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Abstract.     Biodiversity mapping (e.g., the Gap Analysis Program [GAP]), in which 

vegetative features and categories of land use are mapped at coarse spatial scales, has been 
proposed as a reliable tool for land use decisions (e.g., reserve identification, selection, and 
design). This implicitly assumes that species richness data collected at coarse spatiotemporal 
scales provide a first-order approximation to community and ecosystem representation and 
persistence. This assumption may be false because (1) species abundance distributions and 
species richness are poor surrogates for community/ecosystem processes, and are scale 
dependent; (2) species abundance and richness data are unreliable because of unequal and 
unknown sampling probabilities and species-habitat models of doubtful reliability; (3) mapped 
species richness data may be inherently resistant to "scaling up" or "scaling down"; and (4) 
decision-making based on mapped species richness patterns may be sensitive to errors from 
unreliable data and models, resulting in suboptimal conservation decisions. We suggest an 
approach in which mapped data are linked to management via demographic models, 
multiscale sampling, and decision theory. We use a numerical representation of a system in 
which vegetation data are assumed to be known and mapped without error, a simple model 
relating habitat to predicted species persistence, and statistical decision theory to illustrate use 
of mapped data in conservation decision-making and the impacts of uncertainty in data or 
models on the decision outcome. 
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INTRODUCTION 

Concern over loss of biological diversity has stim-
ulated efforts in the cartographic analyses of species 
distributions and landscape characteristics. For exam-
ple, the Gap Analysis Program (GAP; Burley 1988, 
Scott et al. 1988, 1993) has among its objectives the 
delineation of maps of biodiversity (i.e., animal species 
richness), vegetation communities, and land-use clas-
sifications. Animal species richness is predicted from 
actual observation, distributional data (range maps), or 
inferred from vegetation (habitat) maps and models re-
lating abundance or presence/absence to vegetation 
cover attributes and physical features (Scott et al. 
1993). Proponents suggest that maps of the distribution 
of species richness can be used as a first approximation 
for identification and selection of reserves and corri-
dors, and other land-use decisions directed at the con-
servation of biological diversity (Scott et al. 1993). 
They suggest that knowledge of ecological systems, 
and conservation of their biodiversity, can be gained  
in a hierarchical manner, using "coarse filters" such  
as GAP to capture community types and processes 
(Noss 1987); the process identifies species-rich areas 
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as candidate reserves, from which an optimal reserve 
placement and design can be selected. 

We approach the problem of conservation planning 
by first exploring population processes at the habitat-
patch scale, and then examining the consequence of 
"scaling up" these processes to landscapes. If the "fil-
ter" analogy is appropriate, information essential to 
conservation will be preserved at broader scales. The 
above assumes that mapped vegetative communities 
and animal distributions are known without error. Un-
reliability in data and models further detracts from the 
utility of mapped presence/absence or abundance in-
formation for conservation decisions. We suggest that 
biodiversity "inventory" be approached in the context 
of multistage sampling, with clear exposition of ob-
jectives, quantification of uncertainty, and application 
of optimality rules for decision-making. Finally, we 
end with a plea for experimental studies at the popu-
lation-landscape interface, explicitly directed to the de-
velopment of linkages across disparate spatiotemporal 
scales. 
 

A CONCEPTUAL MODEL FOR MAPPING 
HABITAT SUITABILITY 

 
We use a multispecies generalization of Pulliam's 

(1988) source-sink model to illustrate the conse- 
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quences of two types of information loss in mapping 
biodiversity. A more general, spatially explicit model 
is derived from Appendix 1. In the model, the deter- 
mining processes are habitat-specific growth rates and 
dispersal. 
 Consider a hypothetical landscape R of area A, and 
an animal community comprising S different species, 
each having unique habitat affinities and demographic 
and movement responses to habitat variation. In our 
example, there are two habitat types, "forest" (F) or 
"opening" (O) that jointly define the landscape, so that 
R = R(F) ! R(O); edge effects are not considered 
(Appendix 1). Within each habitat type a vector of 
habitat attributes (z) is unchanging, so that in R(F), 
z(x, y) = z(F), and in R(O) z(x, y) = z(O). The re- 
spective areas of each region are A(F) and A(O), where 
A(F) + A(O) = A. The community is composed of S 
species' populations, occupying R, characterized by 
their annual rates of population change (λ) in R(F) or 
R(O), λ i(F), and λ i(O). For species 1, . . . sk we assume 
forested habitat is suitable [source; λ i(F) = λ i(1) > 1] 
and open habitat is unsuitable [sink; λ i(O) = λ i(2); 0 
≤  λ i (2) < 1]. The converse relationship holds for spe- 
cies sk+1 + 1, . . . , S [i.e., λ i (F) = λ i (2); 0 ≤ λ i (2) < 
1, λ i(O) = λ i(1) > 1]. Within a source patch, we assume 
each species to be numerically limited by the total area 
of suitable habitat [Ai(1)], e.g., density limitation in a 
territorial species. The area of unsuitable habitat for 
each species, Ai(2), is obtained by subtraction, since 
Ai(1) + Ai(2) = A. 
 The equilibrium abundance for each species in its 
source habitat, iN̂ (1), is determined by the area of hab- 
itat suitable for that species. The equilibrium abun- 
dance in sink habitats, iN̂ (2) is determined by 

(Pulliam 1988; see Appendix 1). By definition, equi- 
librium source and sink densities are 

and proportional, equilibrium densities are 

unrealistically high in sink habitats, particularly if 1 –  
ai is small. Therefore, in the analyses to follow we 
constrained [λ i(1) -1]/[1 - λ i (2)] to [0, 6] to avoid 
unrealistically high sink densities. 
 

