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ANALYTICAL CONSIDERATIONS FOR STUDY DESIGN

BARRY R. NOON   AND   WILLIAM M. BLOCK

Studies of the foraging behaviors of birds have
been largely descriptive and comparative. One
might then expect studies with similar objectives
to have similar study designs but that is not the
case. Papers in this symposium that focused spe-
cifically on study design contain a diversity of
biological perspectives. Similarly, there is no ac-
cord among statisticians on experimental design
and data analysis of multivariable systems. Fur-
ther, biological and statistical considerations in
study design are not always in agreement.

In this paper, we attempt to define the nature
of foraging data and to discuss the arbitrary struc-
ture of much of the data that are collected. We
then touch on the diversity of approaches to study
design that appear in this symposium. Finally,
we attempt to identify areas of contrasting opin-
ion, offer our own perspectives on controversial
issues, and suggest areas in need of further re-
search.

durations and rates from these data but, in ad-
dition, one can look specifically at the arrange-
ment of events in the time series and estimate a
number of conditional probabilities; for exam-
ple, given that event A has occurred, what is the
probability that it will be followed by event B?
The conditional, or transition, probabilities can
be arranged in a transition matrix. The event
observed at time t is the row variable and the
event observed at time t + 1,  given the event at
t, is the column variable. The probability of going
from one event to another in a single time step
is referred to as a Markov chain.

Regardless of the design of data collection, most
foraging studies are event based and the data end
up being represented by frequencies. As such, the
data are counts of discrete random variables, and
relationships among the event categories should
be analyzed by discrete multivariate models (cf.
Bishop et al. 1975).

THE NATURE OF FORAGING DATA

Most data on avian foraging are derived from
field observations of foraging events that can be
classified by one or more nominal attributes. If
two or more attributes are recorded for each event,
then the data are referred to as cross-classified.
Events are now redefined according to each
unique combination of attributes assigned to an
observation. These classes of events  have the
property of being mutually exclusive and ex-
haustive. Given a sample of observations, the
final data have the form of counts or frequencies
with which certain events were observed. Data
with this structure can be portrayed as cross-
classified tables with each cell of a table repre-
senting the frequency with which a particular
event was observed.

Occasionally, event frequencies are estimated
across known time intervals, which makes it pos-
sible to estimate foraging rates as well as fre-
quencies. If behavioral events are persistent and
of sufficient duration, one can construct time
budgets. Event-based and time-based ap-
proaches are combined when data are collected
sequentially and represent a sequence of events.
Time intervals can be of fixed or variable length;
in the latter case they are dependent upon the
cessation of an event. One can estimate event

The nominal attributes (such as tree species or
substrate type) or factors involved in foraging
can have many levels. If each event is classified
according to bird species, sex, tree species, and
foraging substrate, the potential number of mu-
tually exclusive and exhaustive categories is large.
A comparative study, for example, of the use of
bark versus foliage of four tree species by both
sexes of five bird species would result in 80 dis-
tinct event categories. Each observed foraging
event is classified into the appropriate class for
each of the four factors. As such, we can view
each observed foraging event as a multinomial
trial with a probability of falling in event category
i given by  p i, where i = 1, 2, . . . , 80. These
probabilities can be estimated from the original
frequency data by dividing the frequency of event
i by the sum of the frequencies of all events. The
data expressed in this form are still discrete,
though no longer represented in integer form. If
these probabilities are viewed as unbiased esti-
mates of the true multinomial probabilities, as-
sumed constant over the period of study, then
the frequencies of each event category can be
estimated by multiplying the total number of
events (a constant) by the appropriate probabil-
ity. This exercise will simply reproduce the orig-
inal data indicating that its basic discrete nature
has not been changed.
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WAYS OF LOOKING AT THE
CONTINUOUS OR DISCRETE

SAME DATA:
VARIABLES

Viewing the data as continuous
random variables

Many authors have analyzed multinomial
probabilities rather than event frequencies. That
is, they have changed the representation of the
data to appear as continuous rather than discrete
random variables. Presumably the data have been
standardized in this way, because some types of
statistical models assume that the input data are
continuous. Even so, the data are still discrete.

To analyze data with this structure, most re-
searchers have employed an ordination algo-
rithm such as principal components analysis
(PCA) or, less commonly, correspondence anal-
ysis (see Miles, this volume). Prior to analysis,
the data are arranged in a matrix with each row
representing a species and each column a prob-
ability associated with a distinct foraging vari-
able. Assuming random sampling, entries in this
matrix represent the probability of observing
species i engaged in foraging behavior j. To visu-
alize similarities and differences among species,
it is useful to think of plotting the rows of this
matrix in a j-dimensional space.

