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Abstract. Population models have great potential as management tools, as they use 
information about the life history of a species to summarize estimates of fecundity and 
survival into a description of population change. Models provide a framework for 
projecting future populations, determining the effects of management decisions on future 
population dynamics, evaluating extinction probabilities, and addressing a variety of 
questions of ecological and evolutionary interest. Even when insufficient information  
exists to allow complete identification of the model, the modelling procedure is useful 
because it forces the investigator to consider the life history of the species when 
determining what parameters should be estimated from field studies and provides a   
context for evaluating the relative importance of demographic parameters. Models have 
been little used in the study of the population dynamics of passerine birds because of: (1) 
widespread misunderstandings of the model structures and parameterizations, (2) a lack    
of knowledge of life histories of many species, (3) difficulties in obtaining statistically 
reliable estimates of demographic parameters for most passerine species, and (4)   
confusion about functional relationships among demographic parameters. As a result, 
studies of passerine demography are often designed inappropriately and fail to provide 
essential data. We review appropriate models for passerine bird populations and illustrate 
their possible uses in evaluating the effects of management or other environmental 
influences on population dynamics. We identify environmental influences on population 
dynamics. We identify parameters that must be estimated from field data, briefly review 
existing statistical methods for obtaining valid estimates, and evaluate the present status   
of knowledge of these parameters. 
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INTRODUCTION 

We have chosen to review the state of population ecology of passerine birds in the 
context of age- and stage-structured population models (e.g., Caswell 1989). There is 
considerable interest in the use of population models to project a species' future   
population size, to determine the ultimate effects of current management decisions, and    
to gain insights into species extinction likelihoods under different management scenarios. 
These models require an in-depth understanding of the species' life history and precise   
and reliable estimates of birth and death rates (vital rates). Collectively, this information 
can be used to construct, and parameterize, a model of the life cycle of a species and to 
explore the demographic consequences of variation in the vital rates. The analysis of the 
life cycle allows projections of future populations, insights into the effects of management 
actions, and estimates of persistence likelihoods. Model construction requires 
understanding of: (1) technical aspects of the models, (2) basic demographic parameters 
and their estimation, and (3) interactions among demographic parameters over time; in 
brief, most of the interesting (in our opinion) topics in population ecology. Even a brief 
review of these topics would merit a volume on its own, so we will examine only a few 
selected topics in population modelling in this paper. 

Even though population projection models are not new to ecology, there remains    
a significant gap between the theoretical structure and exploration of the models and their 
application to specific ecological questions and management problems. The limited 
application of these models to real-world problems has many explanations including: (1) 
confusion over the relationship among models, particularly between life tables and Leslie 
(1945, 1948a,b) matrix models, (2) unfamiliarity with population models by biologists 
conducting field studies, (3) failure by many mathematical ecologists to simplify model 
structure to reflect parameters that can actually be estimated from field studies, and (4) 
difficulties in parameterizing models with reliable estimates of a population's vital rates.   
In the context of life history studies of passerine birds, we propose to specifically address 
points (1), (3) and (4) and, in the process, make progress in addressing problem (2). 

GENERALIZED MODEL STRUCTURE FOR PASSERINE BIRDS 
 

When constructing general life cycle graphs for typical passerines, several 
simplifying assumptions to their life history can be made. First, most species usually 
produce one or more broods during a relatively short breeding season which allows them  
to be loosely characterized as birth-pulse populations (Caughley 1977:72). Second, 
reproductive periods occur at consistent intervals of 1 year, which allows separation of    
the population into discrete age classes. In our models, this allows us to redefine 
age-specific rates into class-specific rates because all reproduction in the interval occurs   
at a specific time. As a result, the projection interval, or time step, is of the same     
duration as the width of the age class. Third, in sexually reproducing species, particularly 
those that are monogamous, we often restrict our models to females. Collectively, these 
aspects of passerine life history allow us to use discrete, single-sex models formulated in 
terms of life tables or  projection  matrices (Leslie 1945, 1948a,b).    A  final  simplification 



 

RECONCILING LIFE TABLE AND PROJECTION MODELS 
 
 

Emlen (1984) categorized transition models as "bookkeeping" models, because  
they have a simple structure that is designed to account for changes in population size as    
a function of births and deaths. Unfortunately, application of these simple models has   
been greatly complicated by two alternative sets of terminologies (Table 1). Life table 
functions l(x) and m(x) are indexed by x, in continuous time, but projection matrix 
functions pi and Fi are indexed by age class i in discrete time. Even if data are collected    
in continuous time, however, construction of the life table requires a discretization of age  
to form age classes. In this section we review how the life table functions can be placed 
into a Leslie matrix. Further, we demonstrate how timing of the census relative to the 
birth-pulse defines the components of the projection matrix functions, and demonstrate  
that projection matrices can be constructed using composite estimates of pi and Fi. 

There is an extensive literature on both parameterizing Leslie matrices and 
demonstrating the equivalence of Leslie matrix and life table approaches (e.g., Taylor and 
Carley 1988). Unfortunately, confusion still exists because many basic population    
ecology texts provide insufficient or in correct formulations of Fi (e.g., Pielou 1974,   
Begon and Mortimer 1981). As a result, the relationship between the projection  
coefficients pi and Fi and the life table functions l(x) and m(x) remains confused because  
of: (1) different formulations regarding the relationship between the Leslie matrix model 
(Leslie 1945, 1948a,b) and the life table model (Cole 1954, Pielou 1974), (2) different 
formulations of common demographic parameters (e.g., Michod and Anderson 1980), and 
(3) failure to recognize the often subtle distinction between an animal's age-class and its 
calendar  age.    Most confusion  has centered on  the  relationship between  the  recruitment 

is that it is possible to use stage projection matrices if the vital rates can be assumed 
constant and independent of age beyond a given age (e.g., an "adult" stage). 
 