Loss of information in summary metrics 
 

It is difficult to estimate directly the demographic  
processes that determine the above relationships; in- 
stead we usually measure habitat-specific pattern of 
abundance and density, Ni(j) and Di(j), or simply spe- 
cies presence/absence distributions. There is an obvi- 
ous loss of information moving from demographic pro- 
cesses to summary statistics. For example, consider 
equilibrium source-sink densities as a response surface  
to variation in [λ i (1) - 1]/[1 - λ i(2)], and proportional  
amounts of source habitat (Fig. 1; Eq. 3). We observe  
first that a given combination of λ i(1) and λ i(2) yields  
an equilibrium density of 1 for source habitats, but 
densities ranging from < 1 for some sink habitats, to  
>1 for others, dependent both on (1) the ratio [λ i (1)  
- 1]/[1 - λ i (2)], and (2) the relative amounts of source 
(ai) and sink (1 – ai) habitat in the landscape. Thus,  
data on abundance or density are inadequate to reflect 
underlying demographic process; neither are necessary-
ily related to habitat quality, a fact recognized by pre-
vious workers (e.g., Van Horne 1983, Pulliam 1988,  
Van Horne and Wiens 1991). Further, the distribution  
of individual species' abundance and density in mul-
tispecies communities is confounded by the species-
specific nature of the parameters. Thus, the relative 
densities of two species within a habitat type may re- 
flect both their unique demographic and movement pa-
rameters, as well as differences in the amounts of either 
source or sink habitat available for each species. There-
fore, statistics such as abundance, density, or species 
richness are by themselves inadequate predictors of 
persistence of species assemblages under different 
landscape configurations, as might occur through man-
agement. 
 

Transfer of information across spatial scales 
 

We have assumed habitat patches to be identifiable, 
and the relevant demographic statistics known for each 
patch type. To meet these assumptions requires a spatial 
resolution at which each identified habitat type j has 
homogeneous λ i (j). If we assume an arbitrary spatial 
scale, then it is of interest to inquire about the con-
sequences of observing abundance, density, and related 
statistics at coarser scales of resolution. 

Consider the above landscape/community scenario, 
and define "habitat suitability" for species i as the 
expected fitness (Southwood 1977, 1988) of all indi-
viduals of species i animals comprising the population 
over a defined region (R). If R is partitioned into patch-
es within which fitness is homogeneous, as above, then 

where ai = Ai(1)/[ Ai(1) + Ai(2)], the proportion of the 
landscape availability as source habitat for species i. 
We assume all dispersers to have equal access to all 
habitat patches within the landscape; thus, the model  
is not spatially explicit with respect to dispersal. How-
ever, each species is unique with respect to how land-
scape composition (availability of source or sink hab-
itats) affects density (see Appendix 1). We also assume, 
except for density limitation in source habitat, that de-
mographic rates and movement are independent of den-
sity. Given these assumptions, densities can become 
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FIG. 1. Relationship among ratio of equilibrium sink-to-source densities [ iD̂ (2)/ iD̂ (1), vertical axis], ratio of source surplus to sink 
deficit finite rates of increase ([λ i(1) - 1]/[1 - λ i (2)]), and proportion of area in source habitat (ai). 

For a fixed relationship between fitness in, and move-
ment among, habitat types, determined in a source- 
sink model by [λ i (1) - 1]/[1 - λ i (2)], density at the 
"landscape" scale is monotonically related to the pro-
portion of suitable habitat ai (Eqs. 6-8, Fig. 2). This 
scaling relationship is dependent on the life history 
attributes (sensu Stearns 1976) of each species. 

Further, the map scale at which the above theoretical 
relationship operates is itself dependent on the species' 
life history. This is so because varying [λ i (1) - 1]/[1  
- λ i (2)] affects the extent to which dispersal to sink 
habitats will occur, and thus the extent to which it is 
important to delineate these habitats. For species 2 and 
4, where this ratio is low, there is little dispersal to  
sink habitats, and thus little need to delineate them. 
Species 1 and 3, however, have much greater potential 
for dispersal, and their densities cannot be predicted 
without delineating unsuitable habitats as well. As map 
scale broadens we become forced to assume that λ is 
homogeneous over a wider range of habitat variation, 
and equilibrium density for all species is predicted by  
a simple linear relationship to overall habitat suitability 
(Eqs. 5 and 8). At finer map scales, equilibrium density 
in habitat types (now delineated as source or sink) is  
no longer predicted by this simple relationship, but 
requires the more complex predictions of Eqs. 2-3. 
Given a suitably broad map scale that "averages" over 
source and sink habitats, there is an apparent simpli-
fication of the association between habitat and demog-
raphy. The difficulty is, it is impossible to know a 
priori what that scale should be, without knowledge of 
the demographic rates [λ i (1) - 1]/[1 - λ i (2)] and the 
relative areas of source habitat ai. Further, because of 
the species-specificity of the above parameters, no 
single map scale will suffice for all species of interest, 
unless these have identical dispersal characteristics. 

