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ABSTRACT

Over the past decade, the U.S. Forest Service has monitored the subsurface

hillslope 
ow of the E-road swale. The swale is located in the Caspar Creek wa-

tershed near Fort Bragg, California. In hydrologic year 1990 a logging road was

built across the middle section of the hillslope followed by a total clearcut of the

area during the following year. Development of the logging road has resulted in

a large build up of subsurface waters upslope of the road. The increase in pore

pressures behind the road is of major concern for slope stability and road failure.

A conceptual model is developed to describe the movement of water within the E-

road groundwater system. The two-dimensional SUTRA model is used to describe

both saturated and partially saturated 
ow within the system. SUTRA utilizes a

�nite element and integrated �nite di�erence method to approximate the governing

equation for 
ow. The model appears to reproduce the uniquely di�erent frequency

responses within the E-Road groundwater system. A comparison of simulated and

historical piezometric responses demonstrates the model's inability to reproduce

historical drainage rates. The low rates of simulated drainage are attributed to the

absence of pipe
ow within the model. Finally, road consolidation is associated with

increased pore water pressures beneath the road bed.
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INTRODUCTION

Over the past decade, the U.S. Forest Service has monitored the subsurface hill-

slope 
ow of the E-road swale. The swale is located in the Caspar Creek watershed

near Fort Bragg, California. Monitoring has consisted of piezometric measurements

recorded every 15 to 30 minutes from well sites located throughout the swale and

pipe
ow measurements at 10 min intervals. In hydrologic year 1990 a logging road

was built across the middle section of the hillslope followed by a total clearcut of

the area during the following year.

Development of the logging road has resulted in a large build up of subsurface

waters behind the road. The road behaves much like a dam, and road and slope

stability are of major concern. Landslides commonly occur during rainstorms when

soil saturation reduces soil shear strength. Pore water pressure is the only slope sta-

bility variable that changes over a short time scale, and theory predicts that a slope

can become unstable as saturated thickness increases due to rainfall in�ltration.

Previous studies of subsurface hillslope 
ow indicate that very little is understood

about the subject. Further studies in this area will only help to improve existing

techniques in the design and maintenance of mountain roads.

This investigation employs a conceptual model to better understand the hy-

drologic mechanisms which govern the behavior of subsurface waters within a swale

road system. A comparison is made between model simulations and historical E-

Road pore pressures.
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HISTORY OF HILLSLOPE GROUNDWATER MODELS

Field investigations of subsurface hillslope 
ow have shown that piezometric re-

sponse is sensitive to rainfall, soil porosity, topography, and vegetation. Swanston

(1967) showed that there is a close relationship between rainfall and pore-water

pressure development. As rainfall increases, pore-water pressure increases, rapidly

at �rst, but at a decreasing rate as rainfall continues, reaching an upper limit de-

termined by the thickness of the soil pro�le. Additional studies of shallow-soiled

hillslopes during the wet seasons showed that there was little lag time between

rainfall and piezometric response (Swanston, 1967; Hanberg and Gokce, 1992). Fur-

thermore, Hanberg and Gokce (1992) showed that the rate of piezometric rise was

dependent on porosity and rainfall rate. Keppeler et al. (1994) observed increases

in pore-water pressure and soil moisture following logging.

Based on �eld evidence, Whipkey (1965), Hewlett and Nutter (1970), and

Weyman (1970) suggested that the presence of inhomogeneities in the soil may be

a crucial factor in the generation of subsurface storm
ow. These inhomogeneities

may either be permeability breaks associated with soil horizons that allow shallow

saturated conditions to build up or as Harr (1977), Mosley (1979), and Beven (1980)

suggest, inhomogeneities may be structural and biotic macropores in the soil that

allow for very fast 
ow rates. With a signi�cant portion of the total subsurface 
ow

taking place in the macropores, a higher hydraulic conductivity will be perceived

for the entire soil pro�le. In addition �eld studies of subsurface storm
ow have

shown that the direct application of Darcian 
ow to subsurface water in forested

watersheds may not be realistic (Whipkey, 1965; Mosley, 1979).

2
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Both analytical and numerical models of saturated hillslope subsurface 
ow

have been developed using the nonlinear Boussinesq equation, also called the Dupuit

Forchheimer equation. The second approximation of the Boussinesq (1904) equa-

tion, was modi�ed by Bear (1972) to incorporate a non-horizontal bottom.

Bear (1972), Sloan and Moore (1984), and Buchanan et al. (1990) have all de-

veloped analytical solutions to predict piezometric response for subsurface saturated


ow in a one-dimensional uniform slope. While these models describe oversimpli-

�ed groundwater systems quite well, the analytical solutions are unable to describe

anything complex in nature (e.g. a system found in the environment). However,

attempts have been made to further develop an analytical model to handle complex

transient recharge in a sloping aquifer of �nite width (Singh et al., 1991).

A numerical model developed by Hanberg and Gokce (1992), modeled the full,

one dimensional Dupuit-Forchheimer equation for a hillside with changing slope

angle and transient rainfall. The predicted response rose with the historical observed

response but receded more quickly. They hypothesized that seepage out of the

bedrock lengthened the observed recession.

Reddi et al. (1990) numerically modeled saturated subsurface 
ow in the arial

two-dimensional space with pressures averaged over the vertical depth of the aquifer.

In the overall downslope direction the Dupuit-Forchheimer approach was used. Flow

in the transverse direction was assumed horizontal and was not topographically

driven. Their predictions di�ered signi�cantly from �eld observations in timing and

magnitude. The �rst physically-based numerical model to describe both partially

saturated and saturated 
ow within a hillslope system was presented by Freeze
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(1972a). Freeze developed a hillslope model to study base
ow generation in upland

watersheds, and storm runo� processes (Freeze,1972b). Earlier, Freeze (1971) had

developed a single governing equation that encompasses both partially saturated

and saturated 
ow. The successive over-relaxation technique, an iterative technique

that employs implicit �nite di�erence formulations, is used to solve the nonlinear

parabolic partial di�erential governing equation. Later work by Freeze (1974) and

Beven (1989) indicated the practical and theoretical limitations associated with

modeling complex natural 
ow systems with simulation models. These include:

parameter averaging, data uncertainty, spatial variability of important parameters,

computer limitations, and discretization.

Dietrich et al. (1986) simulated two-dimensional steady-state 
ow in a hypo-

thetical homogeneous hillslope using TRUST (Narasimhan et al., 1978). The model

is a partially saturated - saturated hillslope model that utilizes an integral �nite

di�erence method, incorporating both in�ltration partitioning and overland 
ow.

They found that the pore pressure distribution was strongly dependent on both

boundary conditions and slope geometry. Application of the TRUST model is ad-

ditionally seen in the work of Wilson (1988) and Brown (1995). Wilson (1988) and

Brown (1995) represented hillslope systems in both two and three dimensions. The

two-dimensional systems represented the vertical cross-section from an upper to

lower portion of the hillslope. The three-dimensional systems combined a number

of vertical cross-sections to de�ne the entire hillslope system.

Wilson (1988) found the hydraulic response was controlled by groundwater cir-

culation patterns within the bedrock resulting from large-scale topographic controls
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and small-scale heterogeneities in bedrock permeability. Brown discovered that a

mixed explicit-implicit solver worked best for his study since it produced acceptable

mass balance results and did not show signi�cant oscillations for a range of materi-

als. Model simulations using available �eld data were compared to �eld observations

of rainfall pore-pressure responses and were found to be in reasonable agreement.

The �nite di�erence approximation of subsurface hillslope 
ow is again seen

in the work of Blain (1989) and Jackson (1992a). The hillslope subsurface system

was characterized in the arial two-dimensional space. Blain utilizes an upstream-

weighted di�erence approximation of the spatial partial derivatives and a Crank-

Nicholson approximation for the temporal pattern of soil moisture. Jackson simpli-

�es the system by assuming streamlines parallel to the slope and the domination of

saturated, subsurface 
ow. Additionally, the model has the capability to deal with

convergent (or divergent) topography. They found that peak piezometric response

was largely dependent on rainfall rate and the storage coe�cient while the recession

curve was in
uenced mainly by the hydraulic conductivity. The model was tested

against piezometric response measured in a hillslope hollow and showed promising

results.

The application of a �nite element model to hillslope subsurface 
ow was �rst

seen in the work of Calver (1988, 1989). Calver utilized a rainfall-runo� model, the

Institute of Hydrology Distributed Model version 4 [IHDM4], developed by Beven

et al. (1987). The Galerkin method of weighted residuals is used by the model for

the two spatial dimensions while an implicit �nite di�erence scheme is applied to

the time dimension. Calver conducted both two and three-dimensional simulations
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for hillslope catchments. The two-dimensional system consisted of vertical sections

while the three-dimensional system required combining the vertical slices. Calver

found that generally smaller elements were favored with a ratio of horizontal to

vertical element dimension equal to 10. A temporal discretization of 0.5 hours was

found to be the longest possible time step.

Flow and transport modeling within the hillslope subsurface environment was

investigated by McCord et al. (1991) and Jackson (1992b). Both groups of modelers

applied VAM2D (Huyakorn et al., 1989), a �nite element model which simulates 
ow

and transport in two spatial dimensions. Simulation results were then compared

to �eld site tracer studies. McCord's results indicated that both soil type and

anisotropy strongly a�ect unsaturated 
ow.

Brandes et al. (1998) conducted numerical modeling experiments to solve the

steady state Richards' equation over a two-dimensional cross-sectional hillslope do-

main using the �nite element model FEMWATER (Yeh, 1987). The system was

characterized by (1) no-
ow (Neumann) boundary conditions along the sides and

base of the hillslope, (2) a variable in�ltration-seepage boundary along the ground

surface, and (3) a single constant head (Dirichlet) node at the foot of the slope

representing a �rst-order stream. Brandes et al. looked at the model's behavior

under steady-state precipitation with low initial antecedent soil conditions. Results

from FEMWATER indicate that a decreasing unsaturated zone will provide stabil-

ity within the numerics of the solution as the saturated zone increases. Furthermore,

the hillslope system at or near complete saturation will exhibit instability.



DESCRIPTION OF FIELD SITE AND INSTRUMENTATION

The E-Road swale, a moderately steep zero-order basin, is located within the

headwaters of the North Fork Caspar Creek ExperimentalWatershed, in the Jackson

Demonstration State Forest near Fort Bragg, California, USA (Figure 1) (UTM

zone 10 E:438426 N:4356896). The north-facing swale has a youthful topography

consisting of uplifted marine terraces that date to the late Tertiary and Quaternary

periods (Kilbourne, 1986). The swale occupies an area of 0.40 hectares.

Figure 1:  California, U.S.A., and location map of E-Road study site in the Caspar Creek Watershed.

Caspar Creek Watershed
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California
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Dirt Roads
Paved Roads

NFC408 Raingauge

Precipitation within the study area is characterized by low-intensity rainfall,

prolonged cloudy periods in winter, and relatively dry summers with cool coastal

7
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fog. Between October and April 90% of the 1190 mm mean annual occurs. Average

monthly air temperatures between 1990 and 1995 in December were 6:7�C, with an

average minimum of 4:7�C. Average July temperatures was 15:6�C, with an average

maximum of 22:3�C (Ziemer, 1996).

The soil within the swale is the Vandamme series, a clayey, vermiculitic,

isomesic typic tropudult, derived from sedimentary rocks, primarily Franciscan

greywacke sandstone. Textures of the surface soil and subsoil are loam and clay

loam respectively, with 35 to 45% clay in the subsoil (Keppeler, et al., 1994). The

permeability within the soil is considered moderately slow (Hu� et al., 1985).

Vegetation within the swale is dominated by Douglas-�r (Pseudotsuga menziesii

[Mirb.] Franco), coast redwood (Sequoia sempervirens [D.Don] Endl.), grand �r

(Abies grandis [Dougl. ex D.Don] Lindl.), western hemlock (Tsuga heterophylla

[Raf.] Sarg.), tanoak (Lithocarpus densi
orus [Hook. and Arn.] Rohn) and Paci�c

madrone (Arbutus menziesii Pursh.).