Model assumptions 
 

To use simple population projection models for passerine birds we must assume, 
among other things, that: (1) males play no role in affecting survival and reproduction of 
females, other than their obvious role in sexual reproduction, (2) births occur during a 
limited portion of the annual cycle, (3) the values of the vital rates remain constant   
through time, and (4) no interactions occur among parameters and between parameters   
and population density. Male participation in preparation for and care of young varies 
greatly among passerines, so for at least some species assumption (1) is probably   
incorrect. Assumptions (3) and (4) are incorrect, although few analyses have addressed 
these issues for passerines (see below). Testing the appropriateness of simple models and 
possibly rejecting them in favor of more complex models is the essence of model fitting, 
and is probably the only appropriate framework for evaluating population dynamical 
questions about passerines. Several levels of model fitting exist, addressing: (1) the issue  
of structure of the population, and the issues of (2) time-specificity and (3) 
density-dependence of the vital rates. We discuss these issues later in the paper. 
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parameters Fi (Leslie) and m(x) (life table) as a result of many factors including the time   
at which the population is censused relative to the birth-pulse, the specification of the   
time line, inconsistent definition of a recruit, and whether the first age class is labeled 0    
or 1. Despite the confusion, it is possible to develop a consistent relationship between     
life tables and projection matrices. 
 
 

TABLE 1. Terms commonly used in population ecology (see Caswell 1989). 

 Parameter Symbol Definition 
Indexes 
 Age x Continuous index for age 
 Age class i Discrete index for age categories 
   i = 0, …, w-1. 
Life table components 

Survivorship l(x)  Probability of survival from birth to age x 
 Reproduction m(x) Expected number of female offspring for 
   each female of age x per unit time 
Projection matrix components 

Survival rate pi Probability of survival from t to t+l of 
  females in class i. 
Fertility Fi Expected number of female offspring at time 
  t+1 per female in class i at t 
Age class size ni(t) Number of individuals in age class i at t 

An algorithm for developing a Leslie matrix difference model of population change 
 

A clear, practical algorithm for developing a Leslie matrix from life table  
functions does not exist in the literature. Here, we outline how l(x) and m(x) can be     
placed in a Leslie matrix formulation that is consistent with the original life table. There 
are two components that must be considered in this formulation. Life tables functions 
begin at the birth of individuals in a cohort and provide age-specific survival and 
reproduction throughout the individuals' lives. Leslie matrices group individuals into age 
classes and assume that survival and reproduction can be estimated for each age class    
from some specified time (the census) to another specified time occurring exactly one unit 
of time in the future. Leslie matrices therefore: (1) are indexed by time intervals that are    
of equal length to age classes but do not necessarily occur on the birth pulses, and (2)   
have functions pi and Fi that are defined in terms of the time intervals. 

1. Specifing the timing of annual events relative to the time of census and ages,  
and age classes of cohorts. 

a.  Set  the  time  axis,  in  which  the  length  of  intervals  from  t  to  t+1  (the time 
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interval t) are the same as the length of age classes in the population to be studied. The  
time interval should contain just one birth pulse, and for passerine birds, the time interval 
will be one year. Each point t represents a time of census, which is the point from which 
parameters for all age classes must be indexed. 

b. Establish an age axis x, at right angles to the time axis. Because of our 
assumption of a birth pulse, all individuals born during a time interval will be the same  
age, represented as a point on the age line which we call a cohort. Cohorts, indexed by     
the last integer value of age, are denoted by i and numbered from 0 (newborns) to w-1, 
where w is the maximum attainable age or age of reproductive senescence. Because the 
cohorts are only observed at census time, the number of individuals in each cohort at the 
censuses are indexed by age class i and census period t (ni,t). The diagonal lines (Figs.    
1-3) indicate the trajectory of a cohort as it ages over time. 

c. In Fig. 1, time of birth-pulse occurs on the time-line at points located distance    
1-k beyond the census points, and on the age-line at the time at which each cohort is  
exactly on integer values of the age axis, or where i = x. At the birth pulse, a cohort of     
age 0 (the newborns) is formed. Note that the proportion of time between the birth pulse 
and the next census in each time interval is denoted as k. The actual age of the animals     
in each age class i at the time of census is i + k. 

2. The actual number of animals in the cohort at any location on these trajectories 
defined in (1) is a function of age and time of census (the axes). To convert the axes to     
a coherent framework for a demographic model, the transitions between age classes 
observed at each census must be defined. To do this, we use graphs, with nodes 
representing age classes and arcs representing paths between nodes. The nodes can be 
thought of as the number of animals in the cohort when censused at that age class and   
time, or ni,t, and the arcs represent influences on each node at time t that change the     
values of the "target" nodes at time t + l (e.g., ni+1,t+1). The product of the number of    
animals associated with the original nodes and the values associated with the intermediate 
arcs is the number of animals associated with the target nodes. Caswell's (1989) 
formulation also uses directed graphs, but does not explicitly incorporate time, which   
tends to obscure the transitions for those unfamiliar with graph theory. At this point, the 
alternative terminology between life tables and Leslie matrices must be reconciled. 

We label the general graph (Fig. 1) with pi and mi. The critical assumption of a    
birth pulse allows us to set mx = mi ,  as all births occurring in an age class occur at time    
t + (1 - k) (Fig. 1). Also, pi can be defined for any age as pi =1(i + 1)/1(i) (e.g., Caughley 
1977:87). For this paper, we define each pi as having two parts, 1−k

ip  (the probability of 
surviving from census to time of birth pulse), and k

ip  (the probability of surviving from 
time of birth pulse to time of next census) where pi = ( 1−k

ip )( k
ip ). 

Adults in age class i must survive from the time of census to birth time with 
probability 1−k

ip  (that is, survive for the portion of the interval 1- k in age class i), then  
they produce young at rate mi+1, then the young survive from birth to census time with 
probability k

np  (the n indexes newborns, which are not seen before the census; note,      
k
np  = 1(k)). So, in general, we define Fi as 1−k

ip mi
k
np . 
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These graphs can also be written out as difference equations or Leslie matrices.  
For the general case, the difference equations are: 

and 

for i = 0, ... , w-1, which leads to the general Leslie matrix: 

 

Fig. 1. A general time-by-age biplot illustrating cohort transitions between census 
periods. Symbols are: ni,t, the number of age-class i individuals observed at census     
period t; pi, the survival rate from age-class i to i+l; k

np , the survival rate of newborns   
from the birth-pulse to the next census at t+l; and mi, the reproductive output of  
individuals of age-class i at the birth-pulse. The Leslie projection matrix, which 
summarizes the dynamics shown in the biplot, is given to the right of the graph. 
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A 4 age class example is presented in Fig. 1. 
In practice the interval survival rates 1−k

ip and k
ip  are difficult to estimate, and 

almost all applications of this model fall into 2 special cases: 
a. Census just before the birth pulse. -- If k approaches 1, animals have survived  

the time interval (and are therefore indexed in the higher age class), and immediately after 
the census produce young with reproduction associated with that age class (Fig. 2a). In  
this case, k

ip −1 is 1, and the first observed cohort has already survived the first time 
interval. In our 4 cohort example there are 3 observable cohorts (newborns are not 
observed), the first of which is indexed as i = 1, and survival of newborns is indexed with   
i = 0. 

b. Census just after the birth-pulse. -- If k approaches 0, animals have just 
reproduced, and all mortality in the interval occurs after the census. In this case, all 4 
cohorts are observed, and survival of newborns is again indexed with i = 0 (Fig. 2b). 