A frequent goal of principal components anal-
ysis is to plot the rows of the matrix in terms of
linear combinations of the column variables. The
coefficients defining the linear combination are
functions of the eigenvectors estimated from an
association matrix of the column variables (usu-
ally a correlation or covariance matrix). The sca-
lar product of the jth eigenvector times the ith
row of the probability matrix produces the score
for the ith individual on the jth principal com-
ponent. The weights assigned to the foraging
variables are estimated so as to maximize the
variance of the principal component scores. Af-
ter the new scores are computed they are plotted
according to bird species. The arrangement of
species (= points) in this space, viewed in terms
of their point-to-point distances, is used to infer
similarities and differences among the species.
The principal component axes are given biolog-
ical interpretations in terms of the correlations
among the scores and the original columns of the
probability matrix.

Correspondence analysis, or reciprocal aver-
aging (RA), is similar to PCA in that it is also
based on an eigenanalysis of a two-way matrix
(species by probabilities). However, in RA both
the rows (species) and columns (foraging behav-
iors) are analyzed and ordinated simultaneously.
The algorithm is referred to as reciprocal because
the species ordination scores are averages of the
column (foraging variables) ordination scores, and
reciprocally, the variable ordination scores are

averages of the species ordination scores (Gauch
1982:144). A further difference is that PCA is
based on Euclidean distances, provides equal
weight to all points, and the ordination is cen-
tered at the origin (for mean-corrected data). In
contrast, RA is based on chi-square distances,
weights are proportional to row and column sums,
and the origin is at the center of gravity of the
data (Gauch 1982a:  147-148). However, the
techniques are very similar in their goal of re-
ducing the dimensionality of the original space,
and providing some logical ordering of the species
that can be given a biological interpretation. One
of the most useful aspects of RA is the biplot. In
a biplot, both row and column variables of the
two-way table are simultaneously plotted with
respect to the principal axes (Moser et al., this
volume). The biological interpretation of the or-
dination is based on the relative positions of row
and column variables (points) in the plot.

Treating the same
random variables

data as discrete

It seems somewhat arbitrary to take data that
are originally portrayed as a multidimensional,
cross-classified matrix and collapse them into
two-way matrix of species by foraging variables
for analysis by PCA or RA.  In doing so we ar-
tificially create a series of quasi-independent
variables and ignore relationships among the orig-
inal factors. In light of this concern, RA is to be
preferred to either PCA or its variants (e.g., factor
analysis). It is possible to use RA complementary
to traditional discrete multivariate analyses (van
der Heijden and de Leeuw 1985) and to explore
both two-way and multidimensional tables based
on the original event frequencies (Greenacre 1984;
Moser et al., this volume). RA can be used to
explore multidimensional contingency tables by
the use of dummy variables (Greenacre and Has-
tie 1987) or by structuring the event frequencies
into Burt tables (Greenacre 1984:140-143). A
Burt table contains each factor in both rows and
columns of the table, thus containing all possible
two-way tables (see Moser et al., this volume,
for an example).

Since the original data can be arranged as a
multiway contingency table, it seems logical to
retain this structure for analysis. This is accom-
plished through the use of log-linear models which
explicitly estimate the interdependencies among
the factors. For illustration, we return to our pre-
vious example of a comparative foraging study
of both sexes (S ) of five species of birds (B )  and
their use of bark versus foliage substrates (I ) on
four species of tree (T ) . Each of the observed
foraging events can be classified by bird species,
sex, tree species, and substrate: these are the four
factors. The model, presented below, of complete
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TABLE 1. HYPOTHETICAL  EXAMPLE  OF AVIAN FOR-
AGING  D ATA I LLUSTRATING  VARIOUS    L OGLINEAR
MODELS AND THE INTERPRETATION OF MODEL PARAM-
ETERS