The E-Road groundwater study began in hydrologic year 1990 and involved

the monitoring of pipe
ow and pore pressures within the swale. Instrumentation

for piping and pore pressures was installed in the fall of 1989. During the winter of

1990, pre-disturbance monitoring took place until a seasonal road was constructed

across the swale in the summer of 1990. Tree removal required for road construction

was implemented using skyline cable yarding. In late-summer 1991, the timber in

the remainder of the swale was harvested using tractor yarding above the road

and long-lining below. In late November 1991, broadcast burning took place. Due

to the north-facing aspect of the swale, fuel consumption was incomplete. Three-
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dimensional surface renderings of the E-Road swale both before and after road-

building are shown in Figures 2 and 3 respectively.

Figure 2:  3-dimensional rendering of E-Road swale, before road construction.

Piezometer Sites

Drainage Path

Piping Site

A topographic map of the swale, after road construction, is shown in Figure

4. The hillslope ranges from 3% to 35% with an average slope of 19% (Figure 5).

Elevations within the study area range from 95 m to 128 m above sea level. Road

�ll depth is 3 m at its maximum, 2 m at the centerline, 1.6 m at R3P2, and less

than 1 m at R2P2.

In
ow into the zero-order basin is limited to precipitation and fog drip. The

routing of precipitation is given in Figure 6. The precipitation and fog drip that in�l-
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Figure 3:  3-dimensional rendering of E-Road swale, after road construction.

Piezometer Sites

Drainage Path

Piping Site

Dirt Road

trates into the subsurface environment is transported both through micropores and

macropores. Laminar micropore 
ow takes place within the soil matrix, a porous

medium of mineral and organic particles. Macropore 
ow occurs in void diameters

of 1 mm or larger. The geometry and type of macropore vary with depth below the

land surface and arise from various biologic and soil forming processes (Keppeler

and Brown, 1998) (Figure 7). Larger void diameters and connectivity among voids

result in higher 
ow rates. The erosive behavior of the higher 
ow rates results in

the generation of pathways. These pathways extend within the shallow subsurface

horizons as continuous or interconnected conduits forming complex branching net-
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R4P2

Figure 5:  E-Road during the summer of 1999.

works (Albright, 1992). Pipe
ow is that 
ow which takes place through conduits 2

cm or greater in diameter.

For the duration of the E-Road study, data collected have included pipe
ow,

pore pressure, and rainfall data. Collection methods and instrumentation for each

type of data are discussed below.
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Figure 6: Distribution of precipitation input within the E-Road swale system where "E" is 
Evaporation and "ET" is Evapotranspiration.  Dashed lines indicate transport mechanisms 
rarely observed within the E-Road swale.
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soil aggregates
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Fractured Bedrock:  fractures and 
joints

Figure 7:  Hypothetical hillslope cross-section with characteristic voids and flow path variations
(Brown, 1995).
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Piping

Excavation of a near-vertical soil face at the base of the E-Road swale allowed

for the capture of pipe
ow and soil matrix discharge (Figure 8). Two soil pipes

were discovered upon excavation of the soil face. The larger of the two pipes,

9 inches in diameter, 
ows perennially while 
ow in the smaller pipe, 2 inches in

diameter, is limited to the winter season. The captured 
ow from each pipe is routed

through a plumbing network into a standpipe container and the standpipe stage is

continuously monitored. Drainage holes, drilled in a pattern lengthwise along the

side of the container, are shown in Figure 9. Each container was calibrated to

establish a relationship between container stage (water depth) and pipe discharge

(Ziemer, 1992). Manual discharge measurements were periodically collected in the

�eld to verify the standpipe container calibrations. Stage measurements within the

pipe are made with a pressure transducer placed at the bottom of the standpipe

container. Transducer stage levels were recorded by a data logger (Omnidata Easy

Logger) at 10 min intervals during the winter season and 30 min intervals during

the low-
ow season. Due to the instability of the pressure transducer under heavy


ows, the piping data is not presented here in its entirety.

Pore Pressure

Pore pressure response to rainfall was observed using six piezometers; R1P2,

R2P2, R3P2, R4P2, R5P2, and R6P2 (Figure 10). Installation of the piezometers

involved hand augering 10 cm diameter holes through the soil pro�le. A PVC pipe,

the length of the augered hole, was slotted with a hacksaw within the lower 15 cm of
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Figure 8:  Method for the collection of piping data.
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the pressure

to the data
logger.

transducer

Standpipe Container

the pipe. After wrapping the slotted portion of the pipe with a plastic mesh screen,

the entire pipe was lowered into the augered hole. The pipe was then back�lled

with approximately 25 cm of pea gravel, 15-20 cm of bentonite, and excavated soil.

Depth of the augered holes was limited by the physical limit of the hand augering

device. At some sites, rock fragments in the lower saprolite prevented the auger

from reaching bedrock (Keppeler and Brown, 1998). The water level within the

pipe was measured with a pressure transducer and electronically recorded by data

logger. Fluid pressures are recorded at 15 min intervals during the winter and 30 min

intervals during the summer months. Manual stage measurements were periodically

taken with a hand-held water level detector to validate pressure transducer data.

Figures 11 and 12 show water levels for each of the piezometers over time. Maximum
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Standpipe Container

Drainage Holes

Figure 9:  PVC standpipe container collects soil pipeflow discharged from hillslope.

pore pressures are summarized in Table 1.

The �rst year (HY 1990) of the study experienced a moderate rainfall total with


ashy pore pressure responses in the lower piezometers (R1P2, R2P2, R3P2) and

little activity within the upper piezometers (R4P2, R5P2, R6P2). The single year

of pre-treatment data left little information available for a pre-disturbance analysis.

During the �rst winter after road building (HY 1991), pore pressure response con-

tinued its trend with spiky activity in the lower piezometers and upper piezometers

remaining dry. A low rainfall total for hydrologic year 1991 may partially explain

the inactivity of the upper piezometers.

After tractor logging was completed late in 1991, the piezometric response to
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Figure 10:  Method for the collection of piezometric data.
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precipitation showed sharp increases in water levels in and above the road followed

by a quick recession. Drainage within the upper piezometers saw water levels return

to baseline conditions following a rainfall event. Drainage patterns below the road

were unchanged. No piezometric response was detected within R4P2, R5P2, and

R6P2 until after logging.

The spiky response of the upper piezometers in hydrologic year 1992 is at-

tributed to ground disturbances experienced during the logging of the swale (i.e.
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the collapse of soil pipes beneath the roadbed). Damage to the established piping

network directly a�ects the swales ability to drain. Following the clearcut, rain-

fall events act to re-establish the damaged pipe network. Pore pressures, up-slope

from a collapsed pipe, increase until pressures are su�cient enough to reshape the

piping network. New soil pipes are formed within the patchwork of collapsed pipes

allowing for an increase in drainage rates.

In hydrologic year 1993, a high rainfall year, the 
uid pressure response to dis-

crete rainfall events changed drastically within the upper piezometer holes. Their


ashy response was now superimposed on an annual rise-fall cycle. The compound-

ing of pore pressures throughout the winter months indicates a groundwater build-

up behind the road which is assumed to result from the consolidation of road bed

materials and a consequent decrease in drainage rates beneath the road surface.

The magnitude of groundwater buildup is both a function of the annual precipi-

tation total and the antecedent precipitation index (API) entering into the winter

months.

Low rainfall for hydrologic year 1994 saw a decrease in groundwater buildup in

and above the road; however, the compounding response was still evident through-

out the year. From hydrologic year 1995 to 1998 the E-Road swale experienced

much higher annual rainfall totals. The response of the system to increased pre-

cipitation was a clear buildup of groundwater behind the road during the winter

months followed by the gradual drainage of the system throughout the summer

months. In hydrologic year 1998 the swale received 88 inches; the highest annual

rainfall total. The response of pore pressures beneath the road to elevated precipi-
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tation levels resulted in a record water level of 6.42 m for piezometer R4P2 (Table

1). The increase in 
uid pressure beneath the road, arguably the weakest portion of

the hillslope (road-�ll), raises the potential for hillslope failure. Water levels within

R4P2 have never returned to pre-disturbance levels.

Table 1:  Annual maximum pore pressures within the E-Road piezometers. NR indicates that no
positive pressure head was observed during that year.

Rainfall
Hydro Year R1P2 R2P2 R3P2 R4P2 R5P2 R6P2 Total (in)

1990
1991
1992
1993
1994
1995
1996
1997
1998

44.73
28.75
36.56
62.77
34.41
63.55
51.88
51.42
87.98

Max. Pore Pressure (m)
Hole Depth (m)

0.37
0.57
0.65
0.61
0.42
0.52
0.46
0.45
0.48
0.65
1.37

1.31
1.71
1.91
2.09
2.12
1.92
1.88
1.80
1.84
2.12
2.59

2.11
3.39
6.05
4.24
4.29
4.50
4.49
5.59
4.53
6.05
6.35

0.77
0.63
6.03
4.61
3.89
5.25
4.69
4.07
6.42
6.42
7.66

NR
NR
2.97
4.77
3.97
4.72
4.84
4.93
4.90
4.93
5.69

NR
NR
6.45
4.18
6.56
7.49
6.76
6.04
7.41
7.49
7.83

Water level with respect to piezometer hole depth (m).

Base Elevation (m) 101.01 101.53 101.57 102.31 108.79 109.74

Rainfall

Rainfall is monitored with the NFC408 tipping bucket rain gauge (UTM zone

10 E:439243 N:4357978) located 1.335 km north-east of the E-Road swale. Data

collection is instantaneous with each tip recording 0.01 inches of rainfall. An Onset

data logger is used to electronically record tip times. Figures 11 and 12 show daily

rainfall totals for hydrologic years 1990 through 1998 with annual rainfall totals

summarized in Table 1.
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Figure 11:  Historical piezometric responses for R1P2, R2P2, and R3P2.
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Figure 12:  Historical piezometric responses for R4P2, R5P2, and R6P2.
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MODEL FORMULATION AND DEVELOPMENT

Development of a two-dimensional model required a simpli�cation of the swale

system. In Figure 13, a pro�le line was established through the center of the swale

connecting each of the piezometer sites. Both upper and lower segments of the

pro�le follow the swale's drainage path. A vertical cross-section established along

the pro�le line allowed for a two dimensional (2-d) hypothetical pro�le view of

the hillslope (Figure 14), where elevation is measured in the vertical coordinate

direction. Representation of the swale system in two dimensions neglects the e�ects

of convergent 
ow.

Fluid 
ow within the 2-d model is limited to the horizontal (x-axis) and vertical

(z-axis) directions with pore pressures averaged over the thickness (y-axis) of the

system. The error associated with a 2-d representation of a 3-d system is not easily

quanti�ed in a complex environmental system such as the E-Road swale. However,

future investigations may address the error associated with neglecting convergent


ow by comparing 2-d and 3-d numerical representations of the E-Road system.

Evapotransporation, interception, and pipe
ow are additional hydrologic mech-

anisms unaccounted for by the model. A reduction in rainfall is assumed to partially

account for evapotranspiration and interception. Pipe
ow, however, is not as eas-

ily accounted for by the model. The governing equation, describing groundwater


ow within the system, is built upon the assumption of laminar 
ow. Flow within

soil pipes is turbulent and little is known about the spatial distribution of soil

pipes within the E-Road swale. Impacts associated with neglecting pipe
ow are

not clearly understood. The importance of pipe
ow is, however, a major hydrologic

22
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Figure 13:  3-dimensional rendering of E-Road swale, after road-building, with profile connecting 
piezometer sites.

Piezometer Sites

Profile

mechanism within the swale system. Studies conducted for similar swale systems

within the Caspar Creek watershed attribute 99% of the total swale discharge to

pipe
ow (Ziemer, 1992). The inability of in�ltrating waters to enter a piping system

is expected to translate into slower drainage rates within the swale. The purpose of

applying the numerical model is not to exactly represent the E-Road historical be-

havior, but rather to aid in understanding the mechanisms which govern subsurface


ow within a swale-road system.

