Between 1991 and 1998, the number of active nests on the study area ranged fiom 

a low of 19 (1 994) to a high of 55 (1 993), representing 204 unique nest locations (out of 

344 nest attempts) on 94 unique territories (Table 3.2). The majority (147; 72%) of nest 

locations, representing 51 territories, were in good sites, while 57 nests (28%), 

representing 43 territories, were in poor sites (Table 3.3; Fig. 3.4) The largest proportion 

(79%) of nests in good habitat was in the ponderosa pine class. The fewest (i 5%) nests 

in good habitat were found in deciduous-dominated and mixed-conifer forests. Of the 57 

nests in poor habitat, over half (54%) were also in ponderosa pine, while almost a third 

(30%) were in the mixed-conifer class. Regardless of vegetation class, however, nearly 

80% (45 of 57) of nests in poor sites were found within 10 m of a good site. 

Nest Habitat 

Important variables (Tables 3.4,3.5) from the logistic regression model and their 

standardized coefficients, which discriminated between good and poor nest site locations, 

varied with vegetation class, In ponderosa pine, the likelihood that a stand contained a 

nest improved with increasing total basal area (above 29 m2/ha), but smaller proportions 

of spruce-fir basal area (less than 5.5%) and, especially, aspen basal area (less than 

7.9%). Denser canopy closures, flatter slopes, and understory vegetation taller than 0.5 rn 

also improved the probability of a nest location. Zn the mixed-conifer zone, the 

likelihood of nest habitat use was greater on steeper (> 8%) slopes with easterly exposure 
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Table 3.2. Total numher of territories and active northern goshawk nests between 1991 

and 1998 above 2,182 m in elevation on the North Kaibab Ranger District, Kaibab 

National Forest, Arizona. 

Year 

1991 1992 1993 1994 1995 1996 1997 1998 Total 

Total temtories 

monitored 36 58 72 87 95 102 105 105 660 

New territories with 

active nests 36 21 13 3 10 8 0 4 94 

Active nests 35 52 55 19 48 42 30 53 344 

New active alternate 

nests 35 37 33 9 29 21 15 25 204 
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Table 3.3. Number of active nests between 1991 and 1998 by estimated suitability (good, poor) of nest locations and 

vegetative class on the North Kaibab Ranger District, Kaibab National Forest, Arizona. 

~ ~ 

Good Poor Total Number 

Vegetation class Number of Nests Percent Number of Nests Percent of Nests 

Pinyon-Juniper 0 0 0 0 0 

Ponderosa Pine 116 79 31 54 147 

Mixed-conifer 8 5 I7 30 25 

Spruce-Dominated Mix 17 12 5 9 22 

Deciduous-Dominated Mix 6 4 4 7 10 

Openings 0 0 0 0 0 

~ 

Total 147 100 57 100 204 



Table 3.4. Standardized regression coeficients for variables that maximize the likelihood of a northern goshawk nest occurring in a 

vegetative class on the North Kaibab Ranger District, Kaibab National Forest, Arizona. The magnitude and direction of the 

coefficients (positive - increase, negative - decrease) are comparable within and between models. 

Vegetation cIass . 

spruce- Deciduous- 

Pinyon- Ponderosa Mixed- Dominated Dominated 

Juniper Fine conifer Mix Mix Openings 
VariabIe 

Aspect --- --..- -0.082 -0.172 0.570 -_-- 

Slope (%) -0.373 -0.044 0.041 0.007 0.653 -0.001 

Elevation (m) ---- ---- -0.016 0.077 --- -0.052 

Landform ---- -I- 0.067 -0.083 -0.324 --a- 

Total BA' (m2/ha) 0.050 0.102 0.116 -0.040 0.1 12 0.032 

Ponderosa Pine 8AZ ---- --- I- 0.689 -I- --- 
Spruce-fir B A ~  -0.051 -0.042 -0.096 -- 0.639 -0.067 

Aspen B A' 0.000 -0.109 0.075 ---- -0.236 0.020 

Canopy3 -0.004 0.003 0.002 0.002 -0.002 -0.001 



Table 3.4. (continued) 
Understory Height (m) 0.053 0.046 0.039 -0.192 -0.486 0.062 

Seedlings4 0.062 0.061 0.128 0.09 1 0.039 0.053 

Basal area 

Proportion of total BA (m2/ha) 

Proportion of canopy closure 

Presence or absence 

2 

3 

4 



Y 

Table 3.5. Means for variables that maximize the likelihood of a northern goshawk nest occurring in a vegetative class on 

the North Kaibab h g e r  District, Kaibab National Forest, Arizona. 

Vegetation class 

Spruce- Deciduous- 

Pinyon- Ponderosa Mixed- Dominated Dominated 

Juniper Pine conifer Mix Mix Openings 
Variable 

Slope (%) 

Elevation (m) 

Landform 

Total BA’ (m’ /ha) 

Ponderosa Piiie BA’ 

Spruce-fir BA2 

Aspen BA2 

canopy3 

Understory Height (m) 

18 

---- 

0.068 

0.000 

0.800 

0.947 

6 

-- 
29 

---- 
0.055 

0.079 

0.93 1 

0.506 

8 

2605 

0.002 

39 

I.- 

0.706 

0.138 

1.035 

0.499 

7 9 

2682 -I- 

-0.046 0.327 

36 30 

0.228 ---- 
--- 0.442 

I-- 0.825 

1.038 1.057 

0.682 0.592 

7 

2490 

---- 

2 

-- 

0.052 

0.087 

0.267 

0.772 



Table 3.5 .(continued) 
seed~ings~ 0.371 0.639 0.887 0,944 0.897 0.222 

I Basal area 

Proportion of total BA (m2/ha) 
Proportion of canopy closure 

Presence or absence 

3 

4 



and jn drainages, particularly where smallcr proportions of spruce and fir, but greater 

proportions of aspen basal area, occur. Elevations lower than approximately 2,600 m als, 

understory vegetation taller than 0.5 m, dense canopy closures and, in particular, 

seedlings and saplings also improved the likelihood for nest habitat in the mixed-conifer 

forest type. In spruce-dominated areas, higher nest-use was associated with less total 

basal area -- although proportions of ponderosa pine grater than 23%, particularly 

concurrent with shorter (< 7 m) understory heights -- and somewhat greater canopy 

closure. Flatter, east-facing slopes, higher elevations than approximately 2,680 m asl, 

and gradual ridges on the landscape also increase the likelihood for locating a nest in 

spruce-dominated landscapes. In deciduous-dominated forests, nest site use was 

enhanced by the presence of ridges and, especially, steeper (> 9%) slopes with south or 

south-west facing aspects, shorter (< 6 m) understory vegetation, and greater amounts of 

total basal area, including larger proportions (> 44%) of spruce-fir basal area, but lower 

proportions (< 82%) of aspen basal area. Smaller canopy closures, more typical of 

spruce-fu than of aspen, also improve the potential for nesting. It follows that openings, 

which are devoid of trees, require greater amounts of total basal area than 2 m2/ha to 

improve their potential for nest site use. Greater amounts of aspen, which are generally a 

seral species in open, following a disturbance, increase nest use potential in particular. 

Seedlings, saplings, and taller understory vegetation are also favored. According to our 

logistic model, none of the pinyon-juniper forest class was considered 

habitat. Nonetheless, we derived coefficients for the variables that would maximize the 

likelihood of a nest occurrence in this forest type. These conditions included flatter 

slopes (< 3 8%) and the presence of seedlings and saplings, greater total basal area (> 17 

nest 
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m2/ha), hut sni~aller proportions (< 7%) of spruce-fir basal area, and a slightly more open 

(< 80%) canopy. Overall, our modcl suggests that the pi-esence of seedlings and/or 

saplings improves nest habitat in all vegetation classes. 

Sinwlating the Spatial Distribution of Nests 

The transformed K-function (Fig. 3.5) of the spatial distribution of individual 

goshawk nests (N = 27) in the rectangular region B shows some territoriality as the 

empirical K-function extends below the lower simulation envelope for distances less than 

2 km. The minimum distance observed between active nests in 1998 was 1.6 km. This 

indicates that there are fewer pairs of nests within a 2 km distances than what we would 

expect if the nests were randomly distributed, and that those nests were regularly 

distributed. At distances greater than 2 km, the empirical K-function is contained within 

the simulation envelopes, indicating that the spatial distribution of goshawk nests does 

not differ significantly from a random spatial pattern. The Cramer-von Mises,goodness- 

of-fit statistic also indicated some non-randomness in the spatial distribution of goshawk 

nests (Table 3.6). Thep-value associated with this test was 50.14 for all distances 5 16 

km. The strongest degree of non-randomness (p 0.05) was observed for distances less 

than 6 km. 

When the Gibbsian painvise potential model was fit to the nest point data, model 

PF2 (6 = 0.005204, B = 0.005923) (Fig. 3.6) was selected as the best fitting model based 

on the AIC. The shape of the potential function suggests that individual nesting pairs of 

goshawks have a repulsive tendency toward one another and that the territorial effects 

between individual pairs decrease with increasing distance between nests @.e., soft-core 

model), The point at whch the potential energy approaches zero (=: 20 km) provides an 
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Figure 3.5. Plot of the transformed K-hnction, L(h) = { K ( h ) / x ~ ” ,  against distance h, used to model the spatial arrangement of 

individual northern goshawk nests on the bounded region (B) on the North Kaibab Ranger District, Kaibab National Forest, Arizona. 

The stair-step line represents the empirical K-hnction calculated from the data; continuous lines represent the upper, average, and lower 

9% simulation envelopes for 200 realizations of a spatial Poisson process. 



Table 3.6. Results of the Crainer von-Mises goodness-of-fit lest used to test the null 

hypothesis that northern goshawk nests in 1998 were randomly distributed on the North 

Kaibab Ranger District, Kaibab National Forest, Arizona. 

Distance (km) Test Statistic P-value 

2 

3 

4 

5 

6 

7 

8 

9 

10 ’ 

11 

12 

13 

14 

15 

16 

282.25 

238.38 

195.17 

163.32 

136.43 

117.68 

109.72 

95.3 1 

98.55 

96.42 

101.12 

104.97 

107.94 

110.31 

119.35 

0.00 

0.03 

0.00 

0.01 

0.02 

0.06 

0.13 

0.13 

0.10 

0.09 

0.03 

0.13 

0.1 1 

0.14 

0.08 

13 1 
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Figure 3.6. Plot of the fitted painvise potential model (PF2) for individual northern goshawk nests on the bounded region (B)  on the 

North Kaibab Ranger District, Kaibab National Forest, Arizona. 



estimate of the mr-lxirnur-n zone (circular area) of territoriality ai-ound individual nests. 

This result corroborates the above-mentioned results. 

The transformed empirical K-function for the component of the point process 

model that describes the spatial interaction between individual nests (Fig. 3.7a) is 

contained within the bounds of the simulation intervals indicating the model provides a 

good fit to the data. In the range of 5.5 km to 9.5 km, the point process model shows a 

more regular pattern than that observed in the data. Territories defended by goshawks 

may be irregular in shape, especially in years when neighboring pairs are not breeding, 

and their nests may be located near the edge of their territories. Thus, at coarser scales 

there may be a tendency for some type of clustering of nests. In contrast, the model 

assumes the nests are at the center of their territories and exhibit an equal territorial force 

in all directions, resulting in a more regular pattern at all scales. The fact that the 

empirical K-function is contained within the simulation envelopes suggest the following 

two hypotheses: 1) the distribution of goshawk nests are spatially independent of forest 

structure; and 2) there is enough available habitat for nests on the study area as to not 

limit the spatial distribution of individual goshawk nests. 

Except for distances less than 2 km, the transformed empirical K-function for the 

forest structure component of the point process model (Fig. 3.7b) is contained within the 

bounds of the simulation intervals. This graph looks similar to the one obtained when we 

tested for csr (Fig. 3 . 9 ,  suggesting that if we allocate nests using the potential energy 

associated with forest structure we generate a pattern similar to that of a random one. 

This result supports the second hypothesis that the current availability of good nest 
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Figure 3.7. Plot of the transformed K-function, L(h) = {K(h)/lrj”’ against distance h, used to model the spatial arrangement of 

individual northern goshawk nests on the study area on the North Kaibab Ranger District, Kaibab National Forest, Arizona. The 

stairstep line represents the empirical K-hnction calculated from the data and the continuous lines represent the upper, average, and 

lower 99% simulation envelopes for 200 realizations of the (a) nest component of the point process model, (b) forest component of the 

point process model, (c) point process rnodei that takes into consideration the territoriality between individual active nests and forest 

structure. 



locations on the study area is not a factor limiting the spatial distribution of active 

goshawk nests. 

The transformed empirical K-hnction for the complete model (Fig. 3 . 7 ~ )  is 

contained w i t h  the bounds of the simulation intervals indicating that the spatial model 

is capable of describing the distribution of nests on the study area, and in turn, provides a 

measure of the spatial dependency among individual nests and forest structure. 