Note that age classes are defined in relationship to survival: if the survival over    
the interval has not occurred, the animal is in the same age class as at the start of the 
interval. Only when the census occurs just before the birth-pulse (Fig. 2a), where animals 
have survived the entire interval, are the animals indexed into the higher age class. 
Otherwise (when k is not close to 1), the age class is indexed by the lower bound of the 
age, as is p. 

The values for Fi are restricted to the top row of the Leslie matrix. For 
post-breeding censuses (Table 2), the first element of the top row, F0, represents projected 
recruitment to t+1 from age-class 0 at time t, the second element, Fl, from age-class 1,   
and so on. In contrast, for a pre-breeding census (Table 2), the first element of the 
projection matrix is F1, representing projected recruitment to t+1 from age-class 1. 
Comparison of the difference equations at the two times of census (Table 2) indicates that 
when the population is censused after the birth-pulse the members of age-class 0 are in 
their first year of life; for a population censused just before the birth-pulse, members of 
age-class 1 are about to begin their second year of life. The age-class distributions also 
differ: it is the set {N0,t, N1,t, ... , Nw-1,t} if sampled after the birth pulse, and {N1,t, N2,t,     
... , Nw-1,t} if sampled before the birth pulse. 
 
 
 

THE CHARACTERISTIC EQUATION 
 
 

It is valuable to estimate the finite rate of increase for the population (λ) for the 
Leslie model or a life table model. The number λ indicates whether the population is 
growing (λ >1), is stationary (λ=1), or is declining (λ<1). The basic equation of the Leslie 
model for post-breeding censuses is: 

(1) 
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TABLE 2. Difference equations and matrices for Figs. 2a,b, and 3. 
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Fig. 2. a. A time-by-age biplot, for a census occurring just before the birth-pulse, 
illustrating cohort transitions between census periods. Symbols are: ni,t, the number of 
age-class i individuals observed at census period t; pi, the survival rate from age-class i     
to i+l; and mi, the reproductive output of individuals of age-class a at the birth-pulse.    
Note that members of age-class 0 (n0) are not observed at the time of census. b. A 
time-by-age biplots, for a census occurring just after the birth-pulse, illustrating cohort 
transitions between census periods. The corresponding difference equations and the Leslie 
projection matrix, which summarizes the dynamics shown in the biplots, are given in  
Table 2. 

Algebraic manipulation of equation (1) leads to: 

(2) 

where li = p0pl ….pi-1, which is the familiar characteristic equation of the Leslie matrix    
of which λ is the principal root. 



 

 

 

Population projections and analyses based on either a life table or Leslie matrix 
approach are fundamentally identical. On the basis of how survival and fecundity 
parameters can be estimated from field data, however, it is possible to chose among    
model representations. Empirical estimates of Fi are usually not possible (see Caughley 
1977:111) and direct estimate of mi are usually required. Further, projection models     
based on censuses taken just before the birth-pulse confound estimates of fecundity (mi) 
with first year survival rate (p0). As a consequence, estimates of these two parameters     
are not separable. For species whose rates of population change (λ) are highly sensitive    
to fecundity and/or first year survival rate, such as most passerine birds (see below), we 
recommend censusing just after the birth-pulse. 

The models we have outlined so far all require age-specific estimates of the vital 
rates. For example, to estimate Leslie's Fi we would need to know the number of   
age-class zero individuals observed at the census at time t+1 whose mother was in 
age-class i at the census at time t. In the majority of field studies the ages of     
reproductive females are unknown. Even data from long-term banding studies often fail   
to provide this information. A further problem is the large number of parameters to be 
estimated in age-specific models which, because of small sample sizes, are often   
estimated imprecisely. One can develop simpler projection models if it is possible to 
assume constant vital rates across two or more age-classes. In passerine birds, for  
example, it may be legitimate to assume that beyond the age at first reproduction   
fecundity and survival rates become constant (Deevey 1947, but see Loery et al. 1987). 
This assumption greatly simplifies model structure and affords more degrees of freedom 
for estimates of the remaining parameters. 

The reduced, age-specific Leslie matrix is referred to as a stage projection matrix 
(Lefkovitch 1965).   Structurally, the dynamics  of  the  two  models are  equivalent  to  the 
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(3) 

(4) 

CHOOSING AMONG MODELS 

which is the familiar Lotka equation. Again, λ is the principal root. Either model can   
be constructed for a given population to determine λ, which will be the same for a fixed 
timeline but arbitrary time of census. 

The basic equation of the life table model is: 

which follows from the fact that the set of age classes for a given census at a fixed time 
in interval t partitions N0,t, into the component contributions from each reproductive age 
class at t-1. By algebraic manipulation of equation (3) (Noon and Biles 1990: appendix), 
one obtains: 



 

 

Fig. 3. A time-by-age biplot, for a census occurring just after the birth-pulse,     
illustrating cohort transitions between census periods. No obligate mortality (or 
reproductive senescence) is assumed at age 4; therefore, the plot represents a stage model 
with stage n3 including individuals ≥ age 3. Symbols are: ni,t, the number of age-class     
i individuals observed at census period t; pi, the survival rate from age-class i to i+l; and  
mi, the reproductive output of individuals of age-class i at the birth-pulse. The 
corresponding difference equations and the Leslie projection matrix, which summarizes the 
dynamics shown in the biplot, are given in Table 2. 
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degree the assumption of constant vital rates within a stage is justified, and the same 
methods can be used for analysis. We illustrate a hypothetical stage projection model 
assuming four distinct stages -- stages 0-2 are each identical to age classes 0-2 and stage     
3 includes all birds ≥ 3 years old (Fig. 3). The model assumes constant survival beyond  
age 3 (pi = p, i ≥ 3), constant fecundity for birds ≥ 3 years old (mi+1, = mi, i ≥ 3), and the 
possibility for infinite life span. Note the difference equations and the resulting projection 
matrix (Table 2). 