A shortage of information within the subsurface environment required making

certain assumptions about the geometry and depth of subsurface material layers.
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Figure 14:  Hypothetical vertical profile of E-Road system.
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Placement of the regolith layer was aided with depth measurements for each of the

piezometers. It was assumed that the physical limitations associated with the hand

augering device put piezometer hole depths at the interface between parent and

regolith materials. Segmentation of the subsurface into zones of di�ering material

type (i.e. soil horizons, parent material, and regolith-fractured bedrock) allowed for

the allocation of subsurface parameters (e.g. permeability and porosity). In addi-

tion, materials are assumed to be consolidated beneath the road surface, because

of logging operations, vehicle tra�c, and road �ll mass.
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The numerical model selected to characterize the groundwater system is SU-

TRA (Voss, 1984). SUTRA is a FORTRAN program that simulates density-

dependent, variably saturated or unsaturated, groundwater 
ow. The model em-

ploys a hybrid �nite-element and integrated �nite-di�erence method to approximate

the governing equations for subsurface 
ow. The model was selected because of its

ability to simulate a partially saturated environment. Derivation of the governing

equations may be found in Appendix A and B of this report.

The boundary conditions for the cross-sectional model are shown schematically

in Figure 15. Both the upper vertical boundary, located near the mountain ridge,

and bedrock boundary are speci�ed as no-
ux Neumann boundary conditions. The

ground surface is additionally a Neumann boundary condition, however, an input


ux is speci�ed for precipitation, with 
uid pressure represented as a function of

rainfall. At the base of the swale, located within the piping soil face, lies a vertical

Dirchlet boundary condition with hydrostatic pressures set constant over time.

Each of the systems boundaries is an approximation of the real world con-

ditions. The error introduced with the approximation results from a simpli�ed

representation of a complex boundary condition. For example, setting hydrostatic

pressures along the pipe
ow boundary neglects the functional relationship between

the boundary pressures and the moisture content within the system.

Speci�cation of the boundary conditions, �nite-element mesh, and model pa-

rameters was aided with Argus ONE (ArgusONE, 2000) and its plug-in extension,

SUTRA-GUI (USGS, 2000). Argus ONE is a commercially available, general pur-

pose graphical Pre- and Post-Processor for the numerical modeler. The power of
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Figure 15:  Discretization and boundary conditions.
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Argus ONE is in its ability to generate robust �nite-element meshes within com-

plex topographic boundaries. SUTRA-GUI, a public domain Graphical User Inter-

face (GUI) developed by the USGS for SUTRA, uses Argus ONE to automatically

prepare SUTRA input �les and to provide immediate visualization of simulation

results.

A note is made of the computational tools utilized for the E-Road modeling

investigation. Simulations as well as pre- and post-processing were performed on a

PC, running Windows NT version 4.0 (service pack 6), with the following specs: one
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ABIT BP6 Dual Socket 370 Celeron 440BX AGP 3xDIMMs ATX motherboard, two

Boxed Intel 366MHz Celeron PPGA Processors with 128KB L2 cache (each proces-

sor was over clocked to 500MHz), and one 16Mx64 3.3V SDRAM 168-pin DIMM

PC100 (128 MByte). Model simulations were run using the Microsoft Developer

Studio 97 (Visual Fortran Professional Edition 5.0A.)



DESCRIPTION OF MODEL SCENARIOS

A working model to describe the E-Road system was developed in three, in-

creasingly complex scenarios. Each phase, represented as a simulation scenario,

builds upon the complexity of the previous phase.

Scenario 1: Homogeneous and Isotropic

The �rst scenario, shown in Figure 16, consists of a homogeneous and isotropic

E-Road groundwater system. The ground surface boundary is speci�ed as a no-
ux

Neumann boundary condition. Furthermore, without a rainfall 
ux, Scenario 1 is

restricted to drainage simulations. Initial pressures within the system at t = 0

re
ect a totally saturated system. This scenario is used to investigate the model's

sensitivity to changes in parameters.

Scenario 2: Nonhomogeneous with Active Ground Surface Boundary

The second scenario, shown in Figure 17, is a nonhomogeneous system that

builds upon Scenario 1 with three additional components. First, intrinsic perme-

ability zones are established for the soil horizons, parent material, and regolith and

fractured bedrock. Secondly, a rainfall 
ux, Qp, is added across the ground surface

boundary. Converting instantaneous tipping bucket records, Qtip, from inches to

meters per second required

Qp =
(Qtip)(0:0254

m

in
)(Lsurf)(dy)

(�t)(Nsurf)
(1)

where Lsurf is the length of the ground surface boundary [m], dy is the width

of the system within the y-coordinate direction (set constant at 1 m), �t is the

28
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Figure 16:  Scenario 1, permeability zone with ground surface boundary.

uniform time step [s], and Nsurf is the total number of nodes on the ground surface

boundary [l]. The third additional component of Scenario 2 is a time-dependent

switch, established for pressure values speci�ed within the ground surface boundary

nodes. The conditional statement for pressure at a given time step, n, within the

boundary is

pn
BCi

=

�
0 Pa; Rainfall

�5000 Pa; No Rainfall
(2)

where pressure is set to �5000 Pa (equivalent to a residual saturation of 7% [Figure
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A.5]) for time periods of no rainfall, and atmospheric (gauge) pressure for periods

of rain. At atmospheric pressure, a spatial node is considered totally saturated,

Sw = 100%. Initial pressures within the system at t = 0 re
ect a partially drained

system.

Horizontal Spatial Distance (m)

E
le

va
tio

n 
A

bo
ve

 S
ea

 L
ev

el
 (

m
)

0 10 20 30 40 50 60 70 80
95

100

105

110

115

120

125

130

Parent Material

Regolith and Fractured Bedrock

Figure 17:  Scenario 2, permeability zones with active ground surface boundary.
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Scenario 3: Road Consolidation

The third scenario, shown in Figure 18, builds upon scenario 2 with the es-

tablishment of low intrinsic permeability zones beneath the road surface and the

removal of the soil horizon at the road surface.
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MODEL RESULTS

Simulation results are presented for each of the groundwater scenarios.

Scenario 1: Sensitivity Analysis and Drainage Simulation

The di�erences between the simulation results from scenario 1 were quanti�ed

using a root mean squared error (RMSE) criteria. The equation for the pressure

RMSE is

RMSE =

sP
NN

i=1

�
(p�

i
� pi)2

�
NN

(3)

where p
�

i
is the base case pressure head at a speci�c spatial node i, pi is the pressure

head for a given run of the model, and NN is the total number of spatial nodes. The

RMSE quanti�es the di�erence in pressure head conditions between two simulation

results for a given time period. Each of the two simulations share identical �nite

element meshes, however, system parameters and boundaries di�er between the

simulations.

The �rst simulation is run with a set of parameters known as the `base case.'

Base case parameter values for scenario 1 are listed in Table 2. The second sim-

ulation utilizes parameter values identical to the base case with the exception of

a single parameter change. Incrementing a single parameter value over a range of

magnitudes generates a number of simulation results. These simulation results are

compared to the base case results using the RMSE.

A RMSE analysis is performed for the parameters: (1) intrinsic permeability,

(2) porosity, (3) soil type, (4) temporal step size, and (5) the total number of

elements within the system. A detailed description of the RMSE results is given in
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Appendix C of this report. In Figures 19-22 and 24, the base case appears as the

point for which RMSE = 0.

Table 2:  Scenario 1 parameters for base case simulation.

PARAMETER NOTATION VALUE UNITS

Volumetric Porosity POR, ε 0.1 Unitless
Intrinsic Permeability PMAX/MIN, k 1.0Ε−11 m2

Duration of time step DELT, ∆t 10 sec

Fractional upstream weight 0UP Unitless
Pressure boundary-condition 0.01GNUP Unitless

Maximum allowed simulation time TMAX 100000 sec
Fluid compressibility COMPFL, β 2.718E-6 (m sec2) / kg
Density of fluid RHOW0, ρ 1000 kg / m3

Solid matrix compressibility COMPMA, α 1.27E-6 (m sec2) / kg
Density of solid grain RHOS 1025 kg / m3

Component of gravity vector in the +X direction GRAVX 0 m / sec2

Component of gravity vector in the +Z direction GRAVY -9.81 m / sec2

Sandy clay loam: a 0.58 m-1
Number of elements in systems 2696NE Unitless

Fluid Viscosity VISC0, µ 0.001 kg / (m sec)

n 1.59 Unitless
Ssat 0.54 Unitless

Swres 0.09 Unitless

Scaling Factor
Shape Parameter
Water saturation at saturation
Residual saturation

The sensitivity of the model to intrinsic permeability, a measure of the ease of


uid movement through saturated interconnected void spaces, is shown in Figure

19. The range in intrinsic permeabilities is k = 10�13m2 to k = 10�10m2. Changes

to intrinsic permeabilities in the range (10�13m2 < k < 10�11m2) signi�cantly

impact the models solution while changes in the range (10�11m2 < k < 10�10m2)

have little to no impact.

The sensitivity of the model to porosity is shown in Figure 20. Recall, the

porosity is the volume of voids in the soil matrix per total volume. The range

in porosity is � = 1% to � = 30%. RMSE increases approximately linearly with

departures of porosity from the base case value.
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Figure 19:  Scenario 1, pressure root mean squared error versus the intrinsic
permeability.
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Figure 20:  Scenario 1, pressure root mean squared error versus porosity.
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Several parameters describing partially saturated conditions within the subsur-

face (a, n, Ssat, Swres) are dependent on soil type. Field and laboratory experiments

are typically used to identify the partially saturated parameters within a study site.

Soil tests within the E-Road swale were not made. However, a soil survey con-
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ducted for the watershed identi�ed the soil type as `clay loam.' Table 3 gives the

range of di�erent soil types utilized for the sensitivity analysis of partially saturated

parameters. A soil type of `sandy clay loam' is used in the base case simulation of

scenario 1.

Table 3:  Partially saturated parameters for seven soil types.

SOIL TYPES
Sandy loam
Silt Loam
Loam
Sandy clay loam
Silty clay loam
Clay loam
Beit Netofa Clay

a n Ssat Swres
2.77

10.92
17.81
0.58
1.36
1.25

0.152

2.89
1.18
1.16
1.59
1.24
2.38
1.17

0.44
0.50
0.50
0.54
0.56
0.56

0.446

0.00
0.00
0.00

0.00

0.00

0.09

0.07

RMSE values calculated for each of the seven soil types are shown in Figure 21.

Similar simulation results are observed for silt loam, loam, and sandy clay loam.

Figure 21:  Scenario 1, pressure root mean squared error versus soil type.
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Figure 22 shows RMSE values calculated for a range of temporal step sizes, �t.

Theory suggests that a decrease in �t increases the numerical stability of the model.
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The tradeo� associated with a smaller step size is an increase in computational time

(Figure 23). For temporal step sizes less than 40 sec, the model is very sensitive

to small changes in �t. Decreasing the temporal step size results in a reduction in

the moisture levels within the systems partially saturated conditions. For larger �t

values an upper limit is established at 200 sec. Simulations made with �t > 200

sec produced irregular drainage patterns within the swale. The irregular drainage

patterns, evident in the model's inappropriate storage of water within the upper

portion of the swale, is attributed to a breakdown in the numerics.

Figure 22:  Scenario 1, pressure root mean squared error versus temporal step 
size.
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The sensitivity of the model to spatial discretization is established in Figure 24.

Figure 24 shows the pressure RMSE as a function of the total number of elements

within the system. Previous modeling investigations of a partially saturated system

indicate the susceptibility of the model to numerical breakdown given an insu�cient

number of elements (Fisher, 1999). The numerical instability was characterized by a
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Figure 23:  Scenario 1, computational time versus temporal step size.
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nonuniform capillary fringe along the phreatic surface. For scenario 1, the numerical

breakdown occurred for systems containing less than 1404 elements.

Greater numerical stability is achieved with an increase in the number of �nite

elements within the system. In addition, a �ner mesh density requires additional

computational time. Figure 25 gives the computational time as a function of the

total number of elements.