Realization of the final model allows us to predict the location of 27 nest points within 

the bounded region B (Fig. 3.8) and 96 nest points on the entire KNF (Fig* 3.9). The 

distribution of nest site probabilities associated with the predicted points depicted in 

Figure 3.9 did not differ ( J  = 1 1.14, df = 9, P-value = 0.266) from the nest site 

probabilities associated with active nest in 1998 on the study area (Table 3.7). 

DISCUSSION AND CONCLUSIONS 

We present a flexible point process model that describes the spatial dependency 

between the location of active goshawk nests and forest structure. The model assumes 

that individual nests are distributed according to the potential energy associated with the 

structure of the forest and a conspecific competitive effect (territoriality). 

On the NKRD, it is apparent that suitable nest habitat is not limiting the 

distribution and abundance of goshawks. Instead, territoriality and what appear to be 

non-compressible territories limit the distribution and abundance of the nesting 

population. Within territories, choices of nest locations appear to be limited by the 

availability of sites with “good” nest habitat structure and topography (see Reynolds et al. 

1992). While territory size and density probably reflect the abundance, distribution, 
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Figure 3.8. Realization of the point process model (triangles) that takes into consideration 

the territoriality between individual northern goshawk nests and forest structure on thc 

North Kaibab Ranger District. Kaibab National Forest, Arizona. The locations of 27 activc 

northem gosliawk nests (circles) used in fitting the model are plotted for comparison. The 

point pattenis are overlaid nn a sun-Face ,sI-inwing the probability of finding a northern 

goshawk ncst wjt1ii1-1 the boullded region (13) on the study area associatcd with forcst 

stnicturc. Areas with n low probabiljly (poor net areas) a w  lighter. in color and arcas with 3 

high prnhabjlity (,good nest areas) art: darkei- in color. 
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Figure 3.9. Realization of the point process model (triangles) that takes into consideration 

the territoriality between individual northeni goshawk nests and forest structure 011 the 

North Kaibab liangcr District, Kaibab National Forest, Arizona. The predicted point 

pattern of nests is overlaid on a surface showing t-he probability associated with forcst 

structure of finding a northern goshawk nest within the study area. Areas with a low 

prnbahilitv (jmm ncst arcas) arc lighter in color and m a s  with a high probability (good 

nest arcas-) arc darker in color. The probabilities associated with each sirnulated point do 

not diffcr (31- = 1 1.14, df = 9, P-value = 0.266) from those 01 actual nests. 



Table 3.7. Distribution of probabilities of finding a northern goshawk nest associated 

with predicted and observed (1998) nest points on the North Kaibab Ranger District, 

Kaibab National Forest, Arizona. 

Observed Nests Predicted nests 

Probability Frequency Probability Frequency 

0.00-0.10 9 0.00-0.10 11 

0.10-0.20 5 0.10-0.20 3 

0.20-0.30 5 0.20-0.30 6 

0.3 0-0.40 11 0.30-0.40 8 

0.40-0.50 12 0.40-0.50 9 

0.50-0.60 

0.60-0.70 

0.70-0.80 

0.80-0.90 

0.90-1 .oo 

12 0.50-0.60 

7 0.60-0.70 

7 0.70-0.80 

11 L 0.80-0.90 

17 0.90-1 .oo 

11 

13 

1 1  

12 

14 
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quality. and accessibility of pi-ey on the study area (Newton et al. 1977, Nilyson et al. 

1982, Kenward and Width 1989, Kenward and Widkn 1997, Kenward et al. 2001). Nest 

locations in a given year were regularly distributed with a minimum of 1.6 km between 

active nests. Although goshawks need only a small patch (about 0.01 -0.10 km2) of 

suitable habitat for nests, the reproductive "quality" of those sites should, at least, be 

partially determined by the capabilities of the surrounding habitat to support populations 

of diverse prey and provide appropriate foraging opportunities for goshawks (Reynolds et 

al. 1992, Widen 1997). Although the quality of territories was not determined as part of 

this study, it was found to vary across the study area (Chapter 4). In reality, only a 

portion of the good nest sites may actually have successful breeders. Regardless, 

alterations of forest struchre in large areas due to improper management or natural 

disturbances may reduce the quality of or eliminate nest habitat to the point that the 

distribution of goshawk territories in our model is affected. 

In our final model, the total effect on nest location is dominated by territoriality; 

however, w i t h  territories, the distribution of high and low potential habitat, based on 

forest structure, plays an important role in nest location. These relationships may reflect 

the management history on the NKRD. While many forests in the southwest received 

heavy railroad logging in the 1 800 and early 1990s, the Kaibab Plateau experienced 

limited harvesting (Pearson 1950) because it is isolated from the railroad by the Grand 

Canyon. Management on the NKRD since the 1960s has been variable; some areas have 

been intensively managed (Le,, seed tree, shelterwood. cuts, clearcuts), while others 

received less tree cutting (i.e., thinning, individual tree selection). Intensively managed 

areas generally contain lower quality nest habitat; while the less heavily managed areas 
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have higher quality nest habitat (S. M. Joy, pers. obs.). With the implementation of 

managcment to enhance goshawk nest and foraging habitat (Reynolds et al. 1992), the 

forest structure should be restored to hstorical conditions and more of the study area 

should become suitable habitat. 

The varying importance and direction (positive-increase, negative4ecrease) of 

forest structural coefficients in the potential model reflect the probability of sites within 

each vegetation class to contain a goshawk nest. Increased total basal area in all 

vegetation classes, except the spruce-dominated type, was favored. Less spruce-fir and 

aspen in ponderosa pine; greater proportions of ponderosa pine in spruce-dominated 

forests; less spruce-fir, but more aspen in the mixed-conifer forest; and less aspen, but 

more spruce-fir in the deciduous-dominated forest are particularly important. In the 

ponderosa pine zone, more spruce and fir would increase the density of smaller trees and 

may restrict access by the goshawk to its nest; whereas, more aspen might decrease the 

protection conferred at nests by adjacent crowns, especially early in the nesting period 

prior to leaf-out. In spruce-dominated habitat, ponderosa pine trees provide large 

horizontal branches typically used for nest substrates, easier access to the nest by adults, 

and would occupy a greater proportion of the canopy, conveying greater above-canopy 

protectjon. Because the mixed-conifer forest is typically dense in both the overstory and 

understory (S. M. Joy, pas .  obs.), increasing amounts of aspen basal mea in a site 

suggest that mixed-conifer forests containing mature aspen trees improve nest habitat 

quality, Mature aspen trees within mixed-conifer forests provide a more open understory, 

large open crowns for nest placement, and easier access to nests. Mixed-conifer and 

spruce-fir forests containing some mature aspen trees provide more opportunities for 
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optimal nest tree use than pure aspen stands, probably due to the latter’s openness prior to 

1 eaf-out. Our model suggests that regenerating large openings created by management or 

natural disturbance, particularly with aspen, is needed to restore nest habitat in openings 

and increase the availability of high quality sites. Aspen is generally seral to disturbance 

and, subsequently, provides the canopy closure needed by more shade-tolerant pines to 

regenerate. 

Within the ponderosa pine forest type, nest habitat is also enhanced by greater 

canopy closures and flatter slopes typically associated with pine regeneration. LRss 

canopy closures and steeper, southeast-facing slopes associated with ridges improve nest 

habitat in the deciduous-dominated forest types by potentially encouraging the 

regeneration of ponderosa pine, rather than spruce-fir species. Steeper slopes associated 

with drainages at elevations below 2,600 m asl, easterly-facing exposures, and dense 

canopy closures, improve nest habitat within the mixed-conifer forest. However, nests in 

mixed conifer are typically found in trees (usually ponderosa pine) associated with 

ridges. Perhaps at lower elevations, east facing slopes in drainages encourage the 

regeneration ponderosa pine trees or aspen, which would eventually provide greater 

canopy coverage as well as a greater number of useable nest trees and limit the amount of 

fir regeneration. The habitat characteristics that create high quality nest sites in spruce- 

dominated forests -- east-facing exposures with slightly elevated slopes leading to ridges 

-- would most likely enhance the growth of more spruce and fir. Pinyon-juniper, which 

tends to grow on steep, hot, west-facing slopes above 2,182 m as1 on the NKRD, would 

be improved for nests by flatter slopes and less canopy closure. Although goshawk nests 

are not found in pinyon-juniper forests on the study area, they do occur within cooler 
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stands of ponderosa pine in drainages that extend into the pinyon-juniper zone. It seems 

the habitat characteristics identified by our model provide cooler sites that may encourage 

the gowth of ponderosa pine. 

Our model suggests that the presence of seedlings and/or saplings “improves” 

nest habitat in all vegetation classes. Nevertheless, the nature of tree regeneration in a 

nest area varied widely. In some areas, seedlingslsaplings may be small and few, such 

that they do not impose a physical or visual barrier for nesting hawks. However, as 

saplings increase in size, they probably hinder goshawk flight to and from nest trees. 

They also increase the risk of forest-killing fire and loss of eggs or nestlings. Regardless, 

the presence or absence of seedlings and saplings alone is insufficient to provide a 

biologically meaningful index of nest site potential. Shrubs and herbaceous understory 

height may also be a poor predictor for similar reasons. 

Although the majority (86%) of openings on the study area were classified as 

poor nest habitat, some openings (1 4%) were classified as good habitat. Within 

ponderosa pine and mixed-conifer forests on the NKRD, small (1 0-m x 10-m) openings 

are common. These small openings may represent some of the 14% that fell in good nest 

habitat; whereas, some openings classified as good nest habitat may be classification 

errors attributed to the “open” vegetation class. Openings contained the highest (23%) 

classification error rate of all vegetation classes (Joy et al. 2001, Chapter 1). 

Between 1991 and 1998,57 out of 204 active nests were in ‘‘poof’ nest habitat. Of 

the 57, 80% (45) were found within 10 m of a “good” nest site, regardless of vegetation 

class. The classification of these nest locations as poor could be due to mors in the 

mapping of nest trees or registration of the Landsat information. Mapping errors would 
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tend to lower the significance of h e  logistic regression model, indicating that good nest 

locations are more randomly distnbuted (Stoms et al. 1992). That is, we would be unable 

to discriminate nest from random sites. However, we believe the majority of our nests 

were recorded to within 3 m of their actual locations. Alternatively, if the spatial resolution 

of our models did not capture the geographic scale at which goshawks choose nest trees 

(e.g., if nest trees were selected based on local prey availability), we might also expect 

more nests to be in poor sites. Non-nesting territorial goshawks may have introduced 

spaces into the distribution of nests, thus confusing our estimation of good and poor nest 

habitat. Finally, some goshawks may chose to nest in poor habitat. Despite all the possible 

sources of error in our analysis, we believe that territorial interactions (Ozesmi and Mtsch 

1997) among breeding goshawks, as well as potential interactions with other raptors (e,g., 

R. T. Reynolds, unpubl. data, Janes 1984), explain why not all of the active nests were 

located in good sites. 

Treating forest structural components as one continuous variable allows the 

introduction of environmental heterogeneity into the point process model, which in turn 

allows a modeling of the spatial interaction between goshawk pairs at nests, both on a 

local and regional level. Such a model is useful in simulating the effects that changes in 

the forest, either through manmade or natural disturbances (e.g., fires), have on the spatial 

dynamics of a goshawk population. This can be accomplished by systematically 

changing the potential energy associated with forest structure, and then observing how 

this change influences the spatial distribution of goshawk nests. As some nest sites 

become unsuitable because of harvesting or other types of disturbances, goshawk pairs 

may move to an alternate nest within their territory. The location of alternate nests will 
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depend on the availability of suitable sites. The model also provides information on the 

total potential occupancy of the forest. Moreover, when we incorporate the 

demographics of the goshawk population into the point process model, it should be 

possible to study the spatio-temporal behavior of the goshawk population as influenced 

by forest management activities. 

The information derived from such a model should benefit researchers and 

managers interested in ecosystem processes by providing a better understanding of the 

influence that coarse- and fine-scale spatial variability have on the abundance and 

productivity of goshawk populations. Our approach to modeling the spatial dynamics of 

an individual species with their habitat can be used in a variety of applications and study 

areas. However, inferences from the model generated here should not be made beyond 

the scope of the study area. In alternate study areas, where goshawks may occur in lower 

densities than on the NKRD, where nest spacing might be irregular, or where habitat data 

exist at a coarser resolution, a new point process model should be developed. 
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CHAPTER FOUR 

CORRELATES OF NORTHERN GOSHAWK TERWTORY QUALITY 

ABSTRACT 

I identified qualitative differences between potential “source” and “sink” habitats 

for northern goshawks (Accipiter gentilis; hereafter, goshawk) and random locations on 

the North Kaibab Ranger District (NKRD), Kaibab National Forest (KNF), Arizona by 

comparing vegetative characteristics among random plots and plots at nests on goshawk 

territories with higher (source) and lower (sink) reproductive performance. Differences 

in tenitory quality were based on the annual rate of egg laying and total fledglings 

produced during the study period (1991-2000). Neither the recruitment of young, first- 

time breeders nor the tenure of females on territories influenced territory quality. 