where (βi(j) represents the proportion of the population 
of species i in habitat j. For each species, assume an 
initial, equal density Di (say 1), providing abundance  
 Di A(j) = A(j) for each habitat, and equilibrium den-
sities provided by Eq. 2. Expected fitness in each hab-
itat type is λ i(j). Average, initial net growth across all 
habitat types is given by Eq. 4. In particular, if there  
are two habitat types, source (1) and sink (2), then 

Overall growth ( λ i), initially defined by Eq. 4, will  
[given temporally constant λ i(j)] reach equilibrium  
with λ i = 1 and density 

If density in the source is arbitrarily set equal to 1 (e.g.,  
the carrying capacity is 1 individual/ha), then  

iN̂ (1) = Ai(1) and 



 

 

Clearly, mapped community metrics cannot be in-
terpreted in terms of expected fitness or persistence, 
without knowledge of the underlying demographic pro-
cesses and the spatial scale of the assessment. Even if 
landscape patterns and population processes are simple, 
as above, information is irretrievably lost in summary 
statistics. One purpose of GAP and other "coarse fil-
ters" is to assist with the identification of potential 
reserves (Scott et al. 1993; J. M. Scott, personal com-
munication). The above results suggest that caution is 
needed even at the "coarse filter stage," because pat-
terns observed at an arbitrary map scale do not nec-
essarily correlate in a predictable fashion with pro-
cesses important to species persistence, presumably the 
goal of reserve identification, selection, and design  
(e.g., Bedward et al. 1992, Pressey and Nicholls 1989). 

The point of this exercise is not the degree to which 
any of these models is true (they are all "wrong" to  
some degree), but how starting from first principles of 
population dynamics can lead to divergent, scale- and 
metric-dependent results and inferences. Other authors 
have made this same point; for example it is widely 
acknowledged that various landscape "diversity" mea-
sures are scale dependent, a motivation for their re-
placement with fractal dimension analysis (e.g., Saxon 
and Dudzinski 1984, O'Neill et al. 1988). However, the 
focus of our analyses on processes fundamental to pop-
ulations clarifies the potential loss of information in a 
way not obvious in other approaches. 

RELIABILITY AND UTILITY OF MAPPED 
DIVERSITY DATA 

We have assumed that the species abundance distri-
bution and its derivative statistics are known and 
mapped without error. This assumption is clearly false. 
Here we consider how statistical unreliability in spa-
tially referenced data may affect the utility of mapped 

species richness patterns for decisions such as reserve 
selection and design. We argue below that this problem 
remains, even if the issues of metric and scale depend-
ence identified earlier are resolved. 

Reliability of species distributional data 

The terms "inventory" and "census" suggest per- 
fect knowledge of the kinds and abundances of species 
present. Inventory data of this quality are seldom avail-
able, and instead sample data are used to make infer-
ence about a target population, based on probability 
sampling. However, maps of species distribution data 
are often from disparate sources, and of questionable 
reliability. In contrast, some surveys, (e.g., Pospahala  
et al. 1974) are based on statistical sampling principles 
(Cochran 1977), and the resulting estimates have  
known statistical properties, the results are repeatable, 
and measures of reliability are available. 

Other surveys are not based on probability sampling, 
are biased with respect to the target population (e.g., 
many indices and roadside surveys), or are simply com-
pilations of occurrence records (e.g., museum records; 
various atlas projects). These data, while valuable for 
some purposes, have unknown reliability, because of 
sampling probabilities that are unknown but likely vary 
among taxa and habitats (Davis et al. 1990) and for-
tuitously (e.g., intense sampling near universities). 
Also, rare species are more likely to be missed than 
common ones (e.g., Sanders 1968, Hurlbert 1971, Heck 
et al. 1975, Smith and Grassle 1977, Sudman et al. 
1988, Green and Young 1993). Finally, the detection  
of >_ 1 individual of a species provides affirmative ev-
idence of occurrence (presence), but the failure to de-
tect an individual (absence) does not necessarily pro-
vide any information (e.g., Belbin 1993). 

FIG. 2. Relationship between predicted landscape (across habitat patches) density ( iD̂ ) under model depicted in Fig. 1 vs. ratio of 
source surplus to sink deficit finite rates of increase ([λ i(1) - 1]/[1 - λ i(2)]) and proportion of landscape in source habitat (ai). 