Full model
ln f,,,  = u + B, + Sj + Tk  + I*  + BSij + BT,,,  + Br,,

+ STjk + Sr,,  + 7-r/,  + BST,,,  + BSI,,,
+ BTI,,,  + ST&, + BSTI,,,,

Parameters:
Bi = bird species i =  1,2,...,5
Sj = sex (male or female) j =  1,2
Tk = tree species k=  1,2,...,4
Il = substrate l= 1,2

f ijkl
= cell frequency in the

ijkl  cell

Model of complete independence
In &,  = u + Bi + Sj + Tk + Il
Parameter Interpretation

u

B
S
T
I
B S

BT

B I

ST

SI

TI

BST

BSI

BTI

STI

BSTI

Mean of the logarithms of the expect-
ed frequencies

One-way term for bird species
One-way term for sex
One-way term for tree species
One-way term for substrate
Sample size effects: the same propor-

tion of males and females were not
sampled for all sexes

Not all bird species are utilizing tree
species in the same proportions

Not all bird species are utilizing sub-
strates in the same proportions

The two sexes are not using tree
species in the same proportions

The two sexes are not using substrates
in the same proportions

The proportion of utilized substrates is
not the same for all tree species (im-
plicit bird species effect)

The association between sex and tree
species depends upon the level of
bird species (i.e., males and females
differ in the use of tree species ac-
cording to which species they belong
to)

The association between sex and sub-
strate depends upon the level of bird
species

The association between tree species
and utilized substrates is dependent
on the level of bird species

The association between tree species
and utilized substrates is dependent
upon whether the bird is a male or a
female

The association between tree species
and utilized substrates is dependent
upon whether the bird is a male or a
female and this three-way associa-
tion is in turn dependent upon the
level of bird species

association among the factors, would involve all
interaction terms of order four or lower plus all
individual factors (Table 1):

ln fijkl = u + Bi  + Sj + Tk + Il
+ BSO + B Tik  + BIi/  + STj,
+ Srjl  + TI,,  + BSTjk + BSl,,
+ B TIi/.-.-  + STIj,/  + BSTIok/.

In contrast, the model of complete independence
of the four factors would contain only the terms
for the individual factors (Table 1):

ln f&c/ = u + Bi + 5”  + Tk  + I/.

The full model contains 15 classes of parameters:
four main effects terms, six two-way interaction
terms, four three-way interaction terms, and one
four-way term. In all, 80 parameters need to be
estimated (5 x 2 x 4 x 2 = 80). However, what
we seek is the model with the fewest number of
terms that adequately fits the data. By fit we mean
that the chi-square statistic, based on the differ-
ence between observed and predicted frequen-
cies, is not significant (e.g., P > 0.05). This model
will lie somewhere between the model of com-
plete independence and complete dependence.
Inclusion of any interaction terms indicates some
degree of dependence among the factors. In ad-
dition, to make interpretation easier, only hier-
archial  log-linear models are usually considered.
For example, if any three-way interaction term
is included in the model, then all two-way in-
teraction terms involving those factors, and the
individual factors, are also included in the mod-
el.

Model  interpretation. Similar to linear models
in the analysis of variance, there are alternative
ways to block the factors to aid in interpretation.
An example would be to define bird species (B)
and sex (s)  as explanatory or treatment variables
and tree species (r)  and substrate (r)  as response
variables. The parameter estimates by factor and
interaction, and an interpretation of each param-
eter, are given in Table 1.

The interaction terms of primary importance
are those involving some combination of ex-
planatory and response variables. To illustrate
the hierarchical nature of the models, if the high-
est order term required in the model was BTI,
then the terms BT, BI,  and TI,  and B, T, and 1
would also be required for an adequate fit of
observed and expected frequencies under the hi-
erarchical principle.

Mixtures  of continuous and categorical
random variables

Foraging studies often involve a mixture of
categorical and continuous random variables. For
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example, Sakai and Noon (this volume) recorded
tree species and substrate types (categorical vari-
ables) as well as the height and distance from the
trunk (continuous variables) of foraging flycatch-
ers. They employed separate analyses, using dif-
ferent statistical models, of the two data types.
I-Iowever,  one can use mixtures of variables in
some analyses. For example, a PCA of mixed
variable data sets is possible because the esti-
mation of eigenvalues and eigenvectors is not
dependent upon normality assumptions. Dis-
criminant function analyses (DFA) can also be
done with continuous and categorical variables,
although logistic regression may be preferred in
the two-group case because of its robustness to
violations of the normality assumption (Press
and Wilson 1978; for a contrasting opinion see
Haggstrom 1983).