A maximum pressure RMSE is identi�ed for each of the parameters previously

examined within the RMSE analysis. The magnitude of the maximum RMSE is

sensitive to the choice of base case and the range over which the parameter was

tested. A comparison of the maximum RMSE values is shown in Figure 26. Sen-

sitivity of the model is greatest for changes in intrinsic permeability. A moderate

sensitivity is observed for both the porosity and total number of elements. The

lowest sensitivity is associated with the soil type and temporal step size.
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Figure 24:  Scenario 1, pressure root mean squared error versus the number of elements.
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Figure 25:  Scenario 1, computational time versus the total number of elements.
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Pressure conditions are given after 2.8, 13.9, and 27.8 hr of simulation time

(Figure 27), to demonstrate the model's ability to drain over time. As expected,

the phreatic surface (0 pa pressure contour) progressively lowers in elevation for each

time period. The horizontal phreatic surface, observed after 13.9 hr of simulation
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Figure 26:  Scenario 1, parameter sensitivity.
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time, illustrates the e�ect of an impermeable ground surface boundary pressure set

constant at 0 pa. The ground surface boundary, sharing a common pressure with

the phreatic surface, has the undesirable e�ect of 
ooding the lower portion of the

swale.

Located within the upper portion of the swale are the partially saturated pres-

sure contours (p < 0 pa). The irregular contours, describing the partially saturated

conditions, are believed to be a product of numeric instability. The equations for

partially saturated 
ow are extremely nonlinear and susceptible to breakdown in

systems of low saturation.

Velocity vectors for each element in scenario 1 are given after 13.9 hr of base

case simulation (Figure 28). For saturated conditions, velocity vectors directionally

align with the lower hydrostatic boundary and are indistinguishable within the

partially saturated conditions. The velocity vectors do not take shape until p > 0

pa. A constriction of 
ow within the base of the swale, where bedrock and ground
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Figure 27:  Scenario 1 pressure contours (pa), drainage of system over a time period of 2.8, 13.9, and 
27.8 hours.
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surface boundaries merge, produces increased velocity magnitudes. Velocity vectors

exit the system through the lower hydrostatic boundary. The total mass 
ux across
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Figure 28:  Scenario 1, velocity vectors after 13.9 hours of simulation.
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the lower hydrostatic boundary is 0.062 kg=m.

Scenario 2: Pre-Road Building

Scenario 2 parameters are summarized in Table 4. An increase in �t was

required to complete a simulation run in a reasonable amount of time. At �t =

200 sec, the 61-day simulation took approximately 14 hours to complete. Intrinsic

permeabilities within the system are given for each material type. A high intrinsic

permeability is speci�ed in the soil horizons, a moderate intrinsic permeability in the

parent material, and a low intrinsic permeability within the regolith and fractured

bedrock. The time dependent rainfall 
ux, speci�ed across the ground surface

boundary, is a function of historical rainfall records (November 10th 1996 to January

10th 1997).

Figure 29 depicts the pressure contours after 61 days of simulation. The shape

of the phreatic surface reveals the impact of intrinsic permeability layering within

the system. The placement of a higher intrinsic permeability zone over a lower
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Table 4:  Scenario 2 parameters (see Table 2 for undefined parameters).

PARAMETER NOTATION VALUE UNITS

Permeability: k 1.0Ε−11 m2

Duration of time step DELT, ∆t 200 sec
Maximum allowed simulation time TMAX 5270400 sec

Clay loam: a 1.25 m-1
Number of elements in systems 3949NE Unitless

n 2.38 Unitless
Ssat 0.56 Unitless

Swres 0.446 Unitless

Scaling Factor
Shape Parameter
Water saturation at saturation
Residual saturation

Soil Horizons
Parent Material
Regolith and Fractured Bedrock

6.0E-13
7.0E-14

m2

m2

intrinsic permeability zone produces a lag in the groundwater movement within the

regolith and fractured bedrock. The lag is most evident within the upper portion of

the swale where drainage rates are highest. The di�erence in drainage rates between

the two material types is shown in Figure 30. Velocities within the parent material

are much greater than velocities within the regolith and fractured bedrock.

Flow within the soil horizons is dominated by gravity, with capillary forces

masked by the material's high intrinsic permeability. The only observable horizontal


ow within the soil horizons is found within the base of the swale. A constriction of


ow within the base forces the water table upward into the soil horizons. Unable to

enter back into the parent material, water is quickly transported out of the system

through the soil horizons. Velocity vectors, pointing outward across the ground

surface boundary, are responsible for ground seepage.

Simulations were made with reduced historic rainfall to test the sensitivity of

the model to changes in rainfall magnitude. Unexpectedly, there was no change

in the model solution for a 99% reduction in historical rainfall. The magnitude of

the mass 
ux across the ground surface boundary is negligible within the modeled
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Figure 30:  Scenario 2, velocity vectors after 61 days of simulation.
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Figure 29:  Scenario 2, pressure contours (pa) after 61 days of simulation.
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system. The pressure response to precipitation events is instead governed by the

model's pressure switch within the ground surface boundary.

Scenario 3: Post-Road Building and Historical Comparisons

Scenario 3 parameters are identical to scenario 2 parameters with the addition

of two low intrinsic permeability zones beneath the road surface. The intrinsic per-

meabilities of the two additional zones are k = 3 � 10�12m2 within the consolidated
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parent material and k = 6 � 10�14m2 within the consolidated regolith and fractured

bedrock. Pressure contours and velocity vectors after a 61 day simulation period

are shown in Figures 31 and 32, respectively. The e�ect of road consolidation is an

increase in pore pressure beneath the road bed. Groundwater, impeded by the low

intrinsic permeability zone, mounds behind the consolidated material, reaching an

upper limit at the ground surface boundary.
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Figure 32:  Scenario 3, velocity vectors after 61 days of simulation.

E
le

va
tio

n 
A

bo
ve

 S
ea

 L
ev

el
 (

m
)

10 20 30 40 50 60 70 80

100

110

120

Horizontal Spatial Distance (m)

Figure 31:  Scenario 3, pressure contours (pa) after 61 days of simulation.
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For each of the swale's piezometers, a comparison is made between the water

year 1997 historical and simulated hydraulic heads (Figures 33-38). The conversion

from capillary pressure, p, to hydraulic head, h, is

hpiez =
ppiez



+ zelev (4)

where hpiez is the piezometric head, ppiez is the pore water pressure within the base

of the piezometer, 
 is the speci�c weight of water, and zelev is the elevation of

the piezometer's base. For the month of November 1996, the simulated pressure

response of the upper piezometers is strongly a�ected by the model's initial pressure

conditions. By December 1996 the in
uence of the initial conditions is less apparent.

As seen in Figures 37 and 38, historical drainage rates are much greater than

simulated drainage rates. The di�erence in drainage rates is attributed to the

model's inability to simulate pipe
ow within the system. To compensate for pipe-


ow, intrinsic permeabilities were increased throughout the swale. The system's re-

sponse to higher intrinsic permeabilities is an increase in drainage within the upper

piezometers and a decrease in drainage within the lower piezometers. The decrease

in drainage emphasizes the control of the hydrostatic boundary on drainage rates

within the lower portion of the swale. Hydrostatic pressures, which are assumed con-

stant over time, place a limit on drainage across the swale's lower vertical boundary.

Groundwater, unable to exit the system at drainage rates associated with increased

intrinsic permeability, builds behind the hydrostatic boundary, 
ooding the lower

portion of the swale. The 
ooding is compounded by the excessive drainage rates

within the upper portion of the swale.
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The model's overprediction of hydraulic heads within piezometer R4P2 (Figure

36) is not easily understood. Any number of hydrologic 
ow mechanisms, either

misrepresented or neglected within the system, may attribute to the approximately

4 m di�erence between historical and simulated water pressures. Possible problem

areas include: (1) neglecting convergent 
ow within the 2-d system, (2) the incor-

rect placement of the bedrock boundary, (3) the inability of the model to simulate

pipe
ow, and (4) an oversimpli�cation of ground consolidation with depth. These

issues should be addressed in future groundwater studies.

The frequency response for a piezometer is characterized by the number of

cycles or oscillations of pressure per unit time. Where waves of multiple frequen-

cies are superimposed the characterization can be quite complex. R5P2 and R6P2

(Figure 11) clearly have a high frequency pattern superimposed on a low frequency

annual cycle. For each of the piezometers, historical and simulated responses appear

to operate at a common frequency. A casual comparison of the frequency response

for each of the piezometers indicates three dominant frequencies within the system:

piezometers R1P2 and R2P2 share a high frequency response, piezometers R3P2,

R5P2, and R6P2 a moderate frequency response, and piezometer R4P2 a low fre-

quency response. The model appears to reproduce some of the di�erent frequency

responses within the E-Road groundwater system. No attempt was made to rig-

orously analyze the frequency spectra nor to validate the dual frequency responses

seen in R5P2 and R6P2 after logging.
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Figure 33:  Historical and simulated (scenario 3) hydraulic head values for piezometer R1P2.
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Figure 34:  Historical and simulated (scenario 3) hydraulic head values for piezometer R2P2.
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Figure 35:  Historical and simulated (scenario 3) hydraulic head values for piezometer R3P2.
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Figure 36:  Historical and simulated (scenario 3) hydraulic head values for piezometer R4P2.
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Figure 37:  Historical and simulated (scenario 3) hydraulic head values for piezometer R5P2.
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Figure 38:  Historical and simulated (scenario 3) hydraulic head values for piezometer R6P2.
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A comparison of the simulations made with (scenario 3) and without (scenario

2) the road consolidation is shown in Figure 39. For each of the scenarios, R4P2

piezometric heads are given over time (December 7th 1996 to January 11th 1997).

As can be seen from Figure 39, drainage rates without the road (scenario 2) are

greater than drainage rates with the road (scenario 3). Furthermore, peak hydraulic

head responses to precipitation are greater for the scenario 3 system.
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Figure 39:  A comparison between scenario 2 and 3 for piezometer R4P2.

Scenario 2 (no-road)
Scenario 3 (road)

Comparing the e�ects of road consolidation on the system's peak pore pressure

response illustrates the model's usefulness as an engineering design tool. As previ-

ously stated, the pressure response beneath and above the road may be used as an

indicator for landslide susceptibility within the swale. An increased likelihood of

slope failure is attributed to higher pore water pressures within the subsurface envi-
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ronment. The model's ability to identify the hydrologic controls which govern pore

pressures within the swale is useful in selecting road designs and road restoration

techniques which minimize the peak pressure responses beneath the road surface.



CONCLUSIONS

The results of this thesis have demonstrated:

1. Road consolidation is associated with increased pore water pressures beneath

the road bed.

2. The inability of the model to account for pipe
ow produces simulated drainage

rates much slower than historical drainage rates.

3. Analysis of the simpli�ed model Scenario 1 indicated model sensitivity was

greatest for changes in intrinsic permeability.

4. Mass 
ux across the ground surface boundary is negligible within the modeled

system.

5. The model appears to reproduce the uniquely di�erent frequency responses

within the E-Road groundwater system.

6. A decrease in the temporal step size, �t, increases both the numerical stability

of the model and the computational time required for a simulation. A �t = 200

sec is recommended to ensure numerical stability while holding computational

time within practical limits.

7. A �ner discretization within the �nite element mesh produces an increase in

numerical stability and an increase in the computational time required for

a simulation. A 4000 element mesh is recommended to maintain numerical

stability within the partially saturated conditions while holding computational

time within practical limits.
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APPENDIX A: Physical-Mathematical Basis of Numerical Model

The decision to use SUTRA (Voss, 1984) as the physically based mathematical

model, describing the groundwater 
ow within the E-Road system, is based primar-

ily on the model's ability to simulate unsaturated conditions. SUTRA's capability

of simulating the unsaturated conditions is, however, limited by the use of an em-

pirical relationship for pressure-saturation. Derivation of the predictive equations

describing groundwater 
ow requires an understanding of the 
uid physical prop-

erties, properties of the 
uid within the solid matrix, 
uid 
ow and 
ow properties,

unsaturated conditions, and the 
uid mass balance. The dimensions associated with

the groundwater parameters are: Length
:

= [L] � meters, mass
:

= [M ] � kilograms,

time
:

= [T ] � seconds, and unitless
:

= [l].