766 MICHAEL J. CONROY AND BARRY R. NOON Ecological Applications 
 Vol. 6, No. 3 



 

(((( )))) (((( )))) (((( )))) (9)                    .p,dudu j

n

j
jii θθθθθθθθ==== ∑∑∑∑

====1
 

(((( )))) (((( )))) (10)                            ∑∑∑∑
====

========
4

1S
.sSSpf,AS  

(((( )))) (((( )))) (((( )))) (((( )))) (11)                 ,sSpSuAuf,Au
S
∑∑∑∑

====
========

4

1
 

The decision problem 
Our decision set is the area A (0 ≤ A ≤ 100 ha) that is 

conserved, with fA maintained as forested habitat  
and (1 - f)A as nonforested habitat; thus, rather than  
being fixed as above, A and f are varied by management. 
For simplicity we assume that all area not conserved  
(100 - A) will become totally unsuitable for all four 
species; in general this need not be the case, i.e., partial 
suitability for nonconserved areas could be allowed.  
The decision space di ∈  {A, f ; 0 ≤ A ≤ 100, 0 ≤ f ≤ 
1} is composed of combinations of area conserved and 
proportion of area forested. The operational decisions  
of reserve identification, selection, and design can be 
represented within this general framework (e.g., Pres- 
sey and Nicholls 1989, Bedward et al. 1992). Other 
decision scenarios are special cases, for example the  
total area of a reserve is fixed at A = A0, but the com-
position (f ) varies subject to management or reserve 
placement. 

Because the reserve size (A) and habitat mix (f ) nec-
essary to sustain equilibrium populations of all four 
species are unknown, there are five eventual, uncertain 
outcomes for species richness, having probability of 
occurrence, p(S = s), s = {0, 1, 2, 3, 4}. Each com-
bination of decision (choice of A and f ) and species 
richness outcome has a utility. We specified the utility 
obtained from conserving S species as u(S) = S/4,  
which is 1 at S = 4 (i.e., all four species conserved)  
and 0 at S = 0 (none conserved). Utility also may  
depend on the cost or effort expended on conservation, 
proportional to A. For simplicity, we have specified this 
as u(A) = 1 - A/100, 0 when the entire area is used  
in the reserve, and 1 when no area is used, and given  
all values of f of equal utility. In general, more realistic 
economic functions might be used to express the re-
lationship between area conserved and cost, and for- 
ested and nonforested lands assigned different utilities. 
Finally, we define overall utility by the relationship 
u(A,S) = u(A)u(S), that is, the joint utility of the decision-
species richness outcome. Overall utility is 0  
when either no species persist or all available land is  
used in the reserve, implicitly creating a trade-off be-
tween costs (resources forgone) and benefits (species 
conserved). 

Expected species richness in a reserve area of size  
A and composition f is 

Using mapping data in decision-making 
 

A further difficulty with many biodiversity inventory 
and monitoring data, including cartographic approach-
es, is lack of a clear connection to the use of these data 
for decision-making. For example, in lieu of the "emer-
gency room" approach typical of much endangered 
species conservation, GAP (Burley 1988, Scott et al. 
1988, 1993) is viewed as a proactive approach, en-
abling judicious decisions to be made about habitat 
protection, land-use designations, and reserve design. 
However, the published literature on GAP provides an 
incomplete consideration of uncertainty, and no meth-
odology for the objective discrimination among com-
peting proposals for conservation action that takes into 
account uncertainty. 

Decision theory can be used to evaluate alternatives 
(e.g., different reserve designs) when the consequences 
of each (e.g., the number of species persisting in a 
landscape of area A) are uncertain. The decision pro-
cess is (Lindley 1985): (1) list all possible decisions  
{d1, d2, . . . , dm}; (2) list uncertain events or outcomes 
that can occur {θ1, . . . , θn}; (3) assign prior prob-
abilities to outcomes {p(θ1), . . . , p(θn)}. As will be 
seen, these probabilities may depend on models, data, or 
both; (4) assign utilities u(di, θj) to outcomes for each 
decision; and (5) choose the decision that maximizes 
expected utility: 

August 1996 RELIABILITY OF BIODIVERSITY MAPPING 767 

Utilities are scaled to the unit interval, with u = 1 
"best" and u = 0 worst; u(di) is the expected or average 
utility for decision i, over the probability space of the 
uncertain outcomes. While "utility" is arguably sub-
jective in specific instances, certain outcomes (e.g., the 
total loss of species richness) are unequivocally the 
worst possible [u(di) = 0] and others (e.g., the 
persistence of all species with no economic trade-offs) 
are the best [u(di) = 1]. 

Consider four species capable of occupying a land-
scape of 100 ha. The landscape is composed of a pro-
portion (f ) of forested (F) and (1 – f ) of unforested 
(O) habitat, each habitat type in turn source or sink for 
a given species. Assume forested habitat is source for 
species 1 and 2, with λ1(F) = 1.3, λ1(O) = 0.85, λ2(F) 
= 1.01, λ2 (O) = 0.01, and open habitat is source for 
species 3 and 4, with λ3 (F) = 0.85, λ3(O) = 1.3, λ4(F) 
= 0.01, and λ4(O) = 1.01. In actuality the relative 
fitness in each habitat may be sufficient information, 
because the source-sink model is fully specified by the 
ratio [λ i(1) - 1]/[1 - λ i(2)]. 

and the optimal decision is to select A and f such that 
u(A, f) is maximized. 