As an example, consider a multi-species study
whose primary data have been arranged in a ma-
trix with the rows partitioned by bird species and
the columns representing foraging variables. Each
row of this matrix is assumed to represent an
independent foraging observation of an individ-
ual bird of a particular species. For each obser-
vation, bird species, tree species, behavior, sub-
strate, bird height, and distance from the center
of the plant are recorded. All but the last two
variables are categorical. In general, any factor
with k  levels can be represented by k  - 1 dummy
(0/1) variables. If there are five possible tree
species, then this variable is coded by four dum-
my, binary variables; four behaviors would be
coded by three variables, and so on. (The sum
of a set of 0/1 variables has approximately a
normal distribution.) The species’ groups are to
be contrasted on the basis of the foraging vari-
ables by DFA.

A problem in discriminant analyses with both
continuous and categorical variables is the pro-
cedure of selecting variables and thus the bio-
logical interpretation of the canonical variates.
For example, some continuous variables may
supply discrimination only if a particular discrete
variable is already in the model (Daudin 1986).
Several recent papers discuss the analysis of mixed
variable data sets when group discrimination is
the goal (Krzanowski 1980, Knoke 1982, Vla-
chonikolis and Marriott 1982, Daudin 1986) but
reach no general consensus. Several authors have
argued in favor of the location model approach
to DFA, which involves aspects of log-linear
analyses and parametric analysis of variance. This
requires estimation of a large number of param-
eters and has not been implemented on any ma-
jor statistical software package. Analyses of mixed
variable data sets with standard statistical pack-
ages should be interpreted cautiously.

How are cross-classified categorical data
best analyzed

It is possible to take cross-classified data and
analyze them as discrete frequencies with log-
linear models or to express the data as propor-
tions for analysis by various ordination algo-
rithms (e.g., PCA or factor analysis). But which
method provides the clearest insights into the
relationships among factors; and do different
methods provide complimentary insights?

In the example discussed above of both sexes
of five species of birds, a PCA ordination would
be based on a matrix whose rows represent bird
species-sex combinations (10 distinct categories)
and whose columns represent all possible tree
species by substrate combinations (8 distinct cat-
egories). Entries in this 10 x 8 matrix would
represent the proportion of observations for
species-sex combination i observed on tree
species-substrate combination  j.  These entries can
also be considered as conditional or multinomial
probabilities. For example, entry ij would be in-
terpreted as: given a random observation of
species-sex combination i, what is the probabil-
ity that it is foraging on tree species-substrate
combination j. Biological inferences from the or-
dination of the rows of the matrix are based on
distances among the rows plotted as points in
the synthetic PC space and from the biological
interpretations given to the PC axes. The statis-
tical significance of interactions among the fac-
tors (bird species, sex, tree species, and substrate)
is not explicitly examined. Rather, these meth-
ods of analysis lead to inferences about the sim-
ilarities or differences among various species-sex
combinations in terms of the measured tree
species-substrate variables.

In contrast, log-linear analyses explicitly in-
vestigate the significance of interactions among
the nominal factors and seek the simplest rep-
resentation of the tabulated frequencies. The fac-
tors in these models can be viewed as possessing
a treatment-response structure and the signifi-
cance of any association between factors can be
explicitly tested. Relationships among species-
sex combinations would be inferred from a com-
parison of their parameter estimates (the SS,
terms) or by a series of pairwise comparisons of
species-sex by tree species and substrate contin-
gency tables (see Raphael, this volume).

Ordination techniques, such as PCA or RA,
are not primarily hypothesis testing procedures.
Instead, they are most useful for exploring in-
terrelationships among species or foraging vari-
ables. In contrast, log-linear models are often
explicitly cast in an hypothesis testing context.
This suggests that ordination analyses may be



130 STUDIES IN AVIAN BIOLOGY NO. 13

more valuable in the initial research into a species’
or community’s foraging patterns. Log-linear
analyses may be used in a subsequent study to
explicitly test for significant relationships among
some subset of factors implicated by the initial,
exploratory analyses.

For a geometric interpretation of factor rela-
tionships, ordination analyses are preferred to
log-linear analyses. However, if log-linear anal-
yses are done along with RA analyses of com-
binations of factors, complementary inferences
can arise. Van der Heijden and de Leeuw (1985)
argue that log-linear analyses yield insights into
factor relationships whereas RA analyses pro-
vide insights into associations among levels
within factors, To illustrate, one could initially
analyze the multiway foraging data by log-linear
algorithms to estimate the simplest model that
adequately fits the observed frequencies. If the
model contained significant interaction terms,
then these terms could be examined in combi-
nation with the treatment factor by correspon-
dence analysis. That is, one or more two-way
tables of frequencies, in which the columns of
the table represent all possible combinations of
levels of factors within a significant interaction
term, would be examined for association with
the treatment factor and interpreted geometri-
cally. This approach is illustrated by Moser et
al. (this volume) and van der Heijden and de
Leeuw (1985). A lucid discussion of the geometry
of correspondence analysis is presented by
Greenacre and Hastie ( 19 8 7).