However, more females were replaced on lower than higher quality territories, suggesting 

that a female’s experience on a territory (vis-A-vis her ability to fledge more young) may 

influence the territory’s assessment of quality. Habitat characteristics (the proportion of 

pinyon-juniper, ponderosa pine, mixed conifer, spruce- and deciduous-dominated mixes, 

openings, and vegetative diversity) were characterized at five spatial scales within circle 

and ring plots to evaluate the amount and spatial arrangement of vegetation, respectively, 

around goshawk and random sample plots. The majority of differences found in the 

vegetative components, which were similar for circle and ring plots, occurred between 
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lligher quality territories and random plots. Although differences in vegetative 

composition and diversity between source and sink territories were not found, the use 

additional variables, such as forest structural components, may discriminate better 

between these territory classes. Lopt ic  models for predicting goshawk territory 

locations and territories of higher quality based on select vegetative characteristics were > 

80% accurate. Although the predictive models presented here can be used to assess the 

probable effects of forest management on territory quality, they should not be used as 

targets for implementing forest management practices. 

INTRODUCTION 

Two goals of ecological studies are to (1) determine how landscape heterogeneity, 

including anthropogenic-caused changes in species composition, structure and pattern, 

affect the demographic processes of animal species, and (2) develop predictive models 

for resource management (Risser el al. 1984, Morrison et al. 1992). Animal populations 

typically occupy a range of habitat conditions and are believed to fill landscapes 

according to their fitness in a potential habitat (Brown 1969, Fretwell and Lucas 1970, 

Pulliam 198s). Individuals occupy higher-quality habitats first, and then progressively 

settle into habitats of lesser quality. In higher quality habitats, reproduction is generally 

sufficient to sustain population numbers; whereas, in poor habitats, mortality typically 

exceeds reproduction (Wiens 1986, Pulliam 1988). Some populations in lower quality 

habitats, or “sinks,” persist due to immigration by individuals from higher quality or 

“source” habitats (Pulliam 1988). This is due, in part, to dominant individuals forcing 

subordinates to emigrate or disperse from higher quality habitats to sinks, An adequate 
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proportion of breeding habitats in landscape must therefore he of higher quality to 

maintain stable breeding populations (Wens 1986, Pulliarn 1988, Howe et al. 1991). 

Because the relative abundance and spatial arrangement of source-sink habitats can affect 

population persistence (Pulliam and Danielson 1991, Donovan et al. 1995), conservation 

and management should focus on assessments of habitat quality and their relationships to 

source-sink population dynamics. 

Bird and mammal populations in forests are increasingly affected by habitat loss 

and changes in structure associated with landscape-altering human activities, such as tree 

harvests, livestock grazing, and fire control. Similarly, management-related habitat 

changes are thought to be responsible for declining populations of northern goshawks 

(Accipiter gentilis; hereafter, goshawk) (Reynolds 1983, 1989; Speiser and Basakowski 

1984, Crocker-Bedford 1990, Reynolds et al. 1992; Kennedy 1997, Peck 2000) either by 

eliminating critical habitat or creating population sinks. As a result, goshawks are 

considered a “sensitive” species by most National Forests, “special status species” by 

most National Parks, and “Category lI’’ species by the Fish and Wildlife Service (FWS). 

Since 1992, the FWS has been petitioned three times to list the goshawk as “threatened.” 

Although goshawks occur in a wide range of forest types and structures, they 

typically place their nest in forests with large trees, relatively high canopy closure, and 

open understories (Reynolds et al. 1982, Moore and Henny 1983, Speiser and Basakowski 

1987, Hayward and Escano 1989, Siders and Kennedy 1996, Squires and Ruggerio 

1996). Goshawks typically forage in mature to old forests, but younger forests, edges, 

and openings are used (Widen 1989, Bright-Smith and Mannan 1994, Hargis et al. 1994, 

Younk and Berchard 1994). The use of diverse habitat conditions by hunting goshawks 
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is reflected in their diets; birds and inamnals occupying old forests, edges, arid openings 

are typically eaten (Reynolds et al. 1992, Kenward and Wjdh  1989). However, despite 

our knowledge of the habitats used by goshawks for nesting and foraging, we know little 

about the role that habitat plays in influencing goshawk reproductive success or 

population persistence. 

Since the theoretical development of source-sink models in the 1980s, few raptor 

studies (Korpimaki 1988, Newton 1991, Kostrzewa 1996, Franklin 1997, Ripple et al. 

1997, Thome et al. 1999, Linkhart 2001, Rodewald and Yahner 2001, Finn et al. 2002) 

have linked direct measures of individual fitness (reproduction, s d v a l )  to spatially 
I 

explicit models of landscape composition, structure, or arrangement, in part due to the 

time and labor involved in quantifymg demographic performance (Wiens 1973). 

Reynolds and Joy (I 998) believe than more than 8-1 0 years of reproduction data and >50 

goshawk territories are required to accurately estimate goshawk demographic 

performance. Nevertheless, previous attempts to correlate goshawk demographic rates 

with habitat features (Allison 1996, Desimone 1997, McGrath 1997, Finn et al. 2002) 

have included few years (5 4) and territories (I S O )  to discriminate habitat-related 

demographic performance from that due to the influence of individual experience or 

environmental (weather, prey) stochasticity. Therefore, especially in long-lived species 

such as goshawks, long periods of population monitoring are recommended (Pulliam 

1988, Van Home 1983, Vickery et al. 1992, Franklin 1997, Van Home et al. 1997). To 

date, only one goshawk study (McClaren et al. 2002) has been conducted at sufficient 

temporal or spatial scales to infer differences in goshawk territory quality fiom 
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demos-aphic perfonnance. and coinparisoris with habitat were not made because minimal 

differences in nest productivity were found due to the spatial arrangement of nests. 

In this study, I assess differences in goshawk territory quality (higher, lower) 

based on reproductive success, evaluate the influence of age and prior experience on 

tenitory quality, identify the amount and spatial arrangement of vegetative characteristics 

that distinguish between the levels of territory quality and random locations, and develop 

a predictive model of territory quality. The study takes place on the NKRD in northern 

Arizona, where we (Joy et al. 1994, Reynolds et al. 1994, Reynolds and Joy 1998) have 

studied a population of nesting goshawks over a ten-year period (1991-2000). 

STUDY AREA 

The study area includes 1,28 1 km2 of the NKRD on the KNF above 2,182 M 

above mean sea level (ad) in northern Arizona (Fig. 4.1). Located in the northern 2/3rds 

of the oval-shaped (95 km x 55 km) Kaibab Plateau, the study area descends steeply to 

the east and gently to the north and west sides into shrub-steppe plains. To the south, the 

NKRD shares a border with Grand Canyon National Park-North Rim. The study area is 

comprised of many drainages, moderately sloping valleys, a few of which have long, 

narrow (< 1 km wide) meadows containing grasses and herbaceous vegetation, and east- 

west and north-south oriented canyons. The forest receives approx. 67 cm of annual 

precipitation (White and Vankat 1993) from late-summer, heavy monsoon showers and 

snowpacks of 3-6 m. 

Six forest classes were identified on the study area (Joy et al. 2001, Chapter 1).  

(1) Pinyon (Pinus edulis)-juniper ( h i p e m s  spp.) woodlands (1 06 km2) occur approx. 
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Figure 4.1. Location of the study area (shaded region) 2,182 rn above mean sea level 

on the North Kaibab Ranger District (hatched region) of the Kaibab National Forest, 

Arizona, including random plots (triangles) and goshawk temtory centroids (circles). 

Centroids were calculated as the mean coordinate of all active nests between 1991 and 

2000 within a territory, weighted by the number of years each nests was active. Active 

nests are ones in which 1 egg was laid.  
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betu;cen 2:182-2,250 111 and mix with ponderosa pine (P. porzdemsa) at higher, 

transitional zones; (2) ponderosa pine comprises over 50% (714 Ian2) of the forested area 

aiid occurs approx. between 2,250 and 2,550 in asl; (3) mixed conifer (145 h2), which 

occurs approx. between 2,550 and 2,650 m asl, is comprised of ponderosa pine mixed 

with white (Abies c0nc0l0r), Douglas-fir (Pseudotsuga mensiesii), quaking aspen 

(Populus tremuloides) and with spruce (Picea puizgens, P. englemannii) at higher 

elevations; (4) spruce-dominated mixes occur with sub-alpine fir (A. lasiocarpa) (1 30 

km2) above approx. 2,650 m asl; ( 5 )  deciduous (quaking aspen, Quercus gumbelq- 

dominated mixes (1 12 h2) occur sparsely throughout the forest and are common where 

extensive disturbance (fire, logging) has occurred; and (6 )  Openings (74 km2) occurred 

throughout the study area. Openings ranged in size from 100 m2 to 2.15 km2. 

Forest management began on the NKRD in the 1920s in the form of single-tree 

(sanitation) selection. Sanitation continued, along with a cluster of small (0.1 km2) 

clearcuts (totaling 9.9 km2) in the south-central part of the study area, until the late-1 970s 

when intensive stand-level management (sheltenvood, seed, salvage, removal, and 

thinning cuts) began. Intensive stand management continued until 199 1 when the NKRD 

implemented forest management designed to enhance the habitat of goshawks and their 

prey (Reynolds et al. 1992). Livestock grazing was common on the NKRD between the 

late 1 800s and the mid-1 920s. Fire suppression since the early 1900s has affected the 

composition and structure of all forested areas on the NKRD by encouraging regeneration 

of shade-tolerant tree species. 

Some management-caused changes appear to affect the reproductive performance 

of goshawks by altering the composition and abundance of prey resources. For example, 
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the Kaibab squirrel (Sciui-us aberti kaibabeizsis), a primary goshawk prey species: 

depends on ponderosa pine for food (cambium, inner bark, cones) arid nest sites (Hall 

1981). A reduction in historically frequent pound fire through fire suppression has 

resulted in denser forests and prevented regeneration of ponderosa pine, a shade 

intolerant species. Loss of ponderosa pine will result inn loss of the Kaibab squirrel, 

eventually reduced the carrying capacity of these forests for goshawks. 

METEIODS 

Terminology 

“Habitat” refers to the local biotic, climatic, and edaphic conditions that make up 

the goshawk’s environment. “Territory” (approx. 1.5 km radius) is the area used and 

defended by a single pair of goshawks during the nesting season. Each territory may 

contain one or more alternate “nest areas” (Reynolds et al. 1992), i.e., a 0.15-0.20 km2 

area surrounding a nest tree in which adults build their nests, roost, and may prepare prey 

for their young. A temtory is considered “occupied” in a given year if a pair or single 

goshawk has been observed in one or more alternate nest area within that territory on two 

or more occasions, or once if accompanied by molted feathers, feces, prey remains, or 

recent nest construction. When eggs were laid in a nest, the nest (and territory) is 

“active.” Active nests that fail to fledge young (i.e., in which eggs or nestlings were lost) 

are “failed.” The number of young fledged from nests is the “productivity” or 

“reproductive output” for that territory. For nests in which eggs are laid, but no young 

are fledged, productivity is zero. Movements by adults from one breeding territory to 

another between nesting seasons is termed ‘%reeding dispersal.” “Landscape,” 
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“landscape-scale,” and “ l a n d s c ~ ~ ~ e - l e ~ ~ l ”  refer to land sur-faces and associated habitats 

occurring across several kilometers (Turner and Gardner 1991 >. In this study, landscapes 

range fiom the size of a goshawk territory to the entire study area. 

Population Sampling 

Between 1991 and 2000, field crews (6-20 personnel) searched annually for active 

goshawk nests. Each year, all previously known nests and territories were monitored and 

systematic searches were conducted for new nests and territories. By the year 2000,90% 

of the study area had been searched. Where the status of pairs on territories remained 

unknown after initial early spring nest visits, searches on foot (Reynolds 1982) within a 

0.50 km radius were conducted around previously active nests and by systematically 

broadcasting goshawk vocalizations from predetermined stations and transects (Kennedy 

and Stahlecker 1993, Joy et al. 1994) within a 1 -50-km radius around the last known 

active nests. Both search methods required detecting goshawks by sight, vocalization, or 

sign of their presence (molted feathers, feces, plucked prey, nest construction). Each 

year, visits to nests on territories and follow-up searches began in April and ended at the 

close of post-fledgling dependency (mid-August). All known nest structures in all 

territories were visited by the first week of incubation to avoid missing early nest failures. 

The location of active nests was verified using a Trimble Navigation PathfinderTM Asset 

Surveyor Global Positioning System (GPS) with an estimated accuracy of 1-3 m. 

Because new territories were discovered every year, there were a variable number of 

years of data on resident pairs. 

. 

During each breeding season, visits to active nests were made weekly to 

determine the status of nests and causes of nest failure, and to capture, band, ox resight 
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breeding adults. Adults were trapped during the riestling and early-fledgling periods in 

nest ar-eas using dho-gaza nets arranged in a “V” around a live great horned owl (Bubo 

virginiams) (Bloom 1987). All birds were fitted with USFWS aluminum leg bands and 

anodized aluminum colored leg bands marked with unique 2-character alpha-numeric 

codes readable at up to 50-80 m with 20-40 power spotting scopes (Reynolds et al. 1994). 

Marked individuals provided confirmation of territory ownership when alternate nests 

were used. Nest trees were climbed late in the nestling period to band nestlings. Counts 

of the number of young observed in nests within 10 days of fledging (age of banding) 

were used to assess annual productivity. 