To make the optimal reserve decision based solely 
on distributional data requires an implicit assumption 

CASE STUDY: RESERVE DESIGN UNDER SOURCE 
SINK DYNAMICS 

 
Scenario 

Expected, overall utility is given by 
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sisting, s(A, f), responded predictably to increases in A: 
as proportion of the landscape in the reserve ap- 
proached 1, s(A, f) approached, but remained <4 (max- 
imal S) for all cases (Fig. 3a) and was symmetric about 
optimal values for f = 0.5, representing equal propor- 
tions of forested and nonforested land conserved. Like- 
wise, expected utility was highest for intermediate size 
(A ≈ 0.50) and composition (f ≈ 0.5) reserve designs 
(Fig. 3b). The key result of these analyses is that even 
under optimal decision making [s(A,f) maximized], the 
value of S at equilibrium (Fig. 3a) declines from S = 
4 of initial conditions. The loss in S reflects the failure 
to fully incorporate stable source populations of all 
species when the reserve is constrained by economic 
costs. 
 However, optimal reserve design also was highly de- 
pendent on the empirical evidence in favor of the hy- 
potheses underlying models used to predict outcomes 
under various management scenarios, and thus poten- 
tially on observed data (Table 1). When the data did 
not contribute to discrimination between these hypoth- 
eses (L = 1), optimal reserve area was identical, re- 
gardless of observations. As the ability of the data to 
distinguish hypotheses increased (L = 2.5-20), the re- 
sults of data gathering began to have a profound influ- 
ence on the optimal reserve decision, with optimal re- 
serve areas differing by as much as 2:1, and corre- 
sponding differences in the expected utility of these 
decisions. Further, the expected utility of decisions av- 
eraged across the uncertain data outcomes also in- 
creased, resulting in a greater value of the data to de- 
cision-making, relative to decision-making in the ab- 
sence of data (EVPI). 
 

DISCUSSION 
 

In the above, simple population models were used  
to make decisions about reserve design that take into 
account the stochastic nature of species persistence. 
Depending on the quality of the data (i.e., ability to 
discriminate between alternative predictions), obser- 
vations from surveys, monitoring, and research may 
contribute to decision-making. In some cases, the data  
will contribute little or nothing to reaching an optimal 
decision, but it may be possible to collect additional  
data that do assist with decision-making. Decisions  
made without reference to data, or that use data based  
on poor survey or experimental designs, may lead to 
suboptimal decisions (choice of A and f ), resulting in  
a loss of utility because of lower expected species rich- 
ness, inappropriate use of resources, or both. 
 This approach also provides an explicit valuation of  
data in a decision-making context, and could be used  
to rank priorities for surveys and research. Of course,  
in many instances it will be impractical to significantly 
expand upon current research and monitoring efforts. 
Nonetheless, the inherent uncertainty in model predic- 
tions must be conveyed to decision-makers. Often data 
are absent, or if available, are poor or support conflict- 

 (Lindley 1985). Because of the complexity of the re-
sponse surfaces, for this analysis we considered a re-
stricted decision set, in which f was fixed a priori, and 
A was varied to maximize utility. We considered values 
of f = 0.5 (equal proportions of forest and open hab-
itat), f = 0.25 (predominately open), and f = 0.75 (pre-
dominantly forest). All expressions were coded and 
graphics generated using Mathematica (Wolfram 
1991). 

Results 
Fig. 3a and b represent model outcome not condi-

tioned on data. The expected number of species per 

that s(A,f) will remain constant, that is, the S species 
included within {A,f} must persist through time. How-
ever, because species persistence, and thus species rich-
ness, is uncertain, to arrive at an optimal decision we 
must estimate the probability density function (pdf) of 
species richness outcomes, p(S = s), as a function of  
the species and habitat-specific fitness parameters and 
dispersal rules (Eqs. 1-8). We use our previous model 
and parameters, along with a simple persistence model 
(Appendix 2). First, we considered a model that per-
fectly predicted persistence for all species; any uncer-
tainty was conditional on demography and initial pop-
ulation size. 

Then, we conditioned persistence probabilities on 
observed data (X), rendering decisions subject to un-
certainty from statistical sampling errors, model in-
adequacies, or both. We generated the response sur-
faces for s(A, f | X) and u(A, f | X), under a range of 
assumptions about the influence of data on the pdf of 
species richness, ranging from no influence (L = 1, 
Appendix 2, Eq. 2) to strong influence (L = 20, Ap-
pendix 2, Eq. 2) of a binary data outcome, X = 0 or  
X = 1. For example, X = 0 might represent the outcome 
that average, estimated abundance from surveys of the 
four species has declined over a period of interest, 
whereas X = 1 represents no decline over the same 
period. The contribution of data to the species richness 
pdf is represented by the likelihood ratio, L, where L = 
1 implies no contribution of data (X); L > 1 implies  
that the data (in this example, the event X = 0) support  
a hypothesis of lower persistence probabilities than that 
predicted by a simple relationship to abundance (Eq.  
1, Appendix 2). We then numerically maximized the 
utility response surface to select the optimal decision, 
conditioned on X, and calculated the expected utility 
averaged across the uncertain data outcomes, X = 0 or  
X = 1, as ∑ =

=
1X
0X  u(A, f | X)p(X = x). For all cases we 

took the data outcomes as equally likely [p(X = 0) = 
p(X = 1) = 0.5]; in general these would be determined 
empirically, as would the likelihoods. Finally, we cal-
culated the expected value of partial information 
(EVPI) for each value of L as 



 