THE  STAGE  PROJECTION  MODEL 
 

In subsequent analyses we start with age-specific life table parameters and assume 
that  the population is censused immediately after  the birth pulse.   Starting with  the  basic 



 

 

 

 

 

 

 

If distinct, age-specific estimates of the vital rates are available, equation (2) can 
be as explicit as the data allows. As a result, the model structure will deviate, to varying 
degrees, from the simple two-stage model (equation 9) to models that have more 
stage-specific information.   There  are a large  number of  possible  model  structures  (6) 

(11) 

(10) 

(9) 

(8) 

(7) 

For  species  which  first  breed at  age 2 years  (α = 2; 3 stages),  equation  (9)  reduces  to 

If we assume that the age at first reproduction (α) is one year, as it is for most 
passerine birds, we have a 2-stage model and equation (9) reduces to: 

Equation (8) can be rewritten to provide the general characteristic equation for the 
completely stage-structured model as: 

where pi = p and mx = m for all age classes ≥ α, and m = 0 for all age classes < α. If    
we further assume no reproductive senescence and that birds can live forever (w--> ∞), 
equation (7) can be rewritten as: 

(6) 

(5) 
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life table equation, 

Invoking the assumption that reproduction and survival are independent of age 
upon reaching the age of first reproduction (α), equation (6) can be rewritten as: 
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(12) 

(13) 

when more age-specific information is incorporated. However, three scenarios cover most 
of the information available from field studies of passerine birds: (1) a distinct fecundity 
value for the first breeding season, (2) reproductive senescence or finite longevity, and    
(3) the combination of (1) and (2). 

It is not uncommon for many passerine species to have lower expected 
reproductive rates during their first year of breeding (e.g., Clutton-Brock 1988, Saether 
1990). Thus, assuming α = 1, we have reproductive parameters m1 and m. If we further 
assume no reproductive senescence (w = ∞), the characteristic equation for the stage   
model with a distinct first year reproduction becomes: 

Additionally, data on the expected life span of individuals may be available for 
some species. If we assume reproductive senescence at w years, age at first reproduction  
α, and constant survivorship beyond age α, then we rewrite equation (7) as: 

If we assume α = 1, the characteristic equation is: 

(14) 

A final elaboration of equations (6) and (7) allow us to explore the case of a distinct 
first year fecundity value and reproductive senescence. We assume α = 1 year, 
reproductive parameters m1 and m, and reproductive senescence at age w years. The 
characteristic equation is: 

(15) 

Equations (9), (12), (14), and (15) provide the characteristic equations needed for 
most life history studies of passerine birds. 

ANALYSIS OF POPULATION PROJECTION MODELS 
 
 

The basic projection equation for either the age- or stage-specific model is     
n(t+1) = An(t), where n is a time-specific age (stage) distribution vector and A is the 
projection matrix (Table 2). In general, assuming constant parameter values, n(t+k) = 
Akn(t). If a projection matrix is an appropriate description of a population's dynamics and 
certain structural criteria are met (e.g., Beddington 1974), the eigenvalues and  
eigenvectors of A provide information on the long-term trajectory of the population. The 
dominant eigenvalue (λ1) equivalent to λ from the characteristic equation (above), is the 
finite rate of change, and the right and left eigenvectors  corresponding to λ1 are  the  stable 
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(age) stage distribution and reproductive value vectors, respectively. Because λ  is both 
the quantity maximized by natural selection (Fisher 1958), and an apparent measure of 
population persistence (Goodman 1980), there has been a great deal of interest in how 
changes in the elements of the projection matrix (denoted as aij's) affect λ. 

Point estimates of λ 

(16) 

Estimates of the finite rate of population change (λ) provide insights into the 
dynamics of a population assuming (1) constant parameter values, and (2) a stable age 
distribution. For a typical passerine bird, λ  can be directly estimated from equation (9)    
as λ = p+p0m, and for birds first breeding at age 2 from equation (11) by use of the 
quadratic equation. For example, the solution for λ from equation (11) is 

Estimates of λ from equations invoking senescence (equations (14) and (15)) must be 
solved iteratively. Alternatively, once the appropriate projection matrix has been 
constructed, λ and its associated eigenvectors can be calculated numerically from A using 
any of a number of available software packages. 
 

Sensitivity analyses 
 

If simplifying assumptions are made about adult survival and fecundity (e.g., time 
invariance), implicit differentiation of the characteristic equation can be used to evaluate 
the effects of changes in the vital rates on λ. In addition, the values of the partial 
derivatives: 

where aij represents the estimate of the ijth parameter of matrix A can be ranked according 
to their magnitude and used to infer which parameters, when changed in value, most   
affect the value of λ. Survival and fecundity rates are measured on different scales, 
however, which may make direct comparison of their sensitivities difficult. Fortunately,    
a measure of the sensitivity of λ to proportional change in the vital rates, or elasticity, has 
been developed by de Kroon et al. (1986). The elasticity of λ with respect to aij is     
defined as: 

Information on sensitivities and elasticities can be very important in the allocation of 
effort in field studies and in the design of management plans for threatened and 
endangered species (see Mertz 1971, Nichols et al. 1980, and Noon and Biles 1990 for 
examples). 



 

ESTIMATION  OF  MODEL  PARAMETERS 
 
 

The crucial link between model structure and the actual population is the  
estimation of transition elements (aij's). Estimates of survival and productivity provide 
information on the structure of a population model. Assessing age-specificity of estimates 
allows evaluation of the need for distinct age classes. Time specificity of estimates 
indicates a need for higher-level structure in the model such as density dependence. 
Finally, environmental effects on survival and fecundity can be modelled. Previous 
perspectives on model structures and demographic parameters have been muddled by use 
of inappropriate estimators. Development of innovative new statistical methods for both 
estimating parameters and assessing environmental effects on parameters should allow us 
to implement appropriate models for passerine birds. Because several recent reviews on 
estimating demographic parameters (Lebreton et al. 1990) have provided more detail on 
specific examples than space permits here, we will only briefly summarize the status of 
knowledge on estimating parameters. 
 