The size of goshawk territories (i.e., defended area) on the study area was 

unknown; however, the mean distance between active nests each year (n = 10 yr) was 

rarely less than 3 krn ( 2 = 3.5 km, SD = 0.2 km; R. T. Reynolds and S. M. Joy, unpubl. 

data). I therefore assumed that goshawk pairs defended an area within a minimum radius 

of 1.5 km from their active nest. Because the location of alternate nests can be as much 

as 1.6 km apart among breeding years (n = 191, F = 0.5 km, SD = 46 m, R. T. Reynolds 

and S. M. Joy, unpubl. data), the habitat components concentrated within each defended 

area may shift annually. To account for this annual shift in core-area use, I examined 

habitat characteristics on a nest-by-nest basis and averaged the results for each territory 

with >1 nest, 

Qualitative Ranking of Territories 

Direct estimates of some vital demographic variables, such as survival, are hard to 

obtain (Raphael et al. 1996) due to the difficulty in recapturing or resighting individuals 

and the complicating influence of factors such as immigration and emigration. As a 
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result, Vickery et al. (1 992) suggested that indirect measures of fitness, such as nesting 

behavior, could be used as surrogates when direct n~easur~es of fitness were not available 

or reliable. The annual rate of egg laying, which is generally a function of prey 

availability (Newton 1989, Korpimaki 1990), and number of young that survive to 

reproduce (Franklin 1997) are examples of such measures. However, too few goshawk 

young (E = 18) have been found breeding to use the number of young that survive to 

reproduce as a measure of reproductive performance (Reynolds and Joy 1998). I, 

therefore, used the frequency of annual egg laying and production of fledglings (0-4) to 

infer territory quality. The annual egg-laying rate indicates the investment made by 

adults in raising young, Many pairs of goshawks initiate nest building during courtship, 

but fail to lay eggs. Because the failure to lay eggs results primarily from lack of food 

(Newton 1979,1992), birds were assumed to lay eggs more often on higher quality 

territories where prey were assumed to be more readily available or abundant. 

Furthermore, preliminary work (Reynolds et al., in prep.) has shown that the probability 

of egg laying on the study area is inversely related to the amount of selective forest 

harvesting (e.g., shelterwood, seed-tree, and overstory removal) that has occurred within 

a 1.2 km radius of a territory center. 

Because the number of young that survive to fledging is strongly correlated with 

the availability of supplemental food after hatching (Ward and Kennedy 1996), I 

expected the annual production of fledglings on higher quality territories to exceed that of 

lower quality temtories due to differences in prey resources. Nest failures were included 

in measures of young fledged (is*,  number fledged = 0). 
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To derive comparative, suinrnary ~iieaxur~es of territory performance for the 

demographic variables, I used general linear models (GLM, SAS Inst. Inc. 2000). Tlus 

approach accounted for annual variation in environmental factors affecting the population 

as a whole, such as weather or variable prey populations. The GLM procedure was also 

insensitive to missing values resulting horn differences the total years a territory was 

under study and inter-annual variation in the annual frequency of egg laying on 

territories. The least-squares means option (LSMEANS, SAS Inst. Inc. 2000) provided 

relative estimates of each variable by territory. 

To categorize territories by levels of goshawk reproductive performance (Le., 

potential population sources and sinks), I used cluster analyses. Individual valuesj (j = 1, 

2, . . ., n) for each demographic variable mean i (i = 1,2, . . ., n) were standardized prior to 

cIustering using the fhction (Romesbwg 1984:78-79): 

where xij denotes each data value, Ti is the mean value for the variable i, and si is the 

standard deviation for variable i. To determine the appropriate number of clusters (seeds) 

to use in the final procedure, I clustered the data using Ward’s minimum variance 

clustering method (PROC CLUSTER, $AS Inst., Inc. 2000), a seed-based hierarchical 

algorithm that allows exploration of the appropriate number of clusters to use in the final 

clustering procedure. Clusters were generated from sequential nearest neighbor 

comparisons of the Euclidean distance between all pairs of standardized scores. To 

produce the best, final cluster fit for each temtory, I then used the K-means clustering 

algorithm (PROC FASTCLUS, SAS Inst., Inc. 2000). K-means is a nonhierarchical 
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clustering method that uscs nearest centroid soi-ling to iteratively minimize the Euclidean 

disiances from the cluster means. Cluster analyses were run on each demographic 

variable (frequency of egg laying, productivity) alone and together to find the model that 

distinguished best among the levels of goshawk territory quality: Multiresponse 

permutation procedures (MRPP; Mielke and Berry 2001) were used to test for 

distributional differences in the clusters at the a = 0.05 level. 

Goshawk Age and Experience 

Some measures of reproductive performance in raptors may be strongly 

influenced by age at breeding or the fidelity of adults to territories, confounding the 

effects of habitat with age or experience (Newton 1991, 1989, Newton and Wyllie 1992, 

Koenig et al. 1992). To assess the potential influence of age and/or experience on the 

outcome of the cluster analyses of territory quality, I examined male and female 

recruitment rates, and the turnover and tenure rates of females on territories. Newton 

(1 985) found that inexperienced Sparrowhawks (Accipiter nisus) tended to produce fewer 

young than experienced hawks, and that the proportion of these first-time breeders was 

greater on lower quality territories than on higher quality territories. I therefore tested for 

differences in the number of male and female recruits (known birds banded as fledglings 

that joined the breeding population) between the levels of territory quality using Fisher’s 

Exact Tests (TABLES; SPSS, Inc. 2002), evaluated at the a = 0.05 significance level. In 

the analysis, female and male recruitments were treated separately. A number of young 

(3d or 4fb year plumage) previously unbanded hawks also bred on the study area. 

Because of their young age (all known recruits were between 3-6 y r s  of age when they 

first bred; R. T. Reynolds and S. M. Joy, unpubl. data) and lack of prior capture history 
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on known territories, these young hawks were assumed to be first-time breeders. 1 ran 

additional comparisons of territory quality using (1) these previously unbanded, young 

hawks and (2) the young hawks i- recruits. Multiple incidences of recruitment on a 

territory (which only occurred on 3 territories) were treated as one recruitment incident in 

the analyses. 

I evaluated two related measures of individual experience on territories that 

reflected the territory’s history: female turnover and tenure rates. Newton and Wyllie 

(1 992) found sparrowhawks that stayed on the same territory year after year had higher 

breeding success than birds that moved. Here, I used only females because their 

recapturehesight histories were more complete than those of males (males were often 

trap-shy or otherwise elusive). Female turnover was assessed as the number of times a 

female was replaced on a territory / the number of female recapture or resight 

opportunities on that territory, Females that returned to their original territories after a 

different female had bred there were treated as turnovers. Recapture or resight 

“opportunities” included only years in which a female was captured or resighted on the 

territory; whereas, failure to capture or resight a female, either due to non-breeding, nest 

failure, or traphesight shyness, was not counted. Female tenure was assessed as the mean 

number of years each female remained on a territory / the number of female breeders on 

the territory. I tested each experience variable for no difference between the levels of 

territory quality using Mann-Whitney U Tests WAR; SPSS, In. 2002)’ evaluated at the 

a = 0.05 significance level. 

Newton (1991) reported that 70% of sparrowhawks that changed territories 

moved to territories classified as high or higher in occupancy rates and nesting success 
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than he i r  previous tenitories. To determine whelher inoveinents between territories by 

nesting adults were related to territory quality, 1 assessed breeding dispersal annually for 

all banded hawks. 

Habitat Modeling 

One limitation to developing models of habitat associations with demographic 

performance includes the spatial resolution of the habitat maps. Because spatial 

resolution is typically sacrificed for generality in the mapping of large areas (Jensen 

1986:186-187), finegrain characterization of habitat composition and spatial structure 

across the landscape is diacult to obtain. For wide-rangmg species such as raptors, 

detailed habitat characterizations are especially problematic. Therefore, forest 

composition was classified to a 10-m x 10-rn spatial resolution (Joy et al. 2001, Chapter 

l), finer than the spatial resolution of the Landsat TM imagery used to develop the 

classification (approx. 30 m x 30 m) to provide detailed landscape-level information for 

the study area. Classifications were based on field sampling that occurred in 1997 and 

the interpretation of Landsat TM imagery from the same time period. Vegetation 

composition comprised six dominant types (pinyon-juniper, ponderosa pine, mixed 

conifer, spruce-dominated mix and deciduous-dominated mix forests, and openings; see 

Study Area) modeled to a cross-validation (1 0-fold) accuracy of 74.5%. Because most 

forests are a composite of several, interspersed species, the Shannon-Weaver Index (H’) 

(Lincoln et al. 1998), which measures the average degree of habitat diversity, was also 

used as a habitat variable. ET’ was calculated as: 
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wherep; is the proportion of an area in vegetation type i ( i  = 1,2, .. ., F). Small values of 

H' indicated lower diversity, while high values indicated a diverse forest composition. 

Correlating Habitat Quality with Eiwironmental Variables 

To investigate whether goshawk territories with higher and lower reproductive 

performance are characterized by the composition or spatial arrangement of vegetative 

characteristics surrounding them, circle and ring plots, respectively, centered on the 

sample points were used, Because differences in territory quality may reflect vegetative 

characteristics resembling non-nest areas, random plots were also included in this 

assessment. Random plots (IJ = 85; Fig. 4.1) were generated using simple random 

sampling irrespective of territories. Habitat at random locations was treated as a third 

level of "habitat quality" in the analyses. To assess differences in the amount 

(proportion) and diversity of vegetative types across the levels of habitat qualities, I used 

five nested, concentric circles (0.07, 0.28, 1.13,4.52, and 18.1 km2 or 0.15, 0.30,0.60, 

1.20, and 2.4 km radii) from nest and random sampling plots (Fig. 4.2a). The spatial 

arrangement of habitat was assessed using five concentric, non-overlapping rings of 

increasing radius (0.07,0.16,0.35,0.72, 1.48 km2 or 0.15,0.15-0.30,0.30-0.60,0.60- 

1.20, and 1.20-2.40 km radii) around the nest and random sampling plots (Fig. 4.2b), 

where the cumulative radii for rings were equal to the radii used for the circular plots. 

Similar sampling structures have been used in studies of northern spotted owl (Strix 

occidentalis caurina) (Ripple et al. 1997, Swindle et al. 1999, Thome et al. 1999) and 

goshawk (Finn et al. 2002) habitat. The proportions of habitat for random plots and nests 

occuning on the edge of the study area were estimated for the portion of the circle or ring 

that fell within the study area only. All data queries were performed in ArcView" (ESRI 
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1 

Figure 4.2. Confibwration of circle (a) and ring (13) plots used to assess the amount and 

spatial arrangement of habitat components, respectively, around random plots ( n  = 85) 

and northern goshawk territories demonstrating higher (n  = 56) and lower ( n  = 44) 

reproductive performance on the Kaibab National Forest (North Kaibab Ranger District) 

in Arizona. 
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1998) using a customized application. Values at multiple alternate nests were averaged 

to the territory. One territory was dropped from analyses because more than half of the 

habitat circles and rings fell outside the study area boundary. 

Concentric distances incorporated three home range components thought to be 

biologically and behaviorally important to the goshawk’s survival: the nest area (NA), 

post fledging-family area (PFA), and foraging area (FA) (Reynolds et al. 1992). The NA, 

an area of approximately 0.1 9 km radius (0.1 2 km2) in size, is where nesting hawks focus 

their breeding season movements and behavior. The PFA, which extends approximately 

0.57 km in radius (1.70 km2) beyond the NA, is where fledglings spend the majority of 

time while still dependent on parents for food. The FA, which extends an additional 2.0 

km in radius (21.9 km2) beyond the NA and PFA, is where adults search for food during 

the nesting season. The PFA and FA are assumed to represent general locations for their 

respective activities and not an individual’s use of a precise point within the home range; 

i.e., actual use of these areas may not follow a circular area. 

Mixed-model analysis of variance (ANOVA) (PROC MIXED, LSMEANS; SAS 

Inst., Inc., 2000) was used to test for differences in the proportion of each vegetative type 

among levels of habitat quality (random plot, lower or higher quality nest plots) and 

circle or ring sizes, and their interactions. The sample plots within each level of habitat 

quality were the basic sampling unit used, and were assumed to be random samples of 

habitat quality. Levels of habitat quality and circle or ring sizes, as well as their 

interactions. were treated as fixed effects in the model. Prior to running the final models, 

each ANOVA was tested for spatially correlated residuals (PROC VARIOGRAM AND 

PROC INSIGHT; SAS Inst,, Inc. 2000). Because territory plots represented the average 
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of several alternate nest sampling plots: tenjtory locations used to examine spatial 

correlations were based on the mean coordinate of all alternate nests used within the 

territory weighted by the number of years each alternate nests was active. Measurements 

of habitat variables at the different radii were treated as repeated measures because 

circles and rings were nested and dependent (Baker et al. 1995). Where appropriate and 

to improve model fit [lowest AIC (Akaike 1977)], a covariate term (power or quadratic) 

that fit the functional form between the observed data and circle size or ring location was 

introduced. Standard ANOVA tests were evaluated at the a = 0.1 0 significance level. 