 
FIG. 3. Predicted relationship among total area conserved (A), proportion of area in forest (f ), and (a) expected species 

richness (s) based on source-sink model, four species having different habitat affinities ([λ i(1) - 1]/[1 - λ i(2)], where "source" 
(1) and "sink" (2) are either forested (f ) or nonforested (1 – f ) depending on species). (b) Expected utility (u) of decisions 
represented by combinations of area conserved (A) and proportion of area forested (f ) for above example; utility increases as 
species richness increases to a maximum of 4 [u(s) = s/4] but is discounted by required amount of area conserved [u(A) = 1 - 
A/100]; overall utility u = u(s)-u(A). 
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ing hypotheses. It is then prudent to evaluate the sen-
sitivity of decision outcomes to a range of relative be-
liefs (prior probabilities) in alternative hypotheses. For 
instance, a conservative decision might assume that 
persistence was less likely than suggested by the pure 
demographic model (Fig. 3a, b), even if no data were 
available to support that belief. 

Finally, we acknowledge that the above models ig-
nore relevant information about population and land-
scape dynamics. Our approach is not spatially explicit; 
thus, only the size and composition of the reserve, not 

the exact spatial arrangement of habitats within the 
reserve, will affect outcomes. Further, because we eval-
uated outcomes under an equilibrium model, the dy-
namic behavior of the species assemblages prior to 
equilibrium is unknown. However, the model captures 
essential species-specific scale dependencies, and is a 
useful first approximation to illustrate the relationship 
of spatially referenced data, and data uncertainties, to 
reserve design. More realistic models, including spatial 
explicitness, individual animal behavior, and dynamic 
habitats and animal populations (e.g., Dunning et al. 



TABLE 1.  Optimal reserve size (A*) and utilities of decision 
(u) for landscapes with a priori fraction in forest (f ), con- 
ditional on observed data (X), for simulated example in- 
volving four species in an artificial landscape. 
 

f L† X‡ A* u(x) § u¶ EVPI║ 
 
0.5 1 0 54.62 0.3127 0.3127 0 
  1 54.62 0.3127  
 2.5 0 60.1351 0.2490 0.3163 0.0036 
  1 48.4053 0.3836 
 5 0 63.877 0.2064 0.3267 0.0110 
  1 43.2898 0.4409 
 10 0 67.3145 0.1689 0.3347 0.0221 
  1 37.8867 0.5006 
 20 0 70.5183 0.1363 0.3491 0.0363 
  1 32.2714 0.5618 
0.25 1 0 53.9200 0.2552 0.2552 0 
  1 53.9200 0.2552 
 2.5 0 58.6673 0.2009 0.2615 0.006 
  1 48.7748 0.3221 
 5 0 62.2298 0.1671 0.2740 0.0188 
  1 44.2502 0.3810 
 10 0 65.7722 0.1381 0.2919 0.0367 
  1 39.0835 0.4457 
 20 0 69.2160 0.1130 0.3137 0.0586 
  1 33.3782 0.5145 
0.75 1 0 37.7219 0.2996 0.2996 0 
  1 37.7219 0.2996 
 2.5 0 41.9980 0.2689 0.3038 0.0042 
  1 33.6499 0.3388 
 5 0 45.2972 0.2486 0.3136 0.0133 
  1 30.7631 0.3781 
 10 0 48.6118 0.2298 0.3296 0.0296 
  1 27.9568 0.4293 
 20 0 51.9156 0.2119 0.3530 0.0534 
  1 24.8760 0.4942 
 
† Likelihood ratio, p(X=x|H0)/p(X=x|Ha); see Appendix 2. 
‡ Observed data, e.g., X = 0 is observed decline in average abundance for all 
four species, X = 1 is lack of observed decline. 
§ Expected utility u(A, f | X) of the optimal decision (reserve area A), 
conditioned on the observation X = 0 or X = 1; optimization constrained to a 
priori fraction of reserve in forest ( f ). 
¶ Expected utility, averaged across uncertain data outcomes 0.5 

(((( ))))∑∑∑∑ ====
====
1
0

X
X X|f,Au  see Eq. 11 and Appendix 2. 

║ Expected value of partial information, taken as the difference between 
expected utility of optimal decisions conditioned on data, and that 
unconditioned on data; EVPI = (((( )))) (((( ))))f,AuX|f,AuX