Local or large scale estimates? 
 

Demographic studies can be based upon estimates from either local populations     
or from results of large-scale surveys. Large scale data sets such as surveys or banding  
data often provide data too diffuse for site specific analysis. Investigators have only the 
option of fitting simple models to composite data sets. There are many potential flaws 
associated  with  this  approach,  because  spatial  and  temporal  heterogeneity  can  not  be 

455 

Interval estimates of λ 
 

Estimates of the sampling error of λ are needed for assessing the confidence of 
growth projections and for tests of hypotheses. For example, test of the H0: λ ≥ 1.0 is 
relevant to species whose populations are believed to be declining. The sampling    
variance of λ can be approximated by (Laude 1988:206): 

(17) 

where 2
ijσ  = Var(aij). Variance of the survival rates can be made by assuming a binomial 

sampling distribution 2
iσ  = pi(1- pi)) or, if estimated from banding data, by the methods of 

Jolly (1965) and Seber (1965, 1982). The variance in the mx values can be based, for 
example, on the variance in clutch size among known-age females. 

Equation (17) neglects possible covariances among the demographic parameters 
and fails to account for between-year changes in the vital rates. Between-year changes, 
estimated by factoring out the temporal component of variation from the total variance 
estimates of the vital rates and λ, can be estimated by a components of variance analysis 
(Burnham et al. 1987:22-25; 260-275). 
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appropriately assessed and incorporated using sparse data sets. 
 
 

Estimating survival rates in passerines 
 

All reliable methods of estimating survival rates involve the use of marked birds. 
Nichols et al. (1981) reviewed many of the existing passerine studies as of 1980, and 
presented original analyses of several data sets. Although surprisingly few additional 
studies have been published since Nichols et al. (1981), several recent works (e.g., 
Lebreton and Clobert 1991, Pollock et al. 1990, Lebreton et al. in press), are leading to      
a unified theory of estimating survival rates in time and space, and evaluating associations 
between survival rates and environmental covariables. Here we discuss some of the 
problems in survival estimation and recent applications relevant to passerines. See   
Clobert and Lebreton (1991) for a detailed review of estimation of bird demographic 
parameters. 

Estimation of survival from recoveries of banded birds.-- A series of simple models 
(e.g., Hickey 1952, Haldane 1955) have been used to estimate survival rates for   
passerines (e.g., Henny 1972, Dobson 1990). Building on a model developed by Seber 
(1982), Brownie et al. (1985) and others (White 1983, Conroy and Williams 1986) have 
developed a sophisticated series of models for band-recovery analyses, which are 
commonly used for analysis of waterfowl and other harvested species (e.g., Chu and 
Hestbeck 1986). The basic assumption of no time-specificity of the simple models has 
been convincingly rejected for waterfowl (Burnham and Anderson 1979). Unfortunately 
for passerine banding studies, the very low recovery rates inherent in nongame birds make 
it impractical to fit all except the simplest of the Brownie et al. (1985) models, which is 
similar to the Haldane (1955) model. Fitting this model has risks, as it is unlikely that 
passerines have constant survival rates and many banded samples must be combined for 
analysis, which likely causes heterogeneity (e.g., Clobert and Lebreton 1991). Because     
of these potential difficulties, band recovery data have not recently been used to estimate 
survival rates of North American passerine birds. 

Estimation of survival from mark-recapture and mark-resighting.-- Use of 
recapture or resighting data from marked birds provides the only reasonable framework  
for estimating time and age-specific survival in passerine birds. Burnham et al. (1987), 
Clobert et al. (1987b), Pollock et al. (1990), and Lebreton et al. (1991) discuss the 
appropriate modelling structure for mark-recapture models, and how to incorporate 
environmental covariates into those analyses. Although few studies have as yet made use 
of procedures for evaluating time and age-specificity in the Jolly-Seber models, analyses 
have been conducted for great tits (Parus major, Clobert et al. 1988), black-capped 
chickadees (Parus atricapillus, Loery and Nichols 1985, Loery et al. 1987), and European 
starling (Sturnus vulgarus, Clobert et al. 1987a, Stromborg et al. 1988, Krementz et al. 
1989). 

Estimation of seasonal or period-specific survival.-- It is possible to use 
mark-recapture methods to estimate survival of young birds from fledging to periods later 
in the summer, although most such studies have been experimental manipulations of 
cavity-nesting birds (e.g., Krementz et al. 1989, Fauth et al. 1991). Because of the     
interest in Neotropical migrant birds, there has been increased interest in experimental 
designs  that  evaluate  seasonal  survival on breeding and wintering grounds, although only 
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a few investigators have actually applied the analysis to wintering areas (e.g., Karr et al. 
1990). 

Estimation of survival from telemetry studies.-- Radio-tagging can be used to 
estimate interval survival rates of local populations. Although telemetry has been used 
extensively to estimate survival rates of larger birds (Bunck 1987), the technology has  
only recently advanced to the extent that passerines can be reliably radio-tagged. One 
crucial assumption in analysis of radio-tagged animals is that tagging does not affect 
animal behavior or survival. Transmitter-related mortality has caused the premature 
termination of at least one passerine study (D. G. Krementz, personal communication). 
White and Garrott (1990) review statistical methodologies for survival estimation from 
radio-tagged birds, and discuss experimental designs for evaluating the effects of 
transmitters on bird survival. 

Estimates of first year survival.-- For many bird species, estimation of first year 
survival rate (p0) by any of the above methods is difficult or impossible because many 
species are not philopatric to their natal area. As a consequence, first year survival 
estimates from banded nestlings, for example, are confounded with permanent emigration 
from the study area. Estimates based on a subsequent year recovery or recapture of birds 
banded before dispersal from their natal area, but which show limited philopatry, will be 
negatively biased. Even the use of telemetry methods for annual estimates is limited for 
many species because of long-distance migration sometime during the annual cycle.   
Given these problems, we suggest that indirect estimates may be appropriate in some  
cases. For example, given an independent estimate of λ (i.e., from census or survey data)  
in combination with estimates of the other vital rates, p0 can be computed directly from      
the characteristic equation (e.g., equations 10 and 11). Unfortunately, no estimate of the 
precision of p0 is possible. 
 