Pairwise comparisons among levels of territory quality for significant variables were 

based on adjusted p-values [ADJUST=TUKEY (SAS Inst., Inc. 2000) for models without 

a covariate term and Bonferroni simultaneous probabilities (0.1 0/6 = 0.017, Miller 1981) 

for models with a covariate]. 

Because ANOVA tests measure central tendency and are sensitive to skewed data 

distributions, and hence violations of normality assumptions, I also evaluated differences 

in habitat quality for circle and ring plots using MRPP (Mielke and Berry 2001). 

Vegetative types were considered simultaneously and individually, the latter along with 

vegetative diversity. Circle and ring sizes were treated as repeated measures in these 

analyses. Because MfWP does not yield interactions easily, I tested individually for 

differences in the proportion of each vegetative type and diversity within each circle or 

ring size. For painvise comparisons, I used the Peritz Closure Method (Petrondas and 

Ruben 1983) for assessing significance, which maintains Type I error rates at or below 

the specified a. All test (univariate, pairwise) were evaluated at the a = 0.05 significance 

level. MRPP and the Peritz Closure Method were also used to compare the frequency 
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and size distribution within 0.15, 0.30, and 0.60-km radii around goshawk and random 

plots. 

Habitat management recomnendations (Reynolds et al. 1992) for the goshawk 

and its prey throughout the southwestern United States encourage no openings within the 

goshawk NA and small (0.00s km’), interspersed openings within the PFA. 1, therefore, 

examined the size and frequency of openings within the random plots, and higher and 

lower quality territories to determine whether their size distribution, cumulative area, and 

fiequency differed among plots. Fifty percent of the random plots, and higher and lower 

quality territories were selected for this analysis using simple random sampling. Within 

each territory, one randomly selected nest plot was used. The GIs grid containing 

openings was clipped (CLIP, ESRI 1998) to 0.1 5 - h ,  0.30-h, and 0.60-km radii circle 

sizes and polygonized using ArcView@(ESRl1998). Ring plots were not used in this 

assessment because they create false polygon boundaries. The number of polygons in the 

opening class, total area occupied by openings, and maximum, minimum and average 

size of the openings for the three circle radii were tested simultaneously for differences 

among higher and lower quality territories and random plots using MRF’P (Mielke and 

Berry 2001). All response variables were standardized to a c o r n o n  unit (Mielke and 

Beny 2001 :20), Univariate MRPP tests were also performed on each variable to assess 

its contribution to the differences. 

Predicting the Location and Quality of Territories 

To predict whether a point is likely to be a goshawk territory or random location, 

or a territory of higher or lower quality, I used both classification trees (CT) (Breiman et 

al. 1984, De’Ath and Fabricius 2000) and logistic regression models (Hosmer and 
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Leineshow 2000). For classification trees, all proportiorial habitat variables were 

considered sirnultaneously. To avoid the unit sum constraint within the logistic 

regression models, I dropped the variable (proportion of deciduous-dominated mix) with 

the greatest spatial distribution on the study area and that contributed least to each model. 

a s  model also produced the lowest AIC. Whereas, advantages of using CT models 

include their straightforward use in predicting > 2 classes of data, ease of interpretation, 

robustness of results, and definitive nature of the classification criteria, CT models 

provide no estimates of uncertainty with each prediction. Alternatively, logistic 

regression models predict the probability of belonging to a class, as well as providing 

confidence limits associated with each prediction. However, logistic models are difficult 

to apply to > 2 classes of data, their application and interpretation may be more difficult 

than CT models due to the functional form of the logistic equation, and decisions 

regarding class membership may be more difficult due to borderline probabilities. 

Models with the highest cross-validated classification accuracies were chosen as the best 

predictors. 

Three forms of the CT model (circles alone, rings alone, and circles + rings) 

(CART; Steinberg and Colla 1997) were used to predict differences among territories 

with higher and lower reproductive potential and random locations, and differences 

between territories of higher and lower quality alone. For comparisons with the logistic 

regression models, higher and lower quality territories were pooled in CT predictions of 

territory locations versus random plots for circles and rings. To avoid over-fitting the CT 

models, 1 0-fold cross-validation (Efion and Tibshirani 1993) was used to identify the tree 
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size that minimized the total dejtiancc associated with the tree. Ten-fold cross-validation 

was also used to assess the accuracy of the CT models. 

Logistic regression (PROC LOGISTIC; SAS hst., Inc. 2000) was used to predict 

(1) territory locations (versus random locations) and (2) higher quality territories (versus 

lower) for circles and rings. Both the backward selection and best subset options were 

specified for the selection of significant variables in the regression models, where the 

number of variables producing the lowest AIC (Akaike 1977) was selected. The 

probability equation takes the form (Hosmer and Lemeshow 2000): 

where n(x) is the probability of belonging to the reference class. Leave-one-out cross- 

validation (Efron and Tibshirani 1993) was used to estimate classification accuracies for 

the logistic models. Cross-validated prediction probabilities of 2 0.5 were assigned to the 

event predicted. 

RESULTS 

Population Sampling 

Between 1991 and 2000,454 active nests representing 101 goshawk territories 

were studied and a total of 771 young were produced on the study area. We captured and 

color banded 257 adult (136 females, 121 males) and 553 nestling (275 females, 277 

males, 1 unknown sex) goshawks. Seventeen percent (77) of nests failed to produce 

young in one or more years. Both the annual frequency of egg-laying (p < 0.001, df = 

100, Type 111 SS = 52.82, F = 3.28) and the number of young fledged (p = 0.0260, df = 

100, Type 111 SS = 127,21, F = 1.35) differed among territories. The number of years a 
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territoiy was active I - a n g d  from 1-1 0: depending on annual frequency of egg laying and 

year the nest was found duI-ing the study. Relative, adjusted egg layng rates for 

territories @sed on least squares means) ranged from 0.1 for territories that contained 

active nests in few of the years territories were monitored to 1.13 for territories 

containing active nests in all of the years monitored. Between zero and four young were 

produced annually (relative, adjusted productivity ranged from 0.4G3.32 young). 

Qualitative Ranking of Territories 

The standardized annual frequency of egg laying and productivity produced a 

simpler (i.e., with fewer intermediate points) two-axis cluster structure than either 

variable used alone for classifying territories of variable reproductive quality. The 

optimal number of clusters produced was two (Fig. 4.3), and they differed (P = 0.00) in 

distribution from one another. Fifty-six territories were classified as higher quality and 

46 as lower quality (Fig 4.4). Adjusted (least squares) means for the annual rate of egg 

laying was 0.79 (SD = 0.24) for higher and 0.49 (SD = 0.23) for lower quality territories. 

Mean productivity for higher and lower quality territories was 2.03 (SD = 0.43) and 1.22 

(SD = 0.48), respectively. 

Goshawk Age and Experience 

A total of 33 banded recruits (20 females, 13 males) and 21 young, unbanded 

hawks (1 8 females, 13 males) joined the breeding population between 3 991 and 2000. 

No differences were found (Table 4.1) in the number of recruits, young hawks, or recruits 

+ young hawks between levels of territory quality. Likewise, females tended to stay on 

their territories for similar amounts of time (F = 2.27, P = 0.14) on higher (n = 51, Z = 

2.61, SE = 0.19) and lower (n = 41, F = 1.73, SE = 0.16) qualityterritories. A larger 
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Figure 4.4. Distribution of  higher (n = 56)  and lawcr (n = 44) quality northern goshawk 

territories on the Kaibab National Forest (North Kaibab Ranger District), Arizona, based 

on cluster analysis of annual rates of egg laying and number of young fledged from nests. 

Territory locations are represented by the mean coordinate of all active nests between 

1991 and 2000 used within a territory, weighted by the number of years each nests was 

active 
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Table 4.1. Fisher’s Exact Tests of the number of young nonhern goshawks (banded 

recruits and unbanded hawks) that joined the breeding population on 101 territories on 

the Kaibab National Forest (North Kaibab Ranger District), Arizona, evaluated between 

levels of territory quality (higher, lower). 

Temtory 

Sex Status Quality Count Fisher’s Exact Test 

Female recruit higher 12 P = 0.803 

lower 8 

higher 12 P = 0.433 

lower 6 

recruit + young higher 22 P = 0.300 

lower 13 

Mal e recruit higher 8 P = 0.769 

lower 5 

young higher 9 P = 0.375 

lower 4 

recruit + young higher 17 P = 0.261 

lower 9 
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number (F = 9.28, P = 0.00) of female turnovers, however: occurred on lower (n = 29, x‘ 

= 1.1 1, SE = 0.10) than hi@er ( n  = 46, F = 0.60, SE = 0.05) quality territories. 

Between the years 1991 and 2000,19 breeding adult goshawks changed 

territories. Eight adults (42%; 5 females, 3 males) moved from higher quality territories 

to territories of similar quality; one adult (5%; female) moved from a higher to lower 

quality territory and then moved back to its original higher quality territory in the next 

year. Ten adults (53%; 6 females, 4 males) left lower quality territories; seven (70%; 5 

females, 2 males) moved to higher quality territories, and three (30%; males) remained 

on territories of the same, lower quality. 

Correlating Habitat Quality with Environmental Variables 

Although use of covariates (power or quadratic terms) improved the performance 

of three (proportion of ponderosa pine and openings, and H’ for circles) of the 14 (7 

models for circles and 7 for rings) ANOVA models of habitat variables, they did not 

change the outcome of the models, For simplicity, therefore, all ANOVA model results 

are presented in their linear form (Tables 4.2, 4.3). Significant differences between 

random locations and territories of higher or lower quality (designated as the main effect 

“HQ”) and their associated interactions [HQ X circle size (designated as T S ” )  or ring 

size (designated as “RS”)] were of greatest interest in this study. None of the models had 

spatially correlated residuals. 

The amount (Table 4.2, Fig. 4.5a-d) and spatial arrangement (Table 4.3, Fig. 4.6a- 

d) of four of the seven habitat variables differed between higher quality goshawk 

territories and random locations. The overall significance of tests for both circle and ring 

plots were similar. More ponderosa pine (P 50.07), less deciduous-dominated vegetation 
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Table 4.2. Results of ANOVA tests for differences in the amount of vcgetative types and 

diversity of vegetation around plots at northem goshawk nets and random locations on 

the Kaibab National Forest (North Kaibab Ranger District) in Arizona. Measurements of 

habitat variables within nested, concentric circles were treated as repeated measures. 

Asterisks indicate significance at the a = 0.1 0 level. 

Denominator F 

Habitat component Variable DF DF value P r > F  

Pinyon-Juniper 182 0.45 0.5468 
- 

HQL 

Ponderosa Pine' 

Mixed Conifer' 

Spruce-dominated Mix' 

Deciduous-dominated Mix' HQ 

cs 

HQ x CS 

cs3 

HQ x CS 

HQ 

cs 

HQ x CS 

HQ 

cs 

HQ x CS 

HQ 

cs 

HQ x CS 

2 

4 

8 

2 

4 

8 

2 

4 

8 

2 

4 

8 

2 

4 

8 

728 

728 

182 

728 

728 

182 

728 

72 8 

182 

72 8 

728 

182 

728 

728 

7.99 

1-51 

2.51 

7.20 

1.51 

0.44 

0.03 

4.64 

1.14 

1.1 1 

2.54 

6.1 5 

1.40 

2.38 

<0.0001* 

0,0529* 

0.0840* 

+=0.0001* 

0.1482 

0.6435 

0.9987 

~0.0001* 

0.3230 

0.3526 

0,Ol oo* 

0.0026" 

0.2309 

0.01 55" 
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Table 3.2. (continued) 
0 p e 11 i ngs HQ 2 182 9.57 0.0001 * 

CS 4 728 3.48 0.0079* 

HQ x CS 8 728 4.02 0.0001 * 

HQ 2 182 3.24 0.041 5* 
Diversity (H')4 

CS 4 728 66.84 <0.0001* 

HQ x CS 8 728 1.11 0.3549 

I Proportion 

Habitat Quality - Random location, higher and lower northern goshawk reproductive 

performance 

Circle Sizes 1-5 = 0.07, 0.28, 1.13,4.52, and 18.1 km'; radii = 0.15,0.30,0.60, 1.20, 

and 2.4 km 

Shannon-Weaver Index 

2 

4 
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Tahle 4.3. Results of ANOVA tests for differences in the spatial arrangement of 

vegetative types and diversity of veget ation around plots at northern goshawk nets and 

random locations on the Kaibab National Forest (North Kaibab Ranger District) in 

Anzona. Measurements of habitat variables within non-overlapping, concentric rings 

were treated as repeated measures. Asterisks indicate significance at the a = 0.10 level. 