1.1 Fluid Physical Properties:

The primary variable for 
uid 
ow within the groundwater system is 
uid

pressure. Fluid pressure is the exertion of force upon a surface by a 
uid in contact

with that surface:

p(x; z; t)
:

=

�
M

(L � T
2)

�
(1:1:1)

where pressure, p, is a function of both space (x; z) and time (t). The density and

dynamic viscosity of the 
uid are given as,

�

:

=

�
M

L
3

�
(1:1:2)

�

:

=

�
M

L � T

�
(1:1:3)
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where � is approximated with a �rst order Taylor expansion about a base density

and � is taken to be constant. Dynamic viscosity directly expresses ease of 
uid


ow; a less viscous 
uid 
ows more readily under a driving force.

1.2 Properties of Fluid Within the Solid Matrix:

The total volume, 8total, of the porous medium is composed of a matrix of

solid grains and void space. The void space, 8void, includes that portion of the total

volume which the solid matrix does not �ll. The volume of the void space may be

fully or partly �lled with air or water. Porosity, �, is de�ned as a volume of voids

in the soil matrix per total volume.

�(x; z; t) �
8void

8total

:
=

�
l
�

(1:2:1)

The product of porosity and water saturation, �Sw, gives the fraction of total volume

�lled by the 
uid. Water saturation, Sw, is de�ned as the volume of water per

volume of voids.

Sw(x; z; t) �
8water

8void

:
=

�
l
�

(1:2:2)

When Sw = 1, the void space is completely �lled with water and is said to be

saturated. For Sw < 1, the void space is only partly �lled with water and is

referred to as being unsaturated.

When Sw < 1, water adheres to the surface of solid grains by surface tension

e�ects, and the 
uid pressure is less than atmospheric. Fluid pressure, p, is measured

with respect to atmospheric pressure, (pATM = 0 Pa). The negative pressure is

de�ned as capillary pressure, which exists only for p < 0.

pc(x; z; t)
:
=

�
M

(L � T 2)

�
p < 0; pc = �p

p � 0; pc = 0
(1:2:3)
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In a saturated porous medium, as 
uid pressure drops below zero, air may not

directly enter the void space, but may suddenly penetrate when a critical capillary

pressure is reached. This pressure, pcent, is the entry pressure.

pcent
:
=

�
M

(L � T 2)

�
(1:2:4)

The relationship between 
uid saturation and capillary pressure, Sw(pc), for a

given medium is typically determined by laboratory experiment. Due to the variety

of possible functions, no particular function is established by SUTRA; the desired

function is user speci�ed within the UNSAT subroutine of SUTRA. The functional

relationship between saturation and capillary pressure within the E-Road system

is de�ned with a general function. The Sw(pc) relationship is given within the

Unsaturated Conditions section of this report.

The total mass of 
uid contained in a total volume is

Mf = (�Sw�)8total �

�
8void

8total

8water

8void

M

8water

�
8total

:
= [M ] (1:2:5)

The actual amount of total 
uid mass, Mf , depends solely on 
uid pressure, p. A

change in total 
uid mass in a volume, assuming 8total is constant, is expressed as:

d(Mf) =
@(Mf)

@p
dp (1:2:6)

d(�Sw�) � 8total =

�
@(�Sw�)

@p
dp

�
� 8total (1:2:7)

Saturation, Sw, is entirely dependent on 
uid pressure, p.

d(�Sw�) =

�
Sw

@(��)

@p
+ ��

@(Sw)

@p

�
dp (1:2:8)
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The factor, @Sw
@p

, is obtained by di�erentiation of the chosen saturation-capillary

pressure relationship.

By de�nition, the aquifer storativity under fully saturated conditions is related

to the factor,
@(��)
@p

(Bear, 1979),

@(��)

@p
= �Sop (1:2:9)

where the speci�c pressure storativity, Sop, is the volume of water released from

saturated pore storage due to a unit drop in 
uid pressure per total solid matrix

plus pore volume.

Sop(x; z) =
1

8total

�
�8water

�p

�
:
=

��
L � T 2

�
M

�
(1:2:10)

SUTRA employs an expanded form of the speci�c pressure storativity based on 
uid

and bulk porous matrix compressibility. The relationship is obtained as follows by

expanding Equation (1:2:9).

�Sop =
@(��)

@p
= �

@�

@p
+ �

@�

@p
(1:2:11)

The coe�cient of compressibility of water is de�ned by

� �
1

�

@�

@p

:
=

��
L � T 2

�
M

�
(1:2:12)

and solving for @�
@p

yields

@�

@p
= �� (1:2:13)

substituting for @�
@p

in Equation (1:2:11) gives

�Sop = �
@�

@p
+ ��� (1:2:14)
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Further development of Equation (1:2:14) requires the de�nition of a solid grain

volume, 8solid.

8solid = (1� �) � 8total (1:2:15)

The volume of the solid grains, 8solid, is considered as constant because the com-

pressibility of the individual grains is considerably less than that of their skeleton

and is also less than the compressibility of water. The total derivative of this quan-

tity is zero, or

d(8solid) = d[(1� �) � 8total] = 0 (1:2:16)

d[8total � 8total�] = 0

d(8total)� [d(8total)�+ 8totald(�)] = 0

@8total � @8total(�) = @�(8total)

@� =
@8total[1� �]

8total

Dividing through by the change in 
uid pressure, dp, yields

@�

@p

=
(1� �)

8total

�
@8total

@p

�
(1:2:17)

The stress at any point in the solid matrix-
uid system is the sum of intergranular

stress, �
0

, and 
uid pore pressure, p.

�

0
:

=

�
M

(L � T 2)

�
(1:2:18)

Within the E-Road system, total stress is assumed to remain nearly constant, d�
0

=

�dp, and any drop in 
uid pressure increases the intergranular stress by a like
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amount. This consideration allows Equation (1:2:17) to be expressed in terms of

porous matrix compressibility, as

@�

@p

= (1� �)� (1:2:19)

where � is the porous matrix compressibility,

� = �

1

8total

@8total

@�

0
=

1

8total

@8total

@p

:

=

�
(L � T

2)

M

�
(1:2:20)

Equation (1:2:14) is rewritten as,

�Sop = �

�
(1� �)�

�
+ �

�
��

�

Sop = (1� �)�+ �� (1:2:21)

1.3 Fluid Flow And Flow Properties:

Fluid movement in a porous medium is driven by di�erences in 
uid potential.

Pressure-driven 
ows are directed from regions of higher 
uid pressure toward re-

gions of lower 
uid pressure. The mechanisms of pressure driving forces for 
ow are

expressed for SUTRA simulations by a general form of Darcy's law. The develop-

ment of the general form of Darcy's law is presented below.

In 1856, Henry Darcy investigated the 
ow of water in vertical homogeneous

sand �lters in connection with the fountains of the city of Dijon, France. Similar

to Darcy's original experiment, Figure A.1, shows an experimental setup for seep-

age through an inclined surface. From his experiments, Darcy concluded that the

rate of 
uid 
ow Q is (a) proportional to the constant cross-sectional area, A, (b)
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Figure A.1:  Seepage through an inclined sand filter.
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proportional to the di�erence in piezometric head across the �lter, h1� h2, and (c)

inversely proportional to the length, L (Bear, 1972). The Darcy formula is given as

Q = KA
(h1 � h2)

L
(1:3:1)

whereK is a coe�cient of proportionality or more commonly known as the hydraulic

conductivity. The hydraulic gradient, rh, is de�ned as,

rh =
@h

@s
=

h2 � h1

s2 � s1
=
�(h2 � h1)

L
(1:3:2)

where s is a spatial distance. Substituting the hydraulic gradient into equation

(1:3:1) gives

Q = �KArh (1:3:3)
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The speci�c discharge, q, is de�ned as the discharge per unit cross-sectional area

normal to the direction of 
ow.

q =
Q

A

:
=

�
L

T

�
(1:3:4)

Substituting q into Equation (1:3:3) gives

q = �Krh (1:3:5)

where

rh =
@h

@s
=

dh

dx
î+

dh

dy
ĵ+

dh

dz
k̂ (1:3:6)

and î, ĵ, k̂ are unit vectors in the x,y,z coordinate directions, respectively.

The functional relationship between hydraulic head, h, and 
uid pressure, p, is

de�ned as

h =

Z
p

p0

dp



+

v
�
2

2g
+ z (1:3:7)

where 
 is the speci�c weight of water, v
�
, is the average 
uid velocity, and z is the

vertical distance above an established datum. It is assumed that changes in piezo-

metric head, h, are much larger than changes in the kinetic energy head along the


ow path. Fluid velocities are assumed insigni�cant when compared with the pres-

sure and elevation terms in Equation (1:3:8). Therefore, kinetic energy is neglected

when considering the head loss along the 
ow path.

h =

Z
p

p0

dp



+ z (1:3:8)

or

rh =
rp



+rz (1:3:9)
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For cases where density or viscosity are not constant, SUTRA utilizes a simpli�ed

version of the hydraulic conductivity,

K =
cd

2



�
=
kkr


�
(1:3:10)

where c is the shape factor and d is the mean grain diameter. Both c and d are based

on the properties of the porous media. Fluid velocity, even for a given pressure and

density distribution, may take on di�erent values depending on how mobile the


uid is within the solid matrix. Fluid mobility depends on the combination of

permeability, k, relative permeability, kr, and dynamic viscosity, �. Permeability

is a measure of the ease of 
uid movement through interconnected voids in the

isotropic solid matrix when all voids are completely saturated. Relative permeability

expresses the fraction of the total permeability remaining when the voids are only

partly 
uid-�lled and only part of the total interconnected void space is connected

by continuous 
uid channels. SUTRA assumes kr to be independent of direction in

the isotropic porous media.

Returning to Equation (1:3:6), Darcy's law is further developed.

q = �Krh = �

�
kkr


�

��
rp



+rz

�
=
�kkr


�


�
rp+ 
rz

�
(1:3:11)

The average 
uid velocity, v
�
, is the velocity of 
uid with respect to the stationary

solid matrix. By de�nition, the speci�c discharge, q, is

q = �Swv
�
�

8void

8total

8water

8void

v
�

:
=

�
L

T

�
(1:3:12)

Substituting for q in Equation (1:3:12) gives

�Swv
�
=
�kkr

�

�
rp+ 
rz

�
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v
�
=
�kkr

�Sw�

�
rp+ �grz

�
(1:3:13)

The gravity vector is de�ned in relation to the direction in which vertical elevation

is measured

g
�
= �jgjrz ) g = �

g
�
rz

(1:3:14)

where g
�
is the magnitude of the gravitational acceleration vector. Substituting g

into Equation (1:3:14) gives the average velocity as

v
�
= �

�
kkr

�Sw�

�
�

�
rp� �g

�

�
(1:3:15)

A functional relationship between permeability and pressure is required by

SUTRA within the UNSAT subroutine. A general function of kr(p), will be used

and is given within the Unsaturated Conditions section of this report.

1.4 Partially Saturated Conditions:

A predictive model is used to describe the movement of groundwater within

partially saturated conditions (negative pressure �elds). The model is speci�cally

used to predict the relative permeability of unsaturated soils for a given water

pressure. To derive the relative permeability in the unsaturated state, the model

makes use of the measured pressure head versus water saturation curve, p(Sw). The

models development, as outlined by Mualem (1976), is presented below.

Consider a homogeneous porous medium having interconnected pores de�ned

by their radius r. Pores within the medium, at complete saturation, go from a radius

of r to r + dr. The change in radii, r ! r + dr, within the full pores contributes



67

to a change in water saturation. If f(r) is the pore water distribution function, the

contribution to Sw is

f(r)dr = dSw (1:4:1)

Integration over the pore radii gives water saturation as a function of the pore radius

Z
r

rmin

f(r)dr = Sw(r) (1:4:2)

and for saturated conditions,

Z
rmax

rmin

f(r)dr = Ssat (1:4:3)

The areal porosity, Avoid

Atotal

, is equal to the volumetric porosity, 8void

8total
, so f(r)dr repre-

sents the ratio between the pore area of radii r! r+dr and the total area (Mualem,

1976).