 

Estimation of fecundity elements 
 
 

Estimation of proportion of females breeding.-- The estimate of fecundity  
combines two important components: the number of females fledged per nest and the 
proportion of breeding aged females that breed. The latter parameter is generally assumed 
to equal 1.0 for adult birds, although that is clearly not true for at least some species (e.g., 
scrub jays Aphelocoma coerulescens, Woolfenden and Fitzpatrick 1984). Although not   
yet applied to passerine birds, Lebreton et al. (1990) have described a method of  
estimating age-specific breeding probabilities in which the proportions of individuals in 
each age class are estimated and compared to observed age proportions of breeding birds   
to determine proportion of breeding females. In any case, determining the proportion of 
females breeding requires intensive studies of local populations. 

Estimation of clutch size.-- An enormous amount of data exist in the Cornell 
University Nest Record Card Program on average sizes of clutches, and similar programs 
exist in other countries (Temple and Wiens 1989). Consequently, information on average 
clutch sizes are readily available for many species. Unfortunately, extensive data sets 
provide no information on variation in clutch size in association with population density   
or other demographic characteristics. 

Estimating nest success in passerines.-- The Mayfield method (Mayfield 1961, 
1975) is  a well  known  procedure  for estimating nest  success in  passerines,  and  models 
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which provide statistically reliable estimates have been developed (Johnson 1979, Hensler 
and Nichols 1982, Hensler 1986, Bart and Robson 1982). Although there have not yet  
been sufficient applications to allow a true comparative study of regional variation in nest 
success, nest survival rates are presently the subject of extensive studies as a consequence 
of hypothesized predation and parasitism risks in relation to habitats selected for nests 
(e.g., Martin and Roper 1988). At this time, however, relatively few applications of the 
Mayfield method have been published for passerines. 
 
 

Higher-level relationships among parameters 
 
 

Given the crucial importance of density dependence in life history theory and 
demography, it is astonishing that no compelling demonstrations of the phenomena have 
ever been published for passerines. Most of the literature on density dependence of  
primary demographic characteristics involves key factor analysis (e.g., Stenning et al. 
1988, Moller 1989), which has been questioned on statistical grounds (Kuno 1974). An 
alternative approach, that of detecting density dependence from a series of sequential 
surveys, is also of questionable validity (Barker and Sauer, this volume). Consequently, 
little guidance exists from experimental literature on proper incorporation of density 
dependence into population models. It is a challenge for passerine biologists to design 
experiments to detect density dependence. 
 
 
 
 

A  BRIEF  EXAMPLE 
 

In the following we illustrate a sensitivity analysis of the life histories of two 
species based on quantitative information (Table 3). Estimates of adult (x ≥ 1 yr) survival 
rate and ages at first and last reproduction were available for both the red-eyed vireo  
(Vireo olivaceous) and the wood thrush (Hylocichla mustelina) from a 13-year (1959-71) 
capture-recapture study conducted in Maryland (C. Robbins, unpublished data). Survival 
rate estimates were based on the methods of Jolly (1965) and Seber (1982:200) using 
program JOLLY (Pollock et al. 1990). Estimates of mean clutch size, number of broods, 
length of the incubation and fledging periods, and daily nest survival rates were provided 
from the Cornell University Nest Record Program. Estimates of the daily nest survival   
rate were based on the methods of Bart and Robson (1982). Because neither species is 
philopatric to its natal area, survival from fledging to age 1 yr (p0) could not be estimated 
from empirical data. Rather, we assumed a stable population (λ = 1.0) based on census 
data, and estimated p0 indirectly based on the other parameter estimates (Table 3) and 
equation (6). Fecundity (m) was estimated by m  =  (c)(nc)(r) ( ) fi lldsr + . 

Both for the design of field studies and to gain insights into effective species 
management, it is important to know how variation in individual aspects of a species' life 
history affect its rate of population change (λ). These insights are provided by the 
elasticities of λ, the dominant eigenvalue of the species' projection matrix (Table 3).  
Often, a better understanding of eigenvalue sensitivities is gained from a graphical 
representation.   For both  age- and  stage-structured  models for the red-eyed vireo and the 
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TABLE 3. Parameter values used in the demographic analysis of red-eyed vireo (REVI) 
and wood thrush (WOTH) life histories. History data from C. Robbins (unpublished 
data) and the Cornell University Nest Record Program. 

VALUE 
Parameter REVI WOTH Label 

Age at first breeding 1 yr 1 yr α 
Reproductive senescence 6 yr 6 yr w 
Adult survival 0.575 0.422 p 
Post-fledging survival 0.281 0.324 p0 
Fecundity 1.52 1.79 m 
 mean clutch size 4.0 4.0 c 
 mean no. clutches 2 2 nc 
 sex ratio 1:1 1:1 r 
 daily nest survival 0.96029 0.96686 dsr 
 incubation period 13 days 12 days li 
 fledging period 11 days 12 days lf 

Stage projection matrix 

wood thrush, and based on solutions to equation (7), we computed the decline in λ given 
proportional declines in the vital rates considered individually (Figs. 4 and 5). For the 
age-structured models, we introduced reproductive senescence at age w and relaxed the 
assumption that λ > p (see Meyer and Boyce in press). The slope of the curves in Figs.     
4 and 5 indicate the sensitivity of λ. to a proportional decline in the given parameter. 

The red-eyed vireo showed greater sensitivity to declines in adult survival (p) than 
to fecundity (m) or first-year survival (p0) for the stage-structured model (Fig. 4a). In 
contrast, the species showed almost identical sensitivities to parameter reduction for the 
age-structured model (Fig. 4b). The wood thrush consistently showed greater sensitivity   
to variation in first-year survivorship (p0) or fecundity (m) (Figs. 5a and 5b). The wood 
thrush result is consistent with the general principle that short-lived, small-bodied bird 
species show greater sensitivity to variation in fecundity and pre-reproductive survival  
than long-lived birds species which are more sensitive to variation in adult survival 
(Emlen and Pikitch 1989). Using the wood thrush as an example, these results suggest   
that management actions which affect  first year survival  (p0)  or fecundity (m) are of more 
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Fig. 4. Population growth rate (λ) for a stage-structured model (a) and (b) an age-
structured model of the red-eyed vireo (Vireo olivaceous). 1.0 on the abscissa represents 
the empirical mean of survivorship or fecundity. 