Denominator F 

Habitat component Effect DF DF value P r > F  

Pinyon- Juniper* HQ2 2 182 0.45 0.6361 

RS3 4 728 7.99 <0.0001* 

Ponderosa Pine' 

Mixed Conifer' 

H Q x R S  8 

HQ 2 

RS 4 

HQxRS 8 

HQ 2 

RS 4 

H Q x R S  8 

Spruce-dominated Mix] HQ 2 

RS 4 

H Q x R S  8 

Deciduous-dominated Mix] HQ 2 

RS 4 

H Q x R S  8 

728 

182 

728 

728 

182 

728 

728 

182 

728 

728 

182 

72 8 

728 

1.51 

2.43 

5.25 

1.41 

0.29 

0.04 

4.05 

1.07 

1.34 

2.03 

6.14 

1.25 

2.06 

0.1484 

0.0909* 

0.0004* 

0.1905 

0.7482 

0.9973 

0.0001* 

0.3468 

0.2527 

0.0410" 

0.0026* 

0.2885 

0.0370" 
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Table 4.3. (continued) 
Openings' HQ 2 182 9.40 0.0001" 

RS 4 728 2.87 0.0225* 

HQ x RS 8 728 3.33 0.0009* 

HQ 2 182 3.03 0.0508* 
Diversity (H y4  

RS 4 728 49.32 <0.0001* 

HQ x RS 8 728 0,923 0.4500* 

Proportion 

Habitat Quality - Random location, higher and lower northern goshawk reproductive 

performance 

Ring sizes 1-5 = 0.07, 0.16,0.35, 0.72, 1.48 h2; radii = 0.15,0.15-0.30,0.30-0.60, 

1 

0.60-1.20, and 1.2-2.40 km 

Shannon-Weaver Index 

183 



d. 

-----+---,--__- 

Figure 4 5 .  Significant relationships from analysis of variance tests of the amount 

(proportion) of habitat components around nests on northern goshawks territories of 

higher and lower quality and random plots on the Kaibab National Forest (North Kaibab 

Ranger District) in Arizona. Habitat proportions were measured at 5 spatial scales (0.1 5 ,  

0.30, 0.60, 1.20- and 2.4 hi radii) in concentric, overlapping circles around sample plots. 

Territory quality wax bascd O T ~  the annual raic of cgg laying 2nd number of young 

produced at nests between 1991 and 2000. Asterisks indicate si_gificant differences in 

landscape scales (distances) between main effects. 



a. C. 

Figure 4.6. Sipificant relationshps in analysis of' variance tests of the spatial 

arrangement of habitat components around nests on northern goshawks territories of 

higher and lower quality and random plots on the Kaibab National Forest (North Kaibab 

Ranger District) in Arizona. Spatial arrangement was measured as the proportion of 

habitat at 5 spatial scales (1 =0.15,2=0.1~-0.30, 3=0.30-0.60, 4=0.60-1.20, and 15=.20- 

2.40 km radii) in concentric, non-overlapping rings around sample plots. Territorq' 

quality was based on annual rates of egg l q i n g  and the number of'young produced at 

nests between 1991 and 2000. Asterisks indicate significant differences in landscape 

scales (distances) between main efi'ects. 

I s 5  



(P = O.OO), less area in openings (P = 0.00): and lower diversity of vegetative types (P 5 

0.04) distinguished higher quality territories from random plots (Table 4.4). A smaller 

proportion of area in openings (P = 0.00) also occurred on lower quality territories than 

on random plots (Table 4.4). 

On higher quality territories, the amount (Table 4.5) of deciduous vegetation and 

forest openings increased with distance for both circle (Fig. 4.5b, c) and ring (Fig. 4.6b, 

c) plots; whereas, proportions of these habitats decreased with distance from random 

locations. Differences in these relationships were significant up to 0.60 km from the 

sample plots for deciduous vegetation (P The 

proportion of openings at distances of up to 0.60 km was also important (P < 0.05) in 

distinguishing lower quality territories from random locations. As circle and ring size 

increased, the difference between main effects in the models became smaller due to 

overlap in the measurement of habitat variables (Table 4.5). ANOVA detected no 

difference (P > 0.10) between territories with lower and higher reproductive success or 

between lower quality temtories and random plots (Table 4.4), except that noted for 

openings. 

0.06) and openings (P < 0.02). 

MR.PP tests for distributional differences in the mean proportions of vegetative 

types (considered simultaneously) differed (P = 0.01) between higher quality territories 

and random locations for circle and ring plots (Table 4.6). Results of univariate tests of 

vegetative type, which were consistent between circle and ring plots (Tables 4.4,4*6), 

showed that less deciduous-dominated vegetation and smaller proportions of openings (P 

= 0.00) were present on higher quality teMtories than random locations. Less area (P = 

0.00) in openings was also present on low quality goshawk territories than on random 



Table 4.4. Proportions of vegetative types and diversity for higher and lower quality northern goshawk territories and random 

locations on the Kaibab National Forest (North Kaibab Ranger District) in Arizona. Values represent feast square means and standard 

error estimates for concentric, overlapping circles and non-overlapping rings, representing the amount and spatial arrangement of 

vegetative types around sample plots, respectively. Asterisks (*, **) indicate significance at the a = 0.10 level. 

Habitat Quality 

Circle Plots' Ring Plots' 

Goshawk Territories3 Random Goshawk Territories Random 

Lower Plots Higher Lower Plots Higher 

(n = 56) (n = 44) (n = 85) (n = 56) (n = 44) (n = 8 5 )  

Habitat Component X SE X SE 5 SE X SE X SE X SE - - - - 

piny on-~uniper~ 0.053 0.013 0.043 0.015 0.063 0.010 0.056 0.012 0.047 0.014 0.063 0.010 

Ponderosa Pine4 0.694' 0.037 0.630 0.041 0.588' 0.030 0.688* 0.036 0.627 0.040 0.586' 0.029 

Mixed Conifer4 0.112 0.017 0.121 0.020 0.099 0.014 0.111 0.017 0.119 0.019 0.102 0.014 

Spruce-Dominated Mix4 0.080 0.019 0.1 I9 0.022 0.082 0.016 0.079 0.019 0.1 I7 0.022 0.083 0.015 



Table 4.4 (continued) 
Deciduous-Dominated Mix4 0.043, 0.01 1 0.063 0.013 0.093. 0.009 0.045* 0.010 0.065 0.012 0.092* 0.009 

openings4 0.019, 0.01 1 0.023.. 0.013 0.076*'*' 0.009 0.021, 0.01 1 0.026** 0.012 0.075**** 0.009 

Diversity (H 95 0.309* 0.023 0.356 0.026 0.384* 0.018 0.316' 0.022 0.360 0.025 0.386. 0.018 

Circle radii = 0.15, 0.30, 0.60, 1.20, and 2.4 km; areas = 0.07,0.28, 1.13,4.52, and 18.1 km2 

Ring radii = 0.15, 0.15-0.30, 0.30-0.60, 0.60-1.20, and 1.20-2.40 km; areas = 07, 0.16, 0.35, 0.72, 1.48 km2 

Means of > 1 nest per territory 

Proportion 

3 

4 

' Sliannon-Weaver Index 



Table 4.5. Proportion of vegetative types and diversity for higher and lower quality northern goshawk territories and random 

locations by plot (circle, ring) size on the Kaibab National Forest (North Kaibab Ranger District) in Arizona. Values represent least 

square means and standard error estimates for each concentric, overlapping circle and non-overlapping ring size, representing the 

amount and spatial arrangement of vegetative types around sample plots, respectively. Asterisks (*, **) indicate significance at the a 

= 0.0 17 level. 

Habitat Quality - Size 1’” 

Circle Plots Ring Plots 
~ ~ ~ _ _ _ _ _ _  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Goshawk Territories3 . Random Goshawk Territories Random 

Higher Lower Plots Higher Lower Plots 

(n = 56) (n = 44) (n = 8 5 )  (n = 56) (n = 44) (n = 85) 

SE - 
Habitat Component X SE X SE X SE X SE X SE X 

- - - - - 

Pinyon-Juni per4 0.023 0.014 0.016 0.016 0.057 0.011 0.023 0.014 0.016 0.016 0.057 0.011 

Ponderosa Pine4 0.743 0.038 0.646 0.043 0.609 0.031 0.743 0.037 0.646 0.042 0.609 0.030 

Mixed Conifer4 0.110 0.018 0.144 0.020 0.079 0.015 0.110 0.018 0.144 0.020 0.079 0.015 

S pruce-Domi n ated Mix4 0.087 0.020 0.130 0.022 0.077 0.016 0.087 0.020 0.130 0.022 0.077 0.016 



Table 4.5 (continued) 
Deciduous-Dominated Mix4 0.033, 0.012 0.057 0.013 0.101* 0.010 0.033. 0.012 0.057 0.013 0.101. 0.010 

openings4 0.003* 0.012 0.007" 0.014 0.078*9** 0.010 0.003. 0.012 0.007.. 0.014 0.073**** 0.010 

Diversity (HI)'  0.231 0.024 0.295 0.027 0.312 0.019 0.231 0.024 0.295 0.027 0.312 0.019 

Habitat QuaIity - Size 2" ' 
SE - 

Habitat Component i? SE X SE X SE f SE X SE X 
- - - 

Pi n yon-Juni per4 0.040 0.014 0.032 0.016 0.061 0.011 0.045 0.014 0.038 0.016 0.063 0.01 I 

Ponderosa pine4 0.718 0.038 0.654 0.043 0.592 0.031 0.710 0.037 0.656 0.042 0.586 0.030 

0.118 0.018 0.122 0.020 0.092 0.015 0.120 0.018 0.115 0.020 0.096 0.015 
Y 

a 
0 Mixed Conifer4 

Spruce-Domi n ated Mix4 0.082 0.020 0.126 0.022 0.072 0.016 0.080 0.020 0.125 0.022 0.071 0.016 

Deciduous-Dominated Mix4 0.034' 0.012 0.055 0.013 0.098* 0.010 0.034' 0.012 0.054 0.013 0.098* 0.010 

0 peni ngs4 0.009. 0.012 0.01 I** 0.014 0.085*-** O.OI0 0.01 I *  0.012 0.013** 0.014 0.087*-** 0.010 

Diversity (H95 0.270 0.024 0.321 0.027 0.358 0.019 0.277 0.024 0.322 0.027 0.362 0.019 

Habitat Quality -Size 3lY2 

SE - 
Habitat Component X SE X SE X SE X SE X SE X 

- - - - - 



Table 4.5 (continued) 
~ i n y o n - ~ u n i p e r ~  0.055 0.014 0.048 0.016 0.064 0.011 0.061 0.014 0.053 0.016 0.064 0 01 I 

Ponderosa pine4 0.689 0.038 0.635 0.043 0.584 0.031 0.679 0.037 0.629 0.042 0.582 0.030 

Mixed Conifer4 0.117 0.018 0.114 0.020 0.102 0.015 0.117 0.018 0.111 0.020 0.105 0.015 

Spruce-Dominated Mix4 0.081 0.020 0.124 0.022 0.078 0.016 0.081 0.020 0.123 0.022 0.080 0.016 

Deciduous-Dominated Mix4 0.042' 0.012 b o 5 9  0.013 0.094* 0.010 0.045* 0.012. 0.061 0.013 0.092. 0.010 

openings4 0.016* 0.012 0.021** 0.014 0.079'-" 0.010 0.018 0.012 0.024 0.014 0.076 0.0IO 

Diversity (I?')' 0.311 0.024 0.352 0.027 0.389 0.019 0.320 0.024 0.357 0.027 0.392 0.019 
CL 

2 Habitat Quality - Size 4'.' 

Habitat Component X SE 5 SE X SE X SE 5 SE .7 SE 

~ i n y o n - ~ u n i p e r ~  0.070 0.014 0.056 0.016 0.066 0.011 0.075 0.014 0.058 0,016 0.067 0.011 

- - - 

Ponderosa pine4 0.568 0.038 0.616 0.043 0.580 0.031 0.661 0.037 0.610 0.042 0.578 0.030 

Mixed Conifer4 0.108 0.018 0.114 0.020 0,109 0.015 0.105 0.018 0.115 0.020 0.111 0.015 

Spruce-Dominated Mix4 0.077 0.020 0.110 0.022 0.086 0.016 0.076 0.020 0.105 0.022 0.089 0.016 



Table 4.5 (continued) 
Deciduous-Dominated Mix4 0.050 0.012 0.070 0.013 0.087 0.010 0.052 0.012 0.074 0.013 0.084 0.010 

openings4 

Diversity ( H  ’)’ 

0.027 0.012 0.034 0.014 0.072 0.010 0.030 0.012 0.039 0.014 0.070 0.010 

0.345 0.024 0.388 0.027 0.416 0.019 0.353 0.024 0.395 0.027 0.419 0.019 

Habitat Quality - Size 5’’ 

SE - Habitat Component X SE X SE 2 SE X SE X SE X 
- - - - 

Pinyon-Juni per4 0.075 0.014 0.065 0.016 0.065 0.011 0.077 0.014 0.059 0.016 0.065 0.011 

Ponderosa Pine4 0.651 0.038 0.599 0.043 0.576 0.031 0.645 0.037 0.593 0.042 0.575 0.030 

N Mixed Conifer4 0.105 0.018 0.111 0.020 0.115 0.015 0.104 0.018 0.110 0.020 0.117 0.015 

S pruce-Dorn i n ated Mi x4 0.073 0.020 0.105 0.022 0.095 0.016 0.071 0.020 0.103 0.022 0.098 0.016 

Deciduous-Dominated Mix4 0.058 0.012 0.076 0.013 0.085 0.010 0.061 0.012 0.078 0.013 0.084 0.010 

openings4 0.038 0.012 0.044 0.014 0.065 0.010 0.042 0.012 0.047 0.014 0.061 0.010 

Diversity (H7’ 0.389 0.024 0.424 0.027 0.442 0.019 0.400 0.024 0.431 0.027 0.444 0.019 

c1 
\D 

Circle sizes 1-5 correspond to radii = 0.15,0.30,0.60, 1.20, and 2.4 km, and areas = 0.07, 0.28, 1.13’, 4.52, and 18.1 kmL I 



Table 4.5 (continued) 

Ring sizes 1-5 correspond to radii = 0.15, 0.15-0.30,0.30-0.60,0.60-1.20, and 1.20-2.40 km, and areas = 07, 0.16, 0.35, 0.72, 1.48 

km2 

Means of 

Proportion 

Shannon-Weaver Index 

1 nest per territory 3 

4 



Table 4.6, Results of MRPP rests of the distribution in the proportion of vegetative types 

and vegetative diversity for higher and lower quality goshawk territories and random 

locations for all circle or ring plot sizes considered simultaneously, on the Kaibab 

National Forest (North Kaibab Ranger District), Arizona. Where significant effects in 

habitat quality occur, results of painvise tests of the habitat quality are provided. 