Consider a conceptual soil structure, Figure A.2, where a porous slab of thick-

ness �x hypothetically isolates a homogeneous soil column. The pore area distribu-

tion for the two slab sides is identical and equal to f(r)dr. For �x much larger than

the maximum radius, �x >> rmax, complete randomness of the relative position of

the voids at the two slab faces would exist. The independence of pore distributions

at x and x+�x implies that their probability for intersecting is

dAe =
�
f(r1)dr1

��
f(r2)dr2

�
= f(r1)f(r2)dr1dr2 (1:4:4)

where dAe is both the change in pore area and the probability that a pore of radius

r1 �nds a pore of radius r2 when moving over a distance of �x. For 0 � �x < rmax

there exists a correlation between r1 and r2 with perfect correlation at �x = 0. To
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account for the degree of correlation between the two sides, the change in pore area,

dAe, is rewritten with a dependency on water saturation, Sw,

dAe = Su�2
w

f(r1)f(r2)dr1dr2 (1:4:5)

where u describes the connectivity of the pore structure. The parameter u ranges

from u = 1 for full correlation to u = 2 for no correlation. For a given water

saturation, integration of Equation (1:4:5) over the range of radii of the water-�lled

pores is

Ae =

Z
rmax

rmin

dAe =

Z
rmax

rmin

Z
rmax

rmin

Su�2
w

f(r1)f(r2)dr1dr2 (1:4:6)

 0 < ∆x <  rmax∆x >>  rmax ∆x =  0

Partial Correlation
 between r1 and r2

Perfect Correlation
  between r1 and r2

No Correlation (Independent)
        between r1 and r2

r1 r2

x x+∆x x x+∆x x

Figure A.2:  Variations of ∆x within a conceptual soil structure.  Homogeneous soil with pore area 
distributions identical at the two slab sides, (1) & (2).

soil
porous
  slab soil

The contribution of the actual 
ow con�guration in the slab to the hydraulic

conductivity, K, requires two simplifying assumptions: (1) there is no bypass 
ow
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between slab pores, and (2) the pore con�guration may be replaced by a pair of cap-

illary elements (Figure A.3a) whose lengths are proportional to their radii (Mualem,

1976).

L1

L2
=

r1

r2
(1:4:7)

Figure A.3 shows (A) a pair of capillary elements represented by (B) an equivalent

single scaled capillary element; where re and Ae is the e�ective radius and area,

respectively. Relying on Poiseuille's equation, the change in e�ective radius is given

as

d(r2
e
) = r1r2 (1:4:8)

A1

2r1 2r2

L2

L1

Le

2re

Ae

A2 - A1

(A)

(B)

Figure A.3:  Unknown pore configuration, represented as a pair of capillary
elements (A) , is replaced with an equivalent cylindrical pore (B).

Tortuosity of pores is accounted for by reducing the change in e�ective radius

by a factor of Sm
w
.

d(r̂2
e
) = S

m

w
r1r2 (1:4:9)



70

Darcy's Law (Equation 1.3.3) applied to the equivalent tube (Figure A.3b) yields

Q = �KArh = �

�
cd2


�

�
(Ae �Asat)rh (1:4:10)

where the e�ective area is given as

Ae =
A

Asat

) A = Ae �Asat (1:4:11)

where Asat is the pore area at saturation. Darcy's Law in terms of the speci�c

discharge, q, is given as

q = �

�
cd2


�

�
Aerh = �

�
c


�

�
d2Aerh � � �

� � � = �Md2Aerh = �(Mr̂2
e
Ae)rh (1:4:12)

where M = c


�
is a constant which incorporates properties of the 
uid and solid

matrix. The e�ective radius, r̂e, is assumed equal to mean grain diameter, d. The

changes in 
ux resulting from the contribution of full pores going from r to r + dr

is

dq = d
�
�Mr̂2

e
Aerh

�
= �Mdr̂2

e
dAerh (1:4:13)

Integrating the speci�c discharge over the water �lled pores gives

q =

Z
dq = �

�
M0

Z
water �lled pores

dr̂2
e
dAe

�
rh (1:4:14)

which allows K to be isolated from the modi�ed form of Darcy's Law (Equation

1:4:14).

K = M0

Z
water �lled pores

dr̂2
e
dAe (1:4:15)



71

The relative permeability, kr, is expressed as

kr =
K(Sw)

Ksat

=

M0
R

water �lled pores

dr̂2
e
dAe

M0

R
water �lled pores at saturation

dr̂2
e
dAe

=

R
�lled pores

dr̂2
e
dAe

R
all pores

dr̂2
e
dAe

(1:4:16)

De�nitions for dr̂2
e
(Equation 1.4.9) and dAe (Equation 1.4.5) are then incorporated

within Equation (1:4:16). Integration takes place over the radii of the pore domains.

kr =

R
r

rmin

R
r

rmin

Sm

w
r1r2S

u�2

w
f(r1)f(r2)dr1dr2R

rmax

rmin

R
rmax

rmin

Sm

sat
r1r2S

u�2

sat
f(r1)f(r2)dr1dr2

� � �

� � � =
Sm+u�2

w

R
r

rmin

R
r

rmin

r1r2f(r1)f(r2)dr1dr2

Sm+u�2

sat

R
rmax

rmin

R
rmax

rmin

r1r2f(r1)f(r2)dr1dr2
(1:4:17)

By de�nition, the e�ective saturation is expressed as

Se =
Sw

Ssat
(1:4:18)

which reduces the function for kr (Equation 1.4.17) to

kr = Sm+u�2

e

� R
r

rmin

R
r

rmin

r1r2f(r1)f(r2)dr1dr2R
rmax

rmin

R
rmax

rmin

r1r2f(r1)f(r2)dr1dr2

�
(1:4:19)

Note, r2
e
= rere = r1r2, which allows

kr = Sm+u�2

e

� R
r

rmin

R
r

rmin

reref(re)f(re)dredreR
rmax

rmin

R
rmax

rmin

reref(re)f(re)dredre

�
� � �

� � � = Sm+u�2

e

� R
r

rmin

ref(re)dre
R
r

rmin

ref(re)dreR
rmax

rmin

ref(re)dre
R
rmax

rmin

ref(re)dre

�
� � �

� � � = Sm+u�2

e

� R
r

rmin

ref(re)dreR
rmax

rmin

ref(re)dre

�2
(1:4:20)

The capillary law, expressing the inverse proportionality of the maximum radius of

the water �lled pores and the capillary pressure head is

r =
C

pc
(1:4:21)



72

where C is a proportionality constant. Expressing kr in terms of p and substituting

for f(re)dr = dSe from Equation (1:4:1) yields

kr = Sm+u�2
e

� R
Se

0

�
C

pc

�
dSeR

Ssat

0

�
C

pc

�
dSw

�
2

= Sm+u�2
e

� R
Sw

0

�
1

pc

�
dSeR

Ssat

0

�
1

pc

�
dSe

�
2

(1:4:22)

Since there exists no procedure for an independent determination of m, the

e�ects of tortuosity, and u, the correlation factors, both m and u are lumped together

into a single parameter n.

n = m+ u� 2 (1:4:23)

The parameter n is determined from a curve �tting technique between kr(pc) in

Equation (1:4:22) and the empirical relation of krm(pc) found through experiment.

For each soil the mean square deviation, D, between krm and kr is

D =

�Z
1

Se min

[ln(kr)� ln(krm)]
2

(1� Se min)
dSe

� 1

2

(1:4:24)

Posing the problem as a parameter estimation optimization gives the objective as

the minimization of the error between measured and computed permeability while

treating n as the decision variable. The problem associated with this technique is

the dependency of n on the speci�c soil type being used. A general n value which

could be used for all soils was determined by Mualem (1976). In order to maintain

consistency in the numerical computation of D for all soils, Mualem solved for a

mean value of �D based on 45 common soils. Each of the 45 soils are cited within

the literature and contain measured p-Se and K-Sw data on drainage. Holding n

constant, a �D value is calculated. The magnitude of �D represents the performance

of n in characterizing the 45 soils. Mualem's results, Figure A.4, show an optimal

solution of n = 1

2
.
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Figure A.4:  Computed D based on 45 soils as a function of the power n 
(Mualem, 1976).

To solve Equation (1:4:22), an expression relating the dimensionless saturation

or e�ective saturation, Se, to the capillary pressure, pc, is needed. The functional

relationship, Se(pc), adopted for this study was established by van Genuchten (1980)

and is given in its general form as

Se =

�
1

1 + (apc)n

�
m

(1:4:25)

where a, n, and m are parameters dependent on the materials within the study site.

Solving for the capillary pressure, pc, within Equation (1:4:25), yields

S

1

m

e =
1

1 + (apc)n
) (apc)

n =
1

S

1

m

e

� 1 ) � � �

� � � apc =

�
1

S

1

m

e

� 1

n

) pc =
1

a

�
1� S

1

m

e

S

1

m

e

� 1

n

(1:4:26)

Equation (1:4:22) is further developed with the capillary pressure de�nition given
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in Equation (1:4:26). A substitution for n = 1
2
is made.

kr(Se) = S

1

2

e

"R
Se

0
1
pc

dSeR 1

0
1
pc

dSe

#2
= S

1

2

e

�
f(Se)

f(Se;sat)

�2
(1:4:27)

where

f(Se) =

Z
Se

0

1

pc

dSe =

Z
Se

0

1

1
a

�
1�S

1

m

e

S

1

m

e

� 1

n

dSe � � �
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The relative permeability, kr, is assumed a power function of the e�ective saturation,

Se. Substitution of Se = S
m into Equation (1:4:28) leads to

f(S) = a

Z
Se

1

m
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�
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Z
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k(1� S)�
1

n
dS (1:4:29)

where m is limited to (0 < m < 1). In it's most general form, no closed-form

expression can be derived for Equation (1:4:29). However, integration is possible

for all integer values of k, where k = m� 1+ 1
n
. For the particular case when k = 0

(i.e. m = n�1
n

and 1
n
= 1�m), integration of Equation (1:4:29) gives

f(S) = am

Z
Se

1

m

0

S

m�1+(1�m)(1� S)�(1�m)
dS � � �

� � � = am

Z
Se

1

2

0

S

0(1� S)m�1 dS � � �
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� � � = am

�
(1� S)m

m

�S 1

2
e

0
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�
(1� S

1

m

e )m � 1
�

(1:4:30)

Equation (1:4:29) in terms of the e�ective saturation, Se, and the e�ective saturation

at saturation, Se;sat, is

f(Se) = a

�
(1� S

1

m

e )m � 1
�

(1:4:31)

f(Se;sat) = a

�
(1� 1

1

m )m � 1
�
= �a (1:4:32)

which allows Equation (1:4:27) to be written as,

kr(Se) = S

1

2

e

"
a(1� S
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m

e )m � 1

�a
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1� (1� S

1

m

e )m
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(1:4:33)

Substituting the e�ective saturation, Se, found in Equation (1:4:25), into Equation

(1:4:32) gives the relative permeability as a function of capillary pressure, kr(pc).

kr(pc) =

�
1

1 + (apc)n

�m
2

�
1�

�
1�

�
1

1 + (apc)n

�m
m

�m�2

� � �

� � � =

"
1�

1 + (apc)n
	m

2

#�
1�

�
1� (apc)

n
� 1

1 + (apc)n

�m�2

� � �

� � � =

�
1� (apc)

nm
�
1 + (apc)

n
�
�m�2

�
1 + (apc)n

�m
2

(1:4:34)

where

m = 1�
1

n
(1:4:35)

when k = 0. The dimensionless saturation, Se is de�ned as

Se =
Sw � Swres

Ssat � Swres

(1:4:36)
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where Swres is a residual saturation below which saturation is not expected to fall.