X −−−−∑∑∑∑ ====
====
1
0  (see Eq. 12, 

Appendix 2). 
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species having disparate life histories are unlikely to 
be useful, may be misleading, and at a minimum are 
highly scale dependent. 
 As a first step toward improving existing methods, 
we suggest that species be grouped by life history at- 
tributes and spatial scaling relationships. The guild- 
indicator concept (e.g., Block et al. 1987), if used with 
caution, may be a useful starting point. Within a group 
(e.g., guild), effort should be focused on obtaining re- 
liable, empirical estimates of parameters that scale an 
individual's relationship to the landscape. Published 
allometric relationships (e.g., Peters 1983) may be 
helpful as a first approximation, but deliberate sam- 
pling and experimentation will be needed for reliable 
parameter estimates. Finally, our approach, which em- 
phasizes the impacts of local demography on species 
distribution and richness, might be effectively com- 
bined with approaches such as "target taxon analysis," 
which emphasizes the analysis of representative "in- 
formation rich" taxa in reserve design (Kremen 1994). 
 Animal populations, and their habitats, are elements 
embedded in a hierarchy of processes operative at in- 
creasing spatiotemporal scales. Knowledge of a spe- 
cies' position in the hierarchy, and thus the appropriate 
map scale, are essential for effective conservation plan- 
ning, including reserve identification, selection, and 
design. Multistage sampling (Thompson 1992, Schreu- 
der et al. 1993), in which sampling and subsampling 
units are selected hierarchically, may be an efficient 
method to obtain reliable information from species dis- 
tribution maps. Other approaches, such as the "coarse 
filter" approach of the Nature Conservancy (Noss 
1987) or methods based on maximizing diversity of 
landscape features and taxonomic richness (Kirkpatrick 
1983, Margules et al. 1988, Pressey and Nicholls 1989) 
Bedward et al. 1992, Belbin 1993) including GAP (Bur- 
ley 1988, Scott et al. 1988, 1993) could be formalized 
as multistage, adaptive sampling (Thompson 1992), in 
which primary units initially are examined to determine 
whether secondary or tertiary units should be consid- 
ered for more detailed sampling. However, the success 
of such an approach would be highly dependent on 
assumptions about transfer of information across 
scales, and the predictive reliability of habitat rela- 
tionship models (e.g., Maurer 1986, Van Horne and 
Wiens 1991, Stoms et al. 1992). Deliberate sampling, 
and where possible experimentation, at multiple spatial 
scales is needed before such efforts can be used with 
any degree of predictive reliability. 
 Careful attention must be paid to whether the infor- 
mation gained from more intensive sampling will lead 
to marginally better conservation decisions. Not all 
data can or should be collected, but arbitrary decisions 
about data collection, made in response to conservation 
crises, can easily result in suboptimal management de- 
cisions. Decision theory forces a formal, a priori con- 
sideration of the goals of conservation planning: the 
selection of the best range of conservation actions pos- 

1992, McKelvey et al. 1993, Lamberson et al. 1994) 
will be needed to adequately represent the ultimate im-
pact of management decisions. 
 

RECOMMENDATIONS 

Under certain circumstances, observed patterns of 
animal presence/absence or abundance, together with 
mapping of habitat (vegetation types), may be useful  
in conservation decision making. However, current 
methodologies and available data may be inadequate  
to produce optimal conservation decisions. For ex-
ample, because of scale dependencies in habitat suit-
ability-abundance relationships and persistence like-
lihoods, optimal decisions require further information 
about demographic processes and scaling relationships 
(e.g., habitat-specific λ and dispersal rates). Summary 
statistics (e.g., S) that combine presence/absence of 
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sible in the face of uncertainty (Murphy and Noon 
1991). Decision theory explicitly values data, whether 
from routine surveys and monitoring, or focused re-
search, to the extent they contribute to decision-mak-
ing. Finally, improvements in our understanding of and 
ability to predict in ecological systems, can and should 
be used interactively with management "experiments" 
to achieve conservation goals (Walters 1986, Johnson 
et al. 1993). 
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APPENDIX 1 
GENERAL SPATIAL GRADIENT MODEL FOR POPULATION DYNAMICS 

Our model links occupancy of habitats to population and 
metapopulation phenomena, through simple assumptions 
about habitat selection and movement among habitats, and is 
similar in concept to Hanski and Gilpin (1991) and Wiens et 
al. (1993). For a given population, we assume that λ is largely 
determined by characteristics of the habitat, so that λ(z) re-
presents the relationship of expected finite rate of population 
growth to a vector z of habitat attributes, z ∈  Z; z in turn is 
referenced to a mapped surface [i.e., z(x, y)]. We define "suit-
able" habitats sensu Pulliam (1988) as those having attributes 
such that net reproduction is greater than or equal to net 
mortality, so that on average λ ≥ 1; conversely, in "unsuit-
able" habitats λ < 1. Attribute(s) z may be univariate (e.g.,  
z1 is amount of forest cover), but more generally z will be 
composed of many factors (e.g., canopy cover, tree density, 
proximity to edge, moisture, and so forth). 

We assume that each species (i = 1, . . . , S) within the 
assemblage potentially (1) has a unique demographic re-
sponse to habitat gradients, i.e., the λ i[z(x, y)] response sur-
faces will differ, and (2) will respond uniquely to different 
habitat geometries (i.e., patterns) because of differing dis-
persal abilities. In turn, the pattern of distribution of a species' 
abundance, Ni[z(x, y)], will be determined by both λ i[z(x, y)] 
and the rate and direction of movement of individuals across 
the landscape; in other words, the rest of the landscape "in-
fluences" Ni[z(x, y)], and vice versa. In general, we can de-
scribe this influence function by weights Qi[u(x, y), v(x, y)] 
in a convolution 

ferential dispersal among species, and the resulting impacts  
on community statistics, can be made without invoking spatial 
explicitness. The simplified model is 

similar to the filter scaling function described by Allen and 
Starr (1982:20). For more generality, O;(z, v) in Eq. 1.2 can 
include terms denoting interspecific interactions (e.g., 
competition) so that 