Asterisks indicate significance at the a =  0.05 level. The Peritz Closure Method 

(Petrondas and Ruben 1983) was used for pairwise comparisons. 

Habit at Circle Plots2 Ring plots3 

Habitat Component Quality1 P-value P-value 

All (except Diversity) 

Pinyon-Juniper4 

Ponderosa Pine4 

Mixed Conifer' 

Spruce-dominated Mix4 

Deciduous-dominated Mix4 

openings4 

All 

R vs. H 

Rvs. L 

Hvs. L 

All 

All 

All 

All 

A1 I 

Rvs .H  

R vs. L 

H vs. L 

All 

R vs, H 

0.0.29* 

0.012* 

0.137 

0.258 

0.564 

0.074 

0.229 

0.392 

0.000" 

o.ooo* 

O . O S 3  

0.078 

0.000" 

o.ooo* 

0.035* 

0.014* 

0.149 

0.278 

0.630 

0.084 

0.258 

0.400 

0.001 * 

o.ooo* 

0.086 

0.087 

o.ooo* 

0.000" 
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Table 4.6. (continued) 

~ p e n i n g s ~  R vs. L o.ooo* o.ooo* 

H vs. L I .ooo 1 .ooo 

Diversity (H 3’ All 0.05 1 0.066 

Levels of habitat quality = random (R) locatio& higher (H) and lower (L) goshawk 

reproductive performance 

Circle radii = 0.15, 0.30, 0.60, 1.20, and 2.4 km; areas = 0.07,0.28, 1.13,4.52, and 18.1 

km2 

Ring radii = 0.15, 0.15-0.30, 0.30-0.60, 0.60-1.20, and 1.20-2.40 km; areas= 07, 0.16, 

0.35, 0.72, 1.48 km2 

Proportion 

Shannon-Weaver Index 

1 

3 

4 

5 



plots. These results differed from the ANOVA results in which four vegetative types 

were found to produce significant relationships. However: when MRPP tests were run on 

the individual circle or ring sizes for each vegetative type and diversity (Table 4.7), 

results similar to those of the ANOVA emerged: more ponderosa pine (up to a 0.30-km , 

radius), less deciduous-dominates mixes (up to a 1.20-km radius), fewer openings (up to 

a I .20-km radius), and lower vegetative diversity (0.30-km radius for circles, 0.1 5-km - 

0.30-km radius for rings) occurred on high quality goshawk territories than on random 

locations for both circle and ring plots. More mixed conifer (up to a 0.15-km radius) and 

less deciduous-dominated habitat (0.30-km radius for circles, 0.15 km - 0.30-km radius 

for rings), and fewer openings (up to a 0.60-km radius) also distinguished (P =- 0.05) low 

quality territories from random locations for both circle and ring plots. 

Openings modeled on the study area (Chapter 1) ranged in size from 100 m2 to 

2.15 km2. Within a 0.15-km radius from nests, openings on both higher and lower 

quality territories ranged fiom an average of 0.0% to 6.3% of the total area; whereas, 

these proportions ranged from 0.0% to 32% for random plots. Within 0.30-h radius, the 

ranges were 0.0-8.8% and 0.0-48.8% for highAow and random plots, respectively. 

Within a 0.60-km radius, the sizes of openings ranged up to 10.8% of the total area for 

nest plots and up to 41.5% for random plots. Openings in random plots were more 

numerous and larger, occupied more total area, and were greater in maximum, minimum, 

and average size than on either higher or lower quality territories (P < 0.05 for all tests). 

Results of the tests for the individual response variables did not differ. 

In contrast to the ANOVA results, differences found using MRPP (Table 4.7) 

between goshawk territories and random locations included a greater number of 

1 96 



Table 4.7. Results of univariate h W P  tests of the distribution in the proportion of 

vegetative types and vegetative diversity for hig,her and lower quality soshawk territories 

and random locations for each circle and ring plot size on the Kaibab National Forest 

(North Kaibab Ranger District), Arizona. Where significant effects in habitat quality 

(HQ) occur, results of significant painvise tests of habitat quality are provided. Asterisks 

indicate significance at the a = 0.05 level. The Peritz Closure Method (Petrondas and 

Ruben 1983) was used for pairwise comparisons. 

Plot Habitat Circle Plot Ring Plot 

Habitat Component Sizes'92 Quality3 P-value P-value 

Pinyon-Juniper4 

Ponderosa Pine4 

Mixed Conifer4 

1-5 

1 

Rvs.H 

2 

3-5 

1 

2-5 

Spruce-dominated Mix4 1-5 

Deciduous-dominated Mix4 1 

Rvs. H 

- 

R vs. L 

- 

R vs. H 

2 

>0.050 

0.039* 

0.01 1 * 

0.038' 

0.012* 

>0:050 

0.040* 

0.010* 

>0.050 

>0.050 

0,001 * 

o.ooo* 

o.ooo* 

>0.050 

0.039* 

0.01 1 * 

0.042" 

0.014' 

>0.050 

0.040* 

0.01 o* 

>0.050 

>0.050 

0.001 * 

o.ooo* 

o.ooo* 
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Table 4.7. (continued) 
Deciduous-dominated Mix4 2 R vs. H 

openings4 

Diversity (H ' )5  

3 

4 

5 

1-2 

3 

4 

5 

1 

2 

3 -5 

R vs. L 

R vs. H 

R vs. H 

- 

Rvs. H 

R vs. L 

R vs. H 

R vs. L 

R vs. H 

- 

- 

R vs. H 

- 

o.ooo* 

0.030' 

0.001 ' 
o.ooo* 

0.013* 

0.003" 

>0.050 

o.ooo* 

0.000" 

0,000" 

o.ooo* 

o.ooo* 

0.001 * 

o.ooo* 

0.01 1* 

0.065 

>0:050 

0.025" 

0.006* 

>0.050 

o.ooo* 

0.026* 

0.004' 

0.001 * 

0.037* 

0.010* 

>0.050 

o.ooo* 

0.000' 

o.ooo* 

o.ooo* 

o.ooo* 

0.002* 

0.009* 

0.004* 

0.263 

B0.050 

0.032* 

0.008" 

>0.050 

Circle sizes 1-5 correspond to radii = 0.15, 0.30, 0.60, I .20, and 2.4 km, and areas = 

0.07, 0.28, 1.13, 4.52, and 13.1 km2 
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Table 4.7 (continued) 
Ring sizes 1-5 correspond to radii = 0.15, 0.15-0.30, 0.30-0.60, 0.60-1.20, and 1.20- 

2.40 h, and areas = 07, 0.16, 0.35, 0.72, 1.48 km2 

Levels of habitat quality = random 6) location, higher 

reproductive performance 

Proportion 

and lower (L) goshawk 3 

4 

c - Shannon-Weaver Index 

199 



significant relationships at specific distances, as well as farther distances from the saiiiple 

plot. Nonetheless: relationships were most common within 0.30-km and 0.60-lun radii of 

the sample plots. 

Predicting the Locution nnd Quality of Territories 

The three-level (randomhigherflower) CT did not perform as well as the two- 

level (randomhigher or randomAower) models at predicting temtory location or quality. 

Overall, however, logistic regression (Tables 4.8,4.9) produced higher cross-validation 

classification accuracies than either the two- or three-level CTs in determining whether a 

sample plot falls within a territory versus a random location, or in a higher versus lower 

quality territory. Model outcomes did not differ between the backward elimination or 

best subset selection procedures for significant variables. The models for circles and 

rings performed comparably; however, misclassification (offdiagonal) rates were 

slightly higher for the circle data; therefore, only models based on the ring data are 

discussed. 

The highest prediction accuracy (85%; Table 4.8) for the probability that a point 

on the study area belongs to a goshawk territory (versus a random location) is associated 

with the proportions of mixed conifer habitat and openings within 0.15 km, ponderosa 

pine and spruce-dominated mixes between 0.15-0.30 km, pinyon-juniper between 0.30- 

0.60 km, and spruce-dominated mixes between 1.20-2.40 km of the sample plot. The 

proportion of openings within 0.1 5 lun of the plot had the strongest negative influence on 

the prediction; whereas, the proportion of spruce-dominated mixes between 0.1 5-km - 

0.30-km radii had the strongest positive influence. The model resulted in 15% of 

territories being misclassified as random plots. The probability of a sample plot 

200 



Table 4.8. Significant vegetative coeflicients for predicting the location of northern goshawk territories vs. random sites on the 

Kaibab National Forest (North Kaibab Ranger District) in Arizona fitted by logistic regression (cross-validation accuracy = 85%). 

The model was run at 5 spatial scales (concentric, non-overlapping rings of radii 0.15, 0.15-0.30, 0.30-0.60, 0.60- 1.20, and I .20-2.40 

km) around the sample plots. 

Lower 95% Upper 95% 

Parameter Confidence Confidence Scale 

Variable (radius, km) Estimate SE Wald x 2  P-value Limit Limit 

52 -6.15 1.91 10.34 0.0013 -10.16 -2.64 t-a Intercept 

0.00-0.15 9.28 2.64 12.29 0.0005 4.50 14.92 Mixed Conifer' 

Opening' 

Ponderosa Pine' 

S pruce-dominated Mix' 

-20.04 8.71 5.29 0.0214 -40.08 -5.06 0.00-0.15 

0.15-0.30 6.8 1 1.97 11.93 0.0006 3.19 10.94 

30.08 11.10 19.71 4.84 16.56 <o.ooo 1 0.15-0.30 

0.30-0.60 9.42 2.91 10.50 0.0012 4.05 15.5 1 

1.20-2.40 - I  1.87 4.62 6.59 0.0 102 

Pinyon- Juniper' 

Spnice-dominated Mix ' 
-3.46 -2 1.62 

proportion 



Table 4.9. Significant habitat coef3cients for predicting higher (vs. lower) quality nests 

for northern goshawks on the Kaibab National Forest (Nor-th Kaibab Ranger District) in 

Arizona fitted by logistic regression (overall cross-validation accuracy = 82%). The 

model was run at 5 spatial scales (concentric, non-overlapping rings of radius 0.15, 0.15- 

0.30, 0.30-0.60, 0.60-1.20, and 1.20-2.40 km around the sample plots). 

Scale Parameter 95% Confidence 

Variable (radius, Estimate SE Wald P- Confidence Limit 

x2 value Limit 

Intercept 

Ponderosa 

Pine' 

-2.05 1.20 2.94 0.0863 -4.60 0.16 

2.60 1.29 4.09 0.0432 0.22 0.00- 
0.15 5.33 

Mixed- 

Conifer' 0.15 0.00- -9.58 4.14 5.35 0.0207 -18.58 -2.076 

Mixed- 

Conifer' 0.30 14.50 5.16 7.89 0.0050 5.46 25.96 
0.15- 

Proportion 1 
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belonging to a random loca~jon can be predicted with a cross-validation classification 

acc,m-acy of 66% (349'0 misclassification rate). 

Three variables (Table 4.9) were useful in predicting whether a new nest on a 

territory was likely to contain eggs in a given year and to produce the greatest number of 

young: the proportions of ponderosa pine and mixed-conifer habitats within 0.15 km of 

the plot and mixed conifer between 0.1 5-0.30 km of the plot. The composition of habitat 

close to (within a 0.30-km radius of) the nest thus appeared to be of great importance in 

predicting site quality based on reproductive effort. Of these three variables, only the 

proportion of mixed conifer vegetation within 0.1 5 km of the nest plot was a negative 

predictor in the model, Alternatively, the proportion of mixed-conifer habitat between 

0.1 5 and 0.30 km had the greatest positive influence on predicting higher territory 

quality. Although the cross-validation accuracy for predicting a higher quality goshawk 

location was high (82%) and the misclassification rate was low (1 8%), the model did not 

perform well at predicting lower quality goshawk territories (accuracy = 34%, 

misclassification = 66%). 