Fig. 5. Population growth rate (λ) for a stage-structured model (a) and (b) an ages-
tructured model of the wood thrush (Hylocichla mustelina). 1.0 on the abscissa represents 
the empirical mean of survivorship or fecundity. 
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CONCLUSIONS 
 
 

Despite the useful insights provided by quantitative analyses of the life histories    
of passerine and other small-bodied birds, such analyses are seldom conducted. This is 
unfortunate since the life history structures of these species are amenable to analysis using 
simple mathematical models. Model parameterization, that is, estimating the birth and 
death rates, requires a formidable field effort, but information on appropriate study design, 
data to be collected, and statistical models to provide reliable parameter estimates are 
widely available. Analyses of the resulting mathematical models provide useful insights   
to guide management decisions and to aid conservation planning efforts. 

461 



 462 

Clobert, J., and J. D. Lebreton. 1991. Estimation of demographic parameters in bird populations. Pages 
75-104 in C. M. Perrins, J. D. Lebreton, and G. J. M. Hirons, editors. Bird population studies: 
relevance to conservation and management. Oxford University Press, Oxford, England 

Clobert, 1., J. D. Lebreton, and D. Allaine. 19876. A general approach to survival rate estimation by 
recaptures or resightings of marked birds. Ardea 75:133-142. 

Clobert, J., C. M. Perrins, R. H. McCleery, and A. G. Gosler. 1988. Survival rate in the great tit Parus 
major in relation to sex, age, and immigration status. Journal of Animal Ecology 57:287-306 

Clutton-Brock, T. H., editor. 1988. Reproductive success: studies of individual variation in contrasting 
breeding systems. University of Chicago Press, Chicago, Illinois, USA. 

Cole, L. C. 1954. The population consequences of life history phenomena. Quarterly Review of Biology 
29:103-137. 

Conroy, M. J., and B. K. Williams. 1986. A general methodology for maximum likelihood inference from 
band-recovery data. Biometrics 40:739-748. 

Deevey, E. S., Jr. 1947. Life tables for natural populations of animals. Quarterly Review of Biology 
22:283-314. 

de Kroon, H., A. Plaisier, J. van Groenendael, and H. Caswell. 1986. Elasticity: the relative contribution    
of demographics parameters to population growth rate. Ecology 67:1427-1431. 

Dobson, A. P. 1990. Survival rates and their relationship to life-history traits in some common British 
birds. Pages 115-146 in D. M. Power, editor. Current Ornithology, Volume 7. Plenum, New    
York, New York, USA. 

Emlen, J. M. 1984. Population biology: the coevolution of population dynamics and behavior. MacMillan, 
New York, New York, USA. 

Emlen, J. M., and E. K. Pikitch. 1989. Animal population dynamics: identification of critical components. 
Ecological Modelling 44:253-273. 

Fauth, P. T., D. G. Krementz, and J. B. Hines. 1991. Ectoparasitism and the role of green nesting material 
in the European starling. Oecologia, in press. 

Fisher, R. A. 1958. The genetical theory of natural selection. Second edition. Dover, New York, New    
York, USA. 

Goodman, D. 1980. Demographic intervention for closely managed populations. Pages 171-196 in M. E. 
Soul, and B. A. Wilcox, editors. Conservation biology: an evolutionary ecological perspective. 
Sinauer Associates, Sunderland, Massachusetts, USA 

Haldane, J. B. S. 1955. The calculation of mortality rates from ringing data. Proceedings of the 
International Ornithological Congress 11:454-458. 

Henny, C. 1972. An analysis of the survival rates of selected avian species: with special reference to 
changes during the modern pesticide era. U. S. Fish and Wildlife Service Wildlife Research Report 
1, Washington, D. C., USA. 

Hensler, G. L. 1986. Estimation and comparison of functions of daily nest survival probabilities using the 
Mayfield method. Pages 289-301 in B. J. T. Morgan and P. M. North, editors. Statistics in 
ornithology. Lecture Notes in Statistics 29. Springer-Verlag, Berlin, Germany. 

Hensler, G. L., and J. D. Nichols. 1982. The Mayfield method of estimating nesting success: a model, 
estimators and simulation results. Wilson Bulletin 93:42-53. 

Hickey, J. J. 1952. Survival studies of banded birds. U. S. Fish and Wildlife Service Wildlife Research 
Report 15, Washington, D. C., USA. 

Johnson, D. H.   1979.   Estimating nest success: the Mayfield method and an alternative.  Auk  96:651-661 
Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both death and immigration -- a 

stochastic model. Biometrika 52:225-247. 
Karr, J. R., J. D. Nichols, M K. Klimkiewicz, and J. D. Braun. 1990. Survival rates of birds of tropical    

and temperate forests: will the dogma survive? American Naturalist 136:277-291. 
Krementz, D. G., J. D. Nichols, and J. E. Hines. 1989. Postfledging survival of European starlings.  

Ecology 70:646-655. 
Kuno, E. 1974. Sampling error as a misleading artifact in "key factor analysis." Researches in Population 

Ecology 13:28-45. 



 
463 

Lande, R. 1988. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 
(Berlin) 75:601-607. 

Lebreton, J., K. P. Burnham, J. Clobert, and D. R. Anderson. In press. Modeling survival and testing 
biological hypotheses using marked animals: a unwed approach with case studies. Ecological 
Monographs. 

Lebreton, J. D., and J. Clobert. 1991. Bird population dynamics, management, and conservation: the role  
of mathematical modelling. Pages 105-125 in C. M. Perrins, J. D. Lebreton, G. J. M. Hirons, 
editors. Bird population studies: relevance to conservation and management. Oxford University 
Press, Oxford, England. 

Lebreton, J., G. Hemery, J. Clobert, and H. Coquillart. 1990. The estimation of age-specific breeding 
probabilities from recaptures or resightings in vertebrate populations. I. Transversal models. 
Biometrics 46:609-622. 

Lefkovitch, L. P. 1965. The study of population growth in organisms grouped by stages. Biometrics 
21:1-18. 

Leslie, P. H. 1945. On the use of matrices in certain population mathematics. Biometrika 33:183-212. 
          . 1948a. On the distribution in time of births in successive generations. Journal of the Royal 

Statistical Society 111:44-53. 
          . 1948b. Some further notes on the use of matrices in population mathematics. Biometrika 

35:213-245. 
Loery, G., and J. D. Nichols. 1985. Dynamics of a black-capped chickadee population, 1958-1983. 