and Oij (u, v), j ≠ i includes interspecific effects on λ i (a),  
for example through competition or predator-prey interac-
tions. For simplicity we have ignored potential interspecific 
effects on modelled populations. We believe the inclusion of 
such effects will further complicate the transfer of informa-
tion about population processes to summary statistics such 
as S. Other, more familiar models are special cases of this 
model. For example, it may often be realistic (as well as 
convenient) to treat habitat factors as constant at the scale of 
discrete patches, rather than as continuous gradients. Thus, 
if a population exists in a landscape R containing h habitat 
patches R = R(1) U R(2) U R(3) U . . . U R(h), average 
growth E{λ i[R(j)]} may differ among patch types. Let II; 
[R(j), R(k)] represent the probability of movement of indi-
viduals of species i from patch R(k) to patch R(j). Eq. 1.2 
can be reformulated in terms of discrete habitats in a system 
of difference equations. The abundance of species i in 
habitat R(j) j = 1, . . . , h at t + 1 is given by the difference 
equation: where Ni[z(x, y)], iN ′ [z(x, y)] are abundances at locations (x,  

y) having habitat attributes z at times t, t + ∆, respectively, and 
Qi[z(x, y), w(u, v)] represents the influence, through birth, 
death, and dispersal, of locations in the landscape R, including 
(x, y). Because most populations of interest are monitoring 
annually or less frequently, we make the additional assump-
tion that the time units are 1 yr, incremented annually (∆ = 
1). 

This model is spatially explicit; we next simplify the model 
under the assumption that Q; depends only on habitat attri-
butes z, not on their spatial location (x, y). We recognize the 
loss of realism in this model but believe it to be sufficiently 
realistic for our purposes; it clearly is more amenable to pa-
rameterization than a more complex, spatially explicit model 
(Conroy et al. 1995). Further, our essential points about dif- 

where Q,[R( j ), R(m)] = λ i[R(m)]Π i[R( j ), R(m)], and the im- 
plicit order of events is growth (i.e., birth and death deter 
mining λ) first, followed by movement. To illustrate, if there  
are three habitats we have a system of difference equations: 

This is a patch-dynamic model (Levins 1969, Hanski and 
Gilpin 1991). As illustrated below, other models such as 



average, estimated abundance from surveys of the four spe-
cies has declined over a period of interest, whereas X = 1 
represents no decline over the same period.  The conditioning 
represents dependence of pi on the uncertain relationship of 
sample data to predicted persistence.  By Bayes’ Theorem 
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where Li = p(X = 0|δi = 0)/p(X =0|δi = 1) is the ratio of  
the likelihood under H0: δi = 0 to that under Ha: δi = 1, and 
represents the contribution of data to discrimination between 
Ha and H0. The conditional probability pi|X = 1 for the case 
where the events X = 0 and X = 1 are mutually exclusive  
and exhaustive [i.e., p(X = 0) + p(X = 1) = 1] is given by  
Eq. 2.2 but with 1/L substituted for L. Values of L = 1 imply 
no contribution of the data, and Eq. 2.2 reduces to pi uncon-
ditional on data.  We considered a range of values of L = 1 to 
20 (favoring H0: δi = 0 when X = 0), and causing pi|X to  
be less than that determined by Eq. 2.1.  For example, if iN̂   
= 100, pi = 0.990 (Eq. 2.1), when L = 10, pi|X=0 = 0.908  
Eq. 2.2). 
   The pi|X=x were then used to generate a phd for S, the number 
of persisting species.  For example, p(S = 1) is computed as  
the sum of the individual probabilities that species i but no 
others persists: 
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Other values for p(S = s|X = x) were similarly generated. 

where iN̂  are equilibrium abdundances predicted for each 
combination of species' life history and decision (A, f ) by  
the source-sink model (Eq. 8). We arbitrarily selected values 
of b0 = -4.595 and b1 = 0.0919, to yield values of pi = 0.02, 
0.5, and 0.99 at iN̂  = 10, 50, and 100, respectively. The same 
logistic model and parameter values are used for all four 
species, giving rise to different p; depending on iN̂  and in 
turn on each species λ i(1), λ i(2) and the relative amounts of 
source or sink habitat in the reserve. 

The pdf of S may be affected by uncertainty in information 
(e.g., estimates of N, λ, or model parameters), influencing the 
ability of this model to discriminate between persistence (δi = 
1) and extinction (δi = 0). Therefore, we condition pi, and thus 
p(S = s), on X, a vector of random variables (e.g., sample 
estimates of (λ i(j), i = 1, 2; j = 1, . . . , 4, and coefficients in 
Eq. 2.1). In our simulations, we took X as binary, i.e., X = 0 or 
1. For example, X = 0 might represent the outcome that 

Initially, we consider a model that perfectly predicts the 
probability of persistence for each species as a function of its 
abundance in the landscape; thus all uncertainty is inher-
ently demographic. We then condition these probabilities on 
observed data, rendering them subject to uncertainty from 
statistical sampling, model errors, or both. 

Let δi = 1 represent the event that species i persists, with 
probability pi. Conversely, δi = 0 represents the event that 
species i fails to persist, with probability (1 – pi). We 
determined pi for the i = 1, four species with a logistic model 
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