DISCUSSION AND CONCLUSIONS 

Differences in the reproductive quality of goshawk territories (based on the 

frequency of egg laying and number of young produced) were described best using two 

levels of quality (higher and lower). Neither the age of the breeder (male or female) nor 

the length of time a female stayed on a tenitory explained the differences in territory 

quality. More females, however, were replaced on lower quality territories than on 

higher quality territories, suggesting that a female's experience on a territory, especially 
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in the first year of breeding. may influence reproductive success. Yw-~oJ~ and Wyllie 

(1992) found European sparrowhawks that stayed on the same territory fledged young 

more often than those that moved. Resident females are more likely to have a greater 

knowledge of nest habitat, prey availability, and sources of predation than first-time 

breeders on a temtory. The degree to which a female’s experience affects the territory’s 

qualitative ranking in this study is unclear, however, because the number of young 

produced was only one of two variables on which territory quality was based. The 

second reproductive variable, frequency of egg laying, is influenced more by prey 

availability than the female’s experience on a territory, and I would expect both resident 

and first-time female breeders to lay eggs at similar frequencies on their territories. 

When presented with the opportunity to move (generally due to the non-return of 

a mate; Reynolds et al., in review), goshawks on lower quality territories moved to higher 

quality temtories, while goshawks on higher quality territories generally maintained 

territory quality after moving. Although these data are anecdotal, they imply that 

differences in territory quality exist and that goshawks will improve their likelihood for 

long-term reproductive success when possible. Newton (1 991) found that in south 

Scotland the majority (70%) of breeding Sparrowhawks also moved to a nest site of the 

same or higher quality than their previous nest site. 

The most common habitat variables that distinguished higher and lower quality 

goshawk territories from random locations for both the amount and spatial arrangement 

of vegetative types included the proportions ponderosa pine, mixed conifer, and 

deciduous-dominated habitat, openings, and the overall diversity of vegetative types. 

Significant relationships did not vary greatly between circle and ring analyses, indicating 
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that either the amount (circles) or arrangement (lings) of vegetative types and divei-sity 

could be used on the study area to distinguish between random locations and nests with 

higher or lower reproductive success. Tests of both central tendency (ANOVA) and data 

dispersion (MRPP) were useful in identifying important effects. 

The majority of significant relationships within vegetative types occurred between 

higher quality territories and random locations. In particular, the amount of deciduous- 

dominated vegetation (less) and openings (fewer) within a 0.60-km (ANOVA) and 1.2- 

km (MRPP) radius of the sample plots were important. These distances incorporated the 

NA, PFA, and 11% of the FA (Reynolds et al. 1992) within a goshawk’s home range. 

The NA provides critical habitat for nests, and may include more than one nest. 

The PFA, in addition to providing a staging ground for young goshawks to learn to hunt 

while still receiving food from their parents, appears to correspond to the defended area 

around nests (is . ,  the territory). The PFA also provides food and cover for a number of 

the goshawk’s prey species (Reynolds et al. 1992). 

Greater proportions of ponderosa pine and lower diversity of vegetative types 

distinguish habitat in higher quality territories from random locations. These 

relationships were particularly important near (within 0.30 km) the sample plots, 

Although ponderosa pine comprised 55% of the study area, 70% of nests on territories 

were found in this forest class (Chapter 1). Ponderosa pine trees provide large, protective 

crowns with easy access to nests, as well as habitat for and access to the goshawk’s prey. 

Historically, forests of ponderosa pine were maintained by frequent (2-4 yr), low- 

intensity surface fires that resulted in same age clumps (groups) of bees separated by 

small openings and maintained relatively open understories. Fire suppression and 
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selective tree cutting during the past centuly have allowed pine and fir regeneration to fil l  

the below-canopy space and inter-cluster gaps, thereby changing the structure and species 

diversity of the pine forest. The importance of lower species diversity near nest in higher 

quality temtories may be a function of selection for greater proportions of “pure” 

ponderosa pine, containing less fir regeneration. 

Less deciduous-dominated habitat was found at higher and lower quality 

territories than at random plots, Although goshawks will nest in aspen trees, aspen 

crowns provide less protection from predators and greater exposure to inclement weather. 

Aspen stands also provide less concealment while hunting, but are good trees for cavity 

excavation by hole-nesting prey such as woodpeckers. 

Although goshawks occasionally forage along forest openings using longer flight 

times, their hunting behavior typically employs a short-sit-and-wait and short flight 

pattern, where the hawks use multiple perches under the forest canopy to search for prey 

and travel times vary with forest type (Kenward 1982, Widkn 1984). In addition to 

providing less suitable habitat for the goshawk’s dominant prey [Kaibab and red squirrels 

(Sciurus spp.)], forest openings may diminish the concealment of nests. The number and 

size of forest openings within a goshawk’s territory and foraging range are therefore 

important to the goshawk’s reproductive success. Fewer and smaller openings, as well as 

less total area in openings, on higher and lower quality territories than on random plots 

illustrate this point. 

Significant trends between random locations and hgher or lower quality goshawk 

territories may reflect historical forest management practices on the study area. 

Goshawks there exhibited strong territory fidelity (Reynolds et al., in review), where only 
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5% of males and 6% of females dispersed to new breeding sites. Moreover: prior to 

1991, the hKRD maintained 0.1 6-km to 0.20-km radius “buffers” of no-harvest around 

goshawk nests (M. Siders, pers. co rn . ) ,  minimizing the number afforest openings near 

nests, and allowing pine and fir regeneration to grow. Because the majority of nests used 

in this study were found at or near nests discovered prior to 1991 , the vegetative 

characteristics at territories may reflect this buffer history. However, because the area 

within historical buffers comprises only 1 % of the 0.60-km radius area of important 

habitat relationships surrounding nests, this explanation for the differences is 

unconvincing. The only exception to this caveat may include the higher amounts of 

mixed-conifer habitat within 0.15 krn of nests in lower quality territories than at random 

locations, which may reflect regeneration that occurred within the buffer zone. 

In this study, I was unable to detect differences between levels (lower, higher) of 

reproductive fitness, and thus between source and sink habitat, for either the amount or 

spatial arrarigement of vegetative types, This may be the result of poor resolution 

between clusters for territories falling along the axis determined by the standardized least 

squares means for the number of young fledged (Fig. 4.3). Better resolution between 

clusters may be achieved using upper and lower variable percentiles, as demonstrated by 

Thome et al. (1 999), or by using additional, relevant demographic variables (Manly 

1986333) such as fecundity or survival (Newton 1989, Franklin 1997) in the cluster 

analysis. Alternatively, use of additional habitat variables, such as forest structural 

components (Chapter 2), might better discriminate between higher and lower quality 

territories, as forest structure may be as: if not more, important to goshawk reproductive 

success than composition of forest vegetation. This analysis is currently underway. 
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fig ASAGEMENT IMPLlCATlONS 

If higher quality territories represent goshawk population “sources,” thus 

contributing to persistence of the species on the study area, then the habitat conditions 

therein should not be altered greatly beyond the vegetative characteristics identified in 

this study. Altering the habitat greatly or, similarly, refraining from any form of habitat 

maintenance over time, may change the proportion of vegetative types, thereby creating 

more random-like habitat conditions. Conservatively, management recommendations 

based on this research should be carried out with caution until the assessment of 

additional habitat variables relevant to the demographic perfomance of goshawks on the 

study area (such as the horizontal and vertical structure of the forest) are made. 

The spatial arrangement of the proportions of vegetative types was most 

important in predicting whether a site belongs to a goshawk territory or random plot on 

the study area, and whether a territory would be of higher or lower reproductive quality. 

The proportions of pinyon-juniper (0.30-0.60-km radius), mixed conifer (0.00-0.15-km 

radius), ponderosa pine (0.15-0.30-km radius), and spruce-dominated (0.15-0.30-km 

radius) habitats near the sample plots positively influenced territory location; whereas, 

the proportion of openings (0.00-0.1 5-km radius) strongly lowered the probability of a 

temtory location. That the proportion of spruce-dominated mixes between 1.20 and 2.40 

km (corresponding to the FA) of a sample plot also negatively influenced the probability 

of finding a territory suggests that adequate foraging habitat is also important to the 

goshawk. The typically dense, understory filled, spruce-mixed forest limits access to 

Prey. 
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The amount of ponderosa pine within 0.1 5 km and mixed conifer within 0.30 km 

of sample locations, corresponding to the NA and a portion of the PFA within territories, 

were associated with higher quality territories. These habitat types are typically 

dominated by large ponderosa pine crowns (mixed conifer being comprised mostly of 

mature ponderosa pine with fir regeneration), suggesting that once this criterion is met, 

the NA and especially the PFA may support a variety of forest conditions. Once a nest is 

established, the spatial arrangement of vegetative types within the foraging area does 

little to differentiate further higher from lower quality habitat, Stronger relationships are 

expected to emerge, however, using variables of forest structure (including horizontal and 

vertical measures) due to their influence on the access to and resource availability for 

Prey. 

Because significant habitat variables in these analyses reflected past management 

on the study area, the regression coefficients herein (Tables 4.8,4.9) may be used to 

predict the effects of hture forest management on goshawk territory location and site 

quality. However, model parameters should not be used to estimate management targets 

to maintain goshawk habitat. In addition, the predictive use of these equations is limited 

to the study area on the NKRD. For forests elsewhere, site-specific functions should be 

developed. 
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DISSERTATION SUMMARY 

0 VERVI E w 

The management and conservation of wildlife species, such as the goshawk, 

require not only knowledge of the species’ life history characteristics, but also knowledge 

of the optimal composition and spatial arrangement of the habitat resources that meet the 

species’ biological needs. Fine resolution habitat models are integral to assessing 

wildlife-habitat relationships at multiple scales. Ln Chapters 1 and 2, I showed that it is 

possible to model the composition and structure of forest vegetation on a large (1,285 

km2) and diverse study area to a fine resolution (1 0 m x 10 m) from broader-scale (30 m 

x 30 m) Landsat TM imagery, With field data collected at a desired resolution as a main 

variable and Landsat data as an auxiliary variable, I generated fine-scale inferences about 

characteristics of the goshawk’s environment previously unavailable corn conventional 

Landsat TM classifications. In Chapter 3, I predicted the location of active nests 

throughout the study area using a dynamic spatial simulation model that incorporated the 

interaction of these fine-scale habitat models with a sample of active goshawk nests 

whose spatial distribution reflected the bird’s territorial behavior, Although territoriality 

plays a much greater role in nest placement on the study area than the availability of nest 

site habitat, this relationship could change with excessive levels of natural or 

management-caused disturbance to forests. Notably, this model makes no inferences 

about the reproductive performance of individual pairs of hawks at predicted nest 
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locations. Moreover, factors that were not addressed here, such as the, distl-ibution and 

abundance of prey or the composition and structure of foraging habitat, may also 

influence nest location, 

The dynamic spatial simulation model developed here brings wildlife habitat 

modeling to a new level of sophistication where multi-way relationships between a 

species and components of its environment are explored simultaneously. This dynamic 

spatial simulation model provides a more realistic understanding of the influences that 

habitat components have on a species’ life history characteristics. Furthermore, this 

approach to modeling more closely simulates ecosystem-based processes, an important 

concept in the conservation of species, especially top-level predators such as the goshawk 

whose populations are sensitive to changes in complex food webs caused by natural and 

management related habitat changes. 

In Chapter 4, I explored the relationship between tree species composition at 

multiple scales within goshawk territories and goshawk reproductive performance 

(annual rate of egg laying and productivity) to understand the influence that the amount 

and arrangement of habitat have on goshawk population persistence. Territories with 

high reproductive success (Le., high quality territories) were distinguished from random 

locations by a greater proportion of ponderosa pine, fewer deciduous trees and openings, 

and lower species diversity. Low quality territories also had fewer openings than random 

locations. Smaller proportions of deciduous-dominated vegetation and fewer openings, 

particularly near (0.0-0.6 km from) nests, suggested possible selection by goshawks for 

these habitat characteristics. Although I was unable to detect differences in the 

composition or diversity of vegetation between territories with higher and lower 
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reproductive pi-foimance: this apparent lack of distinction may reflect the habitat 

components tested. Use of alternative habitat variables that influence demographic 

performance, such as forest structural components, may provide a more appropriate test 

of these differences. 

FUTURE WORK 

In the coming months, I will explore the relationship between forest structure and 

goshawk reproductive performance at multiple scales, as with forest species composition. 

Habitat features (compositiodstructure) that are correlated with territory quality will be 

incorporated into the dynamic spatial simulation model to assess the effects of territorial 

behavior and forest species composition and structure on population performance (Fig. 

S.l). In addition, by introducing alternate management scenarios into the habitat models, 

I should be able to assess the probable effects of management-related forest changes on 

nest location and reproductive success, and track changes in these variables over time as 

the forest regenerates. 

Eventually, information on the fecundity and swvival of goshawks, as well as the 

distribution of prey species, will be incorporated into the modeling process to improve 

the predictive power and scope of the dynamic spatial simulation model. This level of 

integration Will incorporate the effects of foraging habitat quality, an important ecological 

component missing from the current models. 
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