We have not seen a comparison of ordination
algorithms and log-linear models on the same
data set, but suspect that similar inferences about
the relationships among factors would be drawn.
An explicit comparison of these contrasting
methods of analysis is an important area for fu-
ture investigation. At this time it is not clear if
one method is to be preferred over the other and
whether more information is extracted from the
data by conducting both analyses. However, the
complimentary relationship among log-linear and
correspondence analyses in the exploration of
categorical variables appears most promising at
this time.

SEQUENTIAL OR POINT OBSERVATIONS OF
FORAGING BEHAVIORS

Two methods of recording foraging events are
commonly used. Point samples record the first
event observed (or the first recorded after a fixed
waiting period to avoid recording only conspic-
uous behaviors). Sequential samples consist of
sequences of events recorded during a fixed or
variable time interval. The debate over the use
of sequential or point observations focuses, in
part, on the issue of statistical independence. In-

dependence of observations is critical for the val-
id use of most statistical distributions, and thus
for tests of hypotheses. Let the events yl, y2, and
y3  be mutually exclusive and exhaustive. Define
y,  equal to the event that a bird forages on a leaf,
y, that it forages on a twig, and y3  that it forages
on bark. Further, let events y,, y,, and y,  occur
with probabilities pl, p2,  p3,  and with the sum
(pi)  = 1.0. Assuming only first-order correlations,
we say that events y, and y3  are statistically in-
dependent if the probability of y3  occurring at
time t + 1, given that y1  occurred at time l, is
equal to p3.  That is, the conditional probability
of an event is equal to its marginal probability.
We infer events y1  and y,  to be statistically de-
pendent if the probability of observing event y,
at l + 1, given y1  at t, is not equal to p3.  Tests
to examine dependencies in categorical and con-
tinuous data are discussed in Hejl et al. (this
volume).

When foraging events are recorded in se-
quence, there is often a tendency for observations
close together in either time or space to be more
similar than events separated by longer time in-
tervals or distances. Several authors in this vol-
ume have addressed issues of temporal depen-
dency, but there has been little discussion of
spatial dependency. An exception is Block (this
volume), who sampled so as to ensure spatial
independence of foraging observations within the
same season. Spatial associations may actually
be more prevalent, because so many studies are
conducted when birds are spatially restricted. For
example, subsequent observations of territorial
birds, even if separated by long time intervals,
may be significantly dependent because territo-
ries are likely to encompass different ranges of
foraging possibilities and in different propor-
tions. This is an area in need of further research.

Because most statistical models require ran-
dom and independent observations, many re-
searchers have recorded point observations. Such
a sampling design may fulfill the independence
assumption, but random sampling is difficult to
achieve because the probability of obtaining a
foraging observation differs among and within
species. An argument, however, in favor of re-
cording sequential foraging acts can be made be-
cause most of our data sets are sparse. Maurer
et al. (this volume) have estimated that most
foraging studies record fewer than 1% of the be-
haviors occurring during the period of study.
Given the size of our sample relative to the sam-
pling frame, we should attempt to collect as much
information as possible and to record sequential
observations. Such an approach, however, will
necessitate recording data so that the temporal
sequence of behaviors is documented. This in-
formation is needed to estimate the conditional
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probabilities (given that species i is engaged in
foraging act j at time t, what is the likelihood
that it will be engaged in act k at time f + 1) that
form the elements of the first-order transition
matrices.

We propose that researchers start with the as-
sumption that sequential behaviors of the same
individual are usually dependent (see Hejl et al.,
this volume). Further, we believe that estimates
of the magnitude and direction of these depen-
dencies will yield important insights into a species’
foraging ecology and lead to improved predictive
models. We support the argument of Raphael
(this volume) in favor of Markov analyses, which
estimate both the stationary distribution vector
of foraging acts (however defined) and model
building via log-linear algorithms. The latter
analyses allow explicit tests for symmetry (i.e.,
the likelihood of the transition from behavior j
to k equal to that from k to j) as well as com-
parisons of the transition matrices of different
bird species (see Raphael, this volume, for de-
tails).