Water becomes immobile for Sw < Swres. Equation (1:4:25) in terms of the residual

saturation is given as

Sw = Swres + (Ssat � Swres)

�
1

1 + (apc)n

�
m

(1:4:37)

Substituting for m in Equation (1:4:37) gives the water saturation as a function of

capillary pressure, pc.

Sw(pc) = Swres + (Ssat � Swres)

�
1

1 + (apc)n

�n�1
n

� � �

� � � = Swres + (1� Swres)
�
1 + (apc)

n
� 1�n
n (1:4:38)

Steps taken for the derivation of Sw with respect to p are as follows:

dSw

dp
=

�
Ssat � Swres

��1� n

n

��
1 + (a(�p))n

�([ 1�n
n

]�1)

(n)(a(�p))n�1(a)(�1) � � �

� � � =
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��n� 1

n

��
1 + (a(�p))n

�
�(

2n�1

n
)
(n)(a(�p))n�1(a) � � �

� � � =
(a)(n� 1)(Ssat � Swres)(a(�p))

n�1

�
1 + (a(�p))n

� 2n�1
n

(1:4:39)

where p = �pc. The user-programmed subroutine UNSAT, located within SUTRA,

requires (A) water saturation as a function of pressure, (B) the derivative of satu-

ration with respect to pressure, and (C) the relative permeability as a function of

pressure. The three required conditions are given below:

Sw(p) = Swres + (Ssat � Swres)
�
1 + (ajpj)n

�
�m

(1:4:40)

dSw

dp
=

(a)(n� 1)(Ssat � Swres)(ajpj)
n�1

�
1 + (ajpj)n

� 2n�1
n

(1:4:41)

kr(p) =

�
1� (ajpj)n�1

�
1 + (ajpj)n

�
�m

�2
�
1 + (ajpj)n

�m
2

(1:4:42)
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where m = 1� 1=n and p < 0. Functions (A) and (C) are presented graphically in

Figures A.5 and A.6, respectively. Unsaturated parameter values are based upon

physical properties identi�ed for Webster clay loam: a �ne-loamy, mixed, superac-

tive, mesic, Typic Endoaquoll, 32% sand, 39% silt, and 28% clay (Shao and Horton,

1998).
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Figure A.6:  Relative permeability versus pressure.

Figure A.5:  Water saturation versus pressure.
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1.5 Fluid Mass Balance:

Simulation of 
ow within SUTRA is nothing more than a calculation of how the

amount of 
uid mass contained within the void spaces of the solid matrix changes

with time. A 
uid mass balance is used to keep track of the 
uid mass held at

every point in the simulated groundwater system as it changes with time due to


ows and saturation changes. The continuity equation for the groundwater system

is developed by considering a nondeforming elemental volume located within the

aquifer (Figure A.7). The principle of mass conservation requires,

���� Mass

in
ow rate

�����
���� Mass

out
ow rate

���� =
����Time rate of change

in mass storage

���� (1:5:1)

or

I�O =
@M

@t

(1:5:2)

The mass 
ow rate through an elemental area is �qnA where qn is the compo-

nent of the mean seepage 
uid velocity normal to the surface of an element of area

A. Assuming that the volume is completely saturated with a single-phase, homoge-

neous 
uid of density �, and the mean seepage velocity of the 
uid and density are

given at point P, the centroid of the control volume, then a Taylor series expansion

about point P is used to obtain the net mass in
ow to the elemental volume (Willis

and Yeh, 1987). For example, the mass in
ow in the x direction, Ix, is

Ix = �qx�y�z �

@

@x

(�qx)
�x

2
�y�z

:

=

�
M

T

�
(1:5:3)

Similarly, the mass out
ow in the x direction, Ox, is

Ox = �qx�y�z +
@

@x

(�qx)
�x

2
�y�z

:

=

�
M

T

�
(1:5:4)
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Figure A.7:  Mass conservation for a control volume.
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Summing the contributions to the in
ow and out
ow in the x direction gives,

Ix �Ox = �qx�y�z �
@

@x
(�qx)

�x

2
�y�z � �qx�y�z �

@

@x
(�qx)

�x

2
�y�z � � �

� � � = �

@

@x
(�qx)�x�y�z (1:5:5)

Summing the contributions to the in
ow and out
ow in the x,y,z directions, the

net mass in
ow is

I�O = �

@

@x
(�qx)�x�y�z �

@

@y
(�qy)�x�y�z �

@

@z
(�qz)�x�y�z

I�O = �

�
@

@x
(�qx) +

@

@y
(�qy) +

@

@z
(�qz)

�
�x�y�z (1:5:6)

or in vector notation,

I�O = (�r � �q)�x�y�z (1:5:7)



80

where r is the divergence operator,

r =
@

@x
î+

@

@y
ĵ+

@

@z
k̂

The net increase in the mass 
ow rate is equal to the rate of change of the mass

stored within the elemental volume. The mass M of the 
uid contained in the

volume is

M = �Sw��x�y�z �

�
8void

8total

8water

8void

Mass

8water

�
� 8total � Mass (1:5:8)

The time rate of change in mass storage is given as

@M

@t
=

@

@t
(�Sw�)�x�y�z

:
=

�
M

T

�
(1:5:9)

The continuity Equation (1:5:2) for the groundwater system is then expressed as,

(�r � �q)�x�y�z =
@

@t
(�Sw�)�x�y�z (1:5:10)

�r � �q =
@

@t
(�Sw�) (1:5:11)

Substituting q = �Swv
�
from Equation (1:3:13) gives

�r � (�Sw�v
�
) =

@(�Sw�)

@t
(1:5:12)

A 
uid mass source term, Qp, is added to Equation (1:5:12) to account for external

additions of 
uid mass (e.g. a precipitation input).

@(�Sw�)

@t
= �r � (�Sw�v

�
) +Qp (1:5:13)

where

Qp

:
=

�
M

L3T

�
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From Equation (1:2:8) the time rate of change in mass storage is de�ned as

@(�Sw�)

@t

=

�
Sw

@(��)

@p

+ ��

@(Sw)

@p

�
@p

@t

=

�
Sw�Sop + ��

@(Sw)

@p

�
@p

@t

(1:5:14)

which allows Equation (1:5:13) to be written as

�
Sw�Sop + ��

@(Sw)

@p

�
@p

@t

= �r � (�Sw�v
�
) +Qp (1:5:15)

Substituting in the de�nition for average velocity, v
�
, Equation (1:5:15) becomes

�
Sw�Sop + ��

@(Sw)

@p

�
@p

@t

= �r �

�
(�Sw�)
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�kkr
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�
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�
rp� �g

�

���
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or �
Sw�Sop + ��

@Sw
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�
@p

@t

�r �

��
kkr�

�

�
�

�
rp� �g

�

��
= Qp (1:5:17)



APPENDIX B: Numerical Methods

The model employs a two-dimensional hybrid �nite-element and integrated-

�nite-di�erence method to approximate the governing equation that describes 
uid

density dependent saturated or unsaturated groundwater 
ow. The following sec-

tions review the numerical methods used by SUTRA. The numerical tools required

for the approximation of the 
uid mass balance are basis functions, coordinate

transformations, and Gaussian integration.

2.1 Basis Functions:

In a �nite-element analysis, the dependent variables (e.g. pressure) are approx-

imated by polynomial functions that are de�ned in terms of the unknown nodal

values of the state or dependent variables. These approximating or interpolating

functions vary over each element of the system, although continuity of the func-

tion is maintained along the element boundaries (Willis and Yeh, 1987). Linear

basis functions are used by SUTRA to described the unknown nodal values over

the system of two-dimensional quadrilateral elements.

Integration of linear basis functions is required within the model formulation.

Basis functions are developed within a local coordinate system to facilitate the

integration. Figure B.1 illustrates an element in both the global and local coordinate

systems. The irregularly shaped element within the global coordinate system, (x; z),

is reduced to a square in the local coordinate system, (�; �). Furthermore, the square

in (�; �) has its corners (nodes) located at � = �1, � = �1. The relation between

82
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the local and global coordinates is expressed as

x = 
e

1
x
e

1
+ 
e

2
x
e

2
+ 
e

3
x
e

3
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e

4
x
e

4
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4X

j=1


e

j
x
e

j
(2:1:1)

z = 
e

1
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1
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e

2
z
e

2
+ 
e

3
z
e

3
+ 
e

4
z
e

4
=

4X

j=1


e

j
z
e

j
(2:1:2)

where 
e

j
are some, as yet determined, functions of � and �. Both x

e

j
and z

e

j
are

nodal coordinates within x and z. Adjacent elements must �t together so their sides

must be uniquely determined by their common points. The quadrilateral element

will have straight sides de�ned by a linear function.

Figure B.1: A quadrilateral element in both global and local coordinate systems.
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that will provide the linear variation along element sides requires

a polynomial of the form

x = a+ b� + c� + d�� (2:1:3)
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which is linear in � when � = �1 and linear in � when � = �1. We also have, from

Figure B.1, the following conditions,

x = x1 when � = � = �1 (2:1:4)

x = x2 when � = 1; � = �1

x = x3 when � = � = 1

x = x4 when � = �1; � = 1

Substituting these constraints into Equation (2:1:3) gives

8
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x1
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x3
x4

9
>=
>;

=

2
64
1 �1 �1 �1�1
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3
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8
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9
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>;
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3
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8
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a

b

c

d

9
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>;

(2:1:5)

or, in vector-matrix notation

x =
�
A

��
P

	
(2:1:6)

P =
�
A

�
�1�

x

	
(2:1:7)

where

�
A

�
�1

=
1

4

2
64

1 1 1 1

�1 1 1 �1

�1 �1 1 1

1 �1 1 �1

3
75 (2:1:8)

Substituting P into the matrix form of Equation (2:1:5) yields,

x =
�
1 � � ��

�
8
><
>:

a

b

c

d

9
>=
>;

=
�
1 � � ��

�
P =

�
1 � � ��

��
A

�
�1�

x

	
(2:1:9)

A comparison of Equation (2:1:1) and (2:1:9) reveals,

x =
�

e
	T�

x
e
	
=
�
1 � � ��

��
A

�
�1�

x

	
(2:1:10)



85

or

�

e
	T

=
�
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A
�
�1

2
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4

3
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�
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�
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2
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1 �1 �1 1
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3
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where


1 =
1

4
(1� � � � + ��) =

1

4
(1� �)(1� �) (2:1:12)


2 =
1

4
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1

4
(1 + �)(1� �) (2:1:13)


3 =
1

4
(1 + � + � + ��) =

1

4
(1 + �)(1 + �) (2:1:14)


4 =
1

4
(1� � + � � ��) =

1

4
(1� �)(1 + �) (2:1:15)

Figure B.2 illustrates the basis function de�ned over a four element local space.

Nodes are described with global coordinates to help facilitate the connection be-

tween local and global coordinate systems. The basis function within the local

coordinate system is given as 
e(�i; �j), while �(xi; yj) is given for the basis func-

tion within the global coordinate system. One basis function is de�ned for each

node.

Figure B.3 illustrates multiple perspectives of the basis function, 
j , de�ned

for node j. The basis function has a value of one at node j and a value of zero at

all other nodes. The surface representing 
j over an element is curved due to the

product of � and � in Equation (2:1:11).

The derivatives of the bi-linear basis functions which depend on only one space

coordinate are given as:

@
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4
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4
�

�

4
+
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4

�
= �

1

4
+

�

4
= �

1

4
(1� �) (2:1:16)
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Figure B.2:  Basis function defined for quadrilateral elements.  Note above function for central node
spans four elements.
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Figure B.3:  Perspectives of basis function Ωj(ξ,η) at node j.
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2.2 Coordinate Transformations:

Coordinate transformation between local, (�; �), and global, (x; z), coordinate

systems is required for the �nite-element mesh calculations and integral evaluations.