Ecology 66:1195-1203. 
Loery, G., K. H. Pollock, J. D. Nichols, and J. E. Hines. 1987. Age-specificity of black-capped chickadees 

survival rates: analysis of capture-recapture data. Ecology 68:1038-1044. 
Martin, T. E., and J. J. Roper. 1988. Nest predation and nest-site selection of a western population of the 

hermit thrush. Condor 90:51-57. 
Mayfield, H. 1961. Nesting success calculated from exposure. Wilson Bulletin 73:255-261. 
           . 1975. Suggestions for calculating nesting success. Wilson Bulletin 87:456-466. 
Mertz, D. 1971. The mathematical demography of the California condor population. American Naturalist 

105:437-453. 
Meyer, J. S., and M. S. Boyce. In press. Life historical consequences of pesticides and other insults to   

vital rates. In T. E. Lacher, editor. The population ecology and wildlife toxicology of agricultural 
pesticide use: a modelling initiative for avian species. Society of Environmental Toxicology and 
Chemistry Special Publication, Lewis Publishers, Boca Raton, Florida, USA. 

Michod, R. E., and W. W. Anderson 1980. On calculating demographic parameters from age frequency 
data. Ecology 61:265-269. 

Moller, A. P. 1989. Population dynamics of a declining swallow Hirundo rustica population. Journal of 
Animal Ecology 58:1051-1063. 

Nichols, J. D., G. L. Hensler, and P. W. Sikes, Jr. 1980. Demography of the Everglade kite: implications 
for population management. Ecological Modelling 9:215-232. 

Nichols, J. D., B. R. Noon, S. L. Stokes, and J. E. Hines. 1981. Remarks on the use of mark-recapture 
methodology in estimating avian population size. Studies in Avian Biology 6:121-136. 

Noon, B. R., and C. M. Biles. 1990. Mathematical demography of spotted owls in the Pacific northwest. 
Journal of Wildlife Management 54:18-27. 

Pielou, E. C. 1974. Population and community ecology. Gordon and Breach, New York, New York. USA. 
Pollock, K. H., J. D. Nichols, C. Brownie, and J. E. Hines. 1990. Statistical inference for capture-recapture 

experiments. Wildlife Monographs 107. 
Saether, B. E. 1990. Age-specific variation in reproductive performance of birds. Pages 251-284 in D.      

M. Power, editors, Current Ornithology. Volume 7. Plenum, New York, New York, USA. 
Seber, G. A. F. 1965. A note on the multiple recapture census. Biometrika 52:249-259. 
          . 1982. The estimation of animal abundance and related parameters. Second edition. Griffin,      

New York, New York, USA. 
Stenning, M. J., P. H. Harvey, and B. Campbell. 1988. Searching for density-dependent regulation in a 

population of pied flycatchers Ficedula hypoleuca Pallas. Journal of Animal Ecology 57:307-317. 



 464 

Stromborg, K. L., C. E. Grue, J. D. Nichols, G. R. Hepp, J. E. Hines, and H. C. Bourne. 1988. 
Postfledging survival of European starlings exposed as nestlings to an organophosphorus 
insecticide. Ecology 69:590-601. 

Taylor, M., and J. S. Carley. 1988. Life table analysis of age structured populations in seasonal 
environments. Journal of Wildlife Management 52:366-373. 

Temple, S. A., and J. A. Wiens. 1989. Bird populations and environmental changes: can birds be 
bio-indicators? American Birds 43:260-270. 

White, G. C. 1983. Numerical estimation of survival rates from band recovery and biotelemetry data. 
Journal of Wildlife Management 47:716-728. 

White, G. C., and R. A. Garrott. 1990. Analysis of wildlife radio-tracking data. Academic Press, New 
York, New York, USA. 

Woolfenden, G. E., and J. W. Fitzpatrick. 1984. The Florida scrub jay. Monographs in Population 
Ecology 20. Princeton University Press, Princeton, New Jersey, USA. 



 WILDLIFE 2001: 
POPULATIONS 

Edited by 

 
DALE R. McCULLOUGH 

 
and 
 

REGINALD H. BARRETT 
 

Department of Forestry and Resource Management, 
University of California, Berkeley, California, USA 

ELSEVIER APPLIED SCIENCE 
LONDON and NEW YORK 



EDITORIAL BOARD 
 
 
George O. Batzli David N. Nettleship Ulysses S. Seal 
Mark S. Boyce James D. Nichols Mark Shaffer 
William R. Clark Barry R. Noon Richard A. Seigel 
David C. Duffy Myrfyn Owen Donald B. Siniff 
Charles W. Fowler G. R. Potts Stanley A. Temple 
Erik K. Fritzell Howard B. Quigley Frederic H. Wagner 
N. Thompson Hobbs Katherine Ralls Carl J. Walters 
Maurice G. Hornocker John L. Roseberry Gary C. White 
Douglas H. Johnson John R. Sauer Michael L. Wolfe, Jr. 
Lloyd B. Keith Norman J. Scott, Jr. 

SPONSORED BY 
 

The Bay Area Chapter of The Wildlife Society 
The Western Section of The Wildlife Society 

Department of Forestry and Resource Management, 
University of California, Berkeley 

U.S. Fish and Wildlife Service 
Pacific Gas and Electric Company 

California Department of Fish and Game 
Region 6, U.S. Forest Service 

Rocky Mountain Forest and Range Experiment Station, 
U.S. Forest Service 

Pacific Southwest Forest and Range Experiment Station, 
U.S. Forest Service 

Forest Environment Research Office, 
U.S. Forest Service, Washington, D.C. 

Safari Club International 

Lori Merkle Barbara Kermeen 
Mark Dedon Joe Didonato 
Marty Berbach Judd Howell 
Marshall White John Harris 

COORGANIZERS: DALE R. MCCULLOUGH AND REGINALD H. BARRETT 
 

PLANNING COMMITTEE 

Proceedings of "Wildlife 2001: Populations", an International Conference on Population 
Dynamics and Management of Vertebrates (Exclusive of Primates and Fish) held at 
Oakland, California, USA, July 29-31, 1991. 