Our suggestion in favor of collecting sequential
data is in contrast to that of Hejl et al. (this
volume), Bell et al. (this volume), and Recher
and Gebski (this volume), who suggested that
point observations generally yield more precise
parameters for estimating the probabilities of
events. If sequences are recorded, then Hejl et
al. recommended bootstrap or jackknife meth-
ods, because they are less time-consuming than
Markov analyses, do not require assumptions
about the order of the transitions, and provide
estimates with smaller standard errors. How-
ever, these studies focused on estimating the mean
probabilities of foraging events. We argue, from
biological and not statistical grounds, that the
transition probabilities themselves are as im-
portant in gaining insights to the behavior of
foraging birds as are the expected probabilities.
We recommend methods that provide both types
of estimates.

SAMPLE SIZE REQUIREMENTS

In this symposium approaches to estimate
sample sizes range from qualitative interpreta-
tions of graphs (Brennan and Morrison) to quan-
titative calculations of sample sizes based on dif-
ferent target levels of absolute or relative precision
(L. Petit et al.). Suggested minimum sample sizes
range from 40 to 500 independent observations
to an extreme figure of 20,000!

Despite a diversity of approaches, all foraging
studies must state what behavioral parameters
will be estimated and with what levels of pre-
cision. The latter will require at least preliminary
knowledge of the species’ foraging variability. If
the study is comparative, then determining what

precision levels can be obtained is essential to
estimate the power of any between-species com-
parisons. For species with variable foraging rep-
ertoires, sample size requirements may be so large
that the researcher will need to be satisfied with
tests of lower power. In this case, only differences
among the most disparate species may be de-
tected.

Lug-linear analyses
Many papers in this symposium used log-lin-

ear models in analyzing categorical foraging data.
Recall that the test-statistics for fitting log-linear
models are only asymptotically chi-square dis-
tributed, and that some minimal sample size is
needed for valid statistical inference. For a fixed
sample size, the more cell frequencies that are
estimated, the more questionable are the prob-
ability levels associated with the computed chi-
square values. An indication of an inadequate
sample size is an excess of small expected cell
frequencies. Cochran (1954) suggested that no
expected cell frequencies should be < 1, and
< 20% of the cells should have frequencies < 5,
A rough guideline is that one should collect about
five times as many observations as there are cells
in the table (Raphael, this volume). If the table
contains one or more rows or columns of all
zeroes, the degrees of freedom associated with
the test-statistic must be adjusted (Bishop et al.
1975:116).

Surprisingly, an analysis can be affected by too
many observations. The result is that most models
will fail to fit the data. If too large a sample is
taken, any possible model structure will provide
a poor fit no matter how minor the discrepancies.
This occurs because chi-squares are proportional
to the total sample size. If too large a sample is
a problem, then the appropriate model may be
selected by a stepwise  procedure. For example,
the magnitude of reduction of the sum of squares
of the differences between observed and expected
proportions can be computed each time an ad-
ditional term is added to the model. Terms pro-
ducing a large decrease in the sum of squares
should be considered for inclusion in the final
model.

A need to limit the number of  factors
A large number of observations is needed to

analyze a cross-classified table of even moderate
size, because of the number of parameters that
need to be estimated. Three factors with four
levels each would require the estimation of 64
parameters. In contrast, a multiple regression
model with three independent variables and no
interaction terms would require, at most, the es-
timation of seven parameters. Because the num-
ber of possible sources of variation in avian for-
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TABLE 2. FACTORS AND NUMBERSOF LEVELS CON-
SIDERED IN A STUDY OF THE FORAGING BEHAVIOR OF

THE WESTERN AND HAMMOND'S FLYCATCHERS (FROM

SAKAI AND NOON, THIS VOLUME)

Fac to r N u m b e r  o f  l e v e l s

Observers 4
Years 2
Age of forest 3
Stage of breeding cycle 4
Behavior 3
Tree species 6
Substrates 4

Total number of cells = 4 x 2 x 3 x 4 x 3 x 6 x 4 = 6912.

aging behavior is staggering, one cannot estimate
all sources of variation, all significant interac-
tions among factors, or investigate all possible
factor levels.