The transformation involves a linear remapping in each coordinate direction and

employs the basis functions, 
j , to provide mapping. The ability to map from

one coordinate system to another is based on the chain rule of di�erentiation. For

functions of two variables, we have,

@
j
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@
j

@x
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@�
+

@
j

@z

@z

@�
(2:2:1)

@
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@
j

@x

@x

@�
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@
j

@z

@z

@�
(2:2:2)

In matrix notation, equations (2:2:1) and (2:2:2) are combined to give transforma-

tions for both directions local to global and global to local.(
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=
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and � @
j

@x
@
j

@z

�
=

� @x
@�

@z
@�

@x
@�

@z
@�

�
�1
(

@
j

@�
@
j

@�

)
= J

�1

� @
j

@x
@
j

@z

�
(2:2:4)

where

J =

�
J11 J12
J21 J22

�
=

� @x
@�

@z
@�

@x
@�

@z
@�

�
(2:2:5)

J�1 =

�
1

det J

��
J22 �J12

�J21 J11

�
=

�
1

J11J22 � J12J21

��
J22 �J12

�J21 J11

�
� � �
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1
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�� @z
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�
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�
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@x
@�

�
(2:2:6)
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The partial derivative terms within the Jacobian Matrix, J, are obtained from the

di�erentiation of x, Equation (2:1:1), and z, Equation (2:1:2), with respect to the

local coordinates (�; �).
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or in matrix notation,

J =

� @x

@�

@z

@�

@x

@�

@z
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�
=

� @
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Further development of the Jacobian terms gives

@x

@�
= �

1

4
(1� �)x1 +

1

4
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4
(1 + �)x3 �
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�
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�
(2:2:12)
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�
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In addition to transforming the derivatives from (x; z) to (�; �), the area of the

element is changed using

dA = dxdz = (det J)d�d� (2:2:16)

Integrating over each element within the local coordinate system gives

A =

Z
dA =

Z
z

Z
x

dxdz =

Z
1

�1

Z
1

�1

(det J)d�d� (2:2:17)

2.3 Gaussian Integration:

Gaussian quadrature is a technique for solving the exact integration of poly-

nomials through the summation of the integrands' point values. Integration is

performed by replacing a de�nite integral with a �nite series. The symbolic form

of Gaussian integration is,

Z
	=1

	=�1

f(	)d	 =

npX
gp=1

Hgpf(	gp) (2:3:1)

where f(	) is the function to be integrated between 	 = �1 to 	 = +1, gp is

the Gauss point number, np is the total number of Gauss points, and Hgp are the

weighting coe�cients.

In order to integrate a term of the di�erential governing equation, f(x; z),

over an arbitrary quadrilateral element, the limits of the integral must �rst be

transformed to local coordinate values of �1 to +1.

Z
z

Z
x

f(x; z)dxdz =

Z
�

Z
�

f(�; �)(det J)d�d� =

Z
1

�1

Z
1

�1

~f(�; �)d�d� (2:3:2)
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Gaussian integration is applied independently to each integral with two Gauss points

required for each coordinate direction. The Gauss point values for numbers one and

two are �3
1

2 and +3
1

2 respectively.

Z
z

Z
x

f(x; z)dxdz =

Z
1

�1

"
2X

i=1

~f(�i; �)

#
d� =

2X
j=1

2X
i=1

~f(�i; �j) (2:3:3)

Identical limits of integration for the two integrals allows for a single summation of

Equation (2:3:3). Z
z

Z
x

f(x; z)dxdz =

4X
gp=1

~f(�gp; �gp) (2:3:4)

where each of the four Gauss point values are shown in Figure B.4.

Figure B.4: Finite element in local coordinate system with Gauss points.

ζ

η

NODE 4 NODE 3

NODE 1 NODE 2

(-1,1) (1,1)

(-1,-1) (1,-1)

GAUSS POINT 2

(0.577,-0.577)

GAUSS POINT 3

(0.577,0.577)

GAUSS POINT 4

(-0.577,0.577)

GAUSS POINT 1

(-0.577,-0.577)
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Example:

Figure B.5: Geometry of example cell i.

x

z

(1,0)(0,0)

(0,1) (2,1)

AREA = 1.5

(x1,z1) (x2,z2)

(x3,z3)(x4,z4)

Consider a cell i whose corner nodes are described in Figure B.5. Show that

over the given element, the volumetric integral of a single basis function is equal to

the element's area, A = 1:5:

It can be shown that the volume of a cell i is expressed as,

8i =

Z
z

Z
y

Z
x

�i(x; z)dxdydz =

Z
z

Z
x

�iB(x; z)dxdz (2:3:5)

A uniform unit thickness, B = 1, reduces the elemental volume to an area, A.

A =

Z
z

Z
x

�idxdz (2:3:6)

Transformation of the double integral from global to local coordinate systems gives,

A =

Z
�

Z
�


i(�; �)(det J)d�d� =

Z
1

�1

Z
1

�1


i(det J)d�d� � � �

� � � =

4X
gp=1


i;gp(det Jgp) =

4X
gp=1

�

1;gp + 
2;gp + 
3;gp + 
4;gp

�
(det Jgp) � � �
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� � � =
�

1;1 + 
1;2 + 
1;3 + 
1;4

�
(det J1) � � �

� � � +
�

2;1 + 
2;2 + 
2;3 + 
2;4

�
(det J2) � � �

� � � +
�

3;1 + 
3;2 + 
3;3 + 
3;4

�
(det J3) � � �

� � � +
�

4;1 + 
4;2 + 
4;3 + 
4;4

�
(det J4) (2:3:7)

Using equations (2:1:12�2:1:16), the basis functions for the given element are given

as


1;1 = 
1(�0:577;�0:577) = 0:622 
3;1 = 
3(�0:577;�0:577) = 0:045


1;2 = 
1( 0:577;�0:577) = 0:167 
3;2 = 
3( 0:577;�0:577) = 0:167


1;3 = 
1( 0:577; 0:577) = 0:045 
3;3 = 
3( 0:577; 0:577) = 0:622


1;4 = 
1(�0:577; 0:577) = 0:167 
3;4 = 
3(�0:577; 0:577) = 0:167


2;1 = 
2(�0:577;�0:577) = 0:167 
4;1 = 
4(�0:577;�0:577) = 0:167


2;2 = 
2( 0:577;�0:577) = 0:622 
4;2 = 
4( 0:577;�0:577) = 0:045


2;3 = 
2( 0:577; 0:577) = 0:167 
4;3 = 
4( 0:577; 0:577) = 0:167


2;4 = 
2(�0:577; 0:577) = 0:045 
4;4 = 
4(�0:577; 0:577) = 0:622

The determinate of the Jacobian matrix (Equation 2.2.5) is given for each Gauss

point.

det J1 = (0:606)(0:05)� (0)(0:105) = 0:303

det J2 = (0:606)(0:05)� (0)(0:394) = 0:303

det J3 = (0:894)(0:05)� (0)(0:394) = 0:447
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det J4 = (0:894)(0:05)� (0)(0:394) = 0:447

Evaluation of Equation (2:3:7), produces the element's exact area.

A = (0:622 + 0:167 + 0:045 + 0:167)0:303 � � �

� � � + (0:167 + 0:622 + 0:167 + 0:045)0:303 � � �

� � � + (0:045 + 0:167 + 0:622 + 0:167)0:447 � � �

� � � + (0:167 + 0:045 + 0:167 + 0:622)0:447

A = (1)0:303 + (1)0:303 + (1)0:447 + (1)0:447 = 1:5

or 8i = 1:5, considering a unit depth of thickness. There are four basis functions

within an element, one 
i for each of the element nodes. At any location within an

element, the sum of four basis functions will always equal one. For example:


1;1 + 
2;1 + 
3;1 + 
4;1 = 0:622 + 0:167 + 0:045 + 0:167 = 1

2.4 Numerical Approximation of Fluid Mass Balance:

Groundwater 
ow is simulated through the numerical solution of the 
uid mass

balance Equation (1:5:17). The governing equation representing the SUTRA 
uid

mass balance, Op(p) = 0, is

Op(p) =

�
Sw�Sop + ��

@Sw

@p

�
@p

@t

�r �

��
kkr�

�

�
� (rp� �g)

�
�Qp = 0 (2:4:1)

where Sw is the water saturation; � is the 
uid density; Sop is the speci�c pressure

storativity; � is the porosity; p is the 
uid pressure; t is time; k is the solid matrix
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permeability; kr is the relative permeability to 
uid 
ow; � is the 
uid viscosity; g

is the gravitational acceleration; and Qp is the 
uid mass source.

An additional source term is added to the mass balance Equation (2:4:1) to

account for externally speci�ed pressure boundary conditions, pBC .

Op(p) =

�
Sw�Sop + ��

@Sw

@p

�
@p

@t
�r �

��
kkr�

�

�
� (rp� �g)

�
� � �

� � � �Qp � �p

�
pBC � p

�
= 0 (2:4:2)

where �p is the average medium conductance. Conductance is related to the cross-

sections of the elementary channels through which the 
ow takes place. When

conductance is set su�ciently large, the weight of the pressure boundary term be-

comes larger than the other terms within Equation (2:4:2). Op(p) = 0 is maintained

with an excessive source term which requires pBC �= p. By forcing pBC = p, the

desired boundary condition is satis�ed.

Spatial Integration

The 
uid mass balance equation, Op(p), is approximated through nodewise,

elementwise, and cellwise discretizations, Figure B.6. Spatial discretization of the

domain results in the inexact representation of variables and their derivatives. The

approximate equation, dOp(p), equals a spatially varying residual value, Rp(x; z; t),

which is no longer equal to zero.

dOp(p) = Rp(x; z; t) 6= 0 (2:4:3)

By minimizing the residual over space and time, Equation (2:4:3) is reformulated

as an optimization problem. The objective of the optimization is to determine the
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nodal values of p̂i, in such a way as to minimize the residual, Rp(x; z; t). The

residual is minimized by requiring the orthogonality of the weighting functions and

the di�erential. The weighted residual formulation is written as:

Z
8

Rp(x; z; t)Wi(x; z)d8 =

Z
8

ddOp(p)Wi(x; z)d8 = 0 i = 1;NN (2:4:4)

where Wi(x; z) is the weighting function in global coordinates; 8 is the total spatial

volume of the groundwater system; and NN is the total number of nodes within the

�nite element mesh.

z

x

Figure B.6: Cells, elements and nodes for a two-dimensional finite-
element mesh composed of quadrilateral elements.

CELL

ELEMENT

NODE

The Galerkin method of weighted residuals is applied, since the basis function,

�i(x; z), is equal to the weighting function, Wi(x; z). Substituting �i(x; z) into
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Equation (2:4:4) yields Z
8

dd
Op(p)�i(x; z)d8 = 0 (2:4:5)

Substitution for
dd

Op(p) from Equation (2:4:2) gives,Z
8

��
Sw�Sop + ��

@Sw

@p

�
@p

@t

�r �

��
kkr�

�

�
� (rp� �g)

�
� � �

� � � �Qp � �p

�
pBC � p

��
�i(x; z)d8 = 0 (2:4:6)

or Z
8

��
Sw�Sop + ��

@Sw

@p

�
@p

@t

�
�i(x; z)d8 � � �

� � � �

Z
8

�
r �

��
kkr�

�

�
� (rp� �g)

��
�i(x; z)d8 � � �

� � � �

Z
8

�
Qp

�
�i(x; z)d8 �

Z
8

�
�p

�
pBC � p

��
�i(x; z)d8 = 0 (2:4:7)

The �rst term in Equation (2:4:7) is an integral of the pressure derivative,Z
8

" dd�
Sw�Sop + ��

@Sw

@p

�
@p

@t

#
�i(x; z)d8 � � �

� � � =

" dd�
Sw�Sop + ��

@Sw

@p

�
@p

@t

# Z
8

�i(x; z)d8 (2:4:8)

where the term in brackets is discretized cellwise. From the Gaussian Integration

example, Equation (2:3:5), the integral of the basis function equals the volume of

the cell at node i. Integrating term (2:4:8) gives,�
Sw�Sop + ��

@Sw

@p

�
i

@pi

@t

8i (2:4:9)

Green's Theorem is applied to the second term in Equation (2:4:7). The sym-

bolic form of Green's Theorem is given as,Z
8