For example, Sakai and Noon (this volume)
used seven factors (Table 2) in their log-linear
model. Considering the levels of all factors there
were a total of 6912 cells for each bird species.
This value greatly exceeded the total number of
data points. The authors had decided a priori to
pool across forest age because their objective was
to estimate foraging patterns across the range of
forest types occupied by the species. However,
after recognizing the limitations imposed by the
size of their data set, they chose to pool across
observers and years as well. This probably masked
statistically significant interactions and lost in-
formation on the joint distribution of some fac-
tors. Whether insights into significant biological
interactions were lost is unclear.

Our point is that pooling is necessary and jus-
tifiable in almost all studies. When possible, in-
teractions among factors that are of minimal bi-
ological interest should be controlled in the
experimental design and data collection phases,
and not in the analysis phase. Our zeal to par-
tition sources of variation as finely as possible
needs to be tempered with the recognition that
one of our primary objectives is to understand
a complex system in terms of a small set of key
factors. We are interested in models that can
describe and predict the average outcome of
samples, not the outcome of individual obser-
vations.

MARKOV ANALYSES

We are aware of little published information
on sample size requirements for Markov anal-
yses. From unpublished simulation studies con-
ducted by R. M. Fagen (Fagen in Colgan 1978:
107-108), some general guidelines have been
proposed. If we let k equal, for example, the num-
ber of substrate categories considered, and as-

suming a first-order Markov model, then a sam-
ple of 2k2  foraging events is too few, lOk*  almost
always adequate, and 5k2  a borderline value.
Thus, if 10 substrate categories are considered,
the minimum number of foraging events re-
quired is 500.

MULTIVARIATE A NALYSES

Estimates of sample size requirements for
multivariate studies are considerably more com-
plex than for univariate studies. We are still con-
cerned with the precision of parameter estimates
and the power to reject false null hypotheses, but
in addition, one must consider the number of
variables, the covariance structure of the data,
the number of groups, and the sample size per
group. There are “rules of thumb” but few are
based on either analytical or simulation studies
(e.g., Morrison 1984b). An example of a sample
size effect, similar to univariate parameter esti-
mates, is that the confidence interval around a
principal component’s variance (i.e., its eigen-
value) is a function of the reciprocal of the square
root of its sample size (Neff and Marcus 1980:
37). Estimates of confidence intervals, as a func-
tion of different sample sizes, can be computed
by resampling methods such as the jackknife or
bootstrap (Efron 1982; Efron and Gong 1983;
Miles, this volume). These computer-intensive
methods to variance estimation have consider-
able application to foraging data.

A clear exception to the lack of information
on sample size requirements is the recent study
of Williams and Titus (1988). Based on a large
scale simulation study, they have developed the
following sampling rule: “For discriminant anal-
ysis of ecological systems with homogeneous dis-
persions, choose the total number of samples per
group to be at least three times the number of
variables to be measured.” More guidelines such
as these are needed. In their absence, researchers
can empirically estimate the variance of many
multivariate parameters (i.e., eigenvalues, factor
loadings) by the use of jackknife and bootstrap
methods. If the resulting confidence intervals on
these parameters are too broad for study objec-
tives, then larger sample sizes will be required.

CONCLUSIONS
We believe the papers presented in this sym-

posium represent a significant advancement in
the design and analysis of studies of avian for-
aging behavior. An explicit concern for precise
and unbiased parameter estimates, and the nec-
essary sampling design and sample sizes to
achieve these goals, should become a regular part
of all study designs. In addition, analytical tech-
niques such as log-linear models, Markov pro-
cesses, and correspondence analysis have be-
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come part of the repertoire for the analysis of
foraging data. While most of these statistical
techniques are not new to the ecological sciences,
their application to studies of avian foraging be-
havior is novel. An additional advancement is
the use of computer-intensive methods such as
the jackknife and bootstrap. Diversity indices,
factor loadings, eigenvalues,  discriminant coef-
ficients and other statistics that are regularly
computed in foraging studies are usually done
without estimates of their variances. Through
intensive resampling of the original data, jack-
knife and bootstrap methods allow estimates of

the standard errors of these statistics, yielding
better or more appropriate insights into the vari-
ability of the systems under study.

Many issues require further work: the variable
structure of foraging data and whether it is best
analyzed by discrete or continuous multivariate
models; the analysis of mixtures of continuous
and categorical data; and whether we should
sample so as to ensure independent observations
or explicitly estimate the dependencies of for-
aging behaviors. We encourage investigators to
address these and related issues in their future
research efforts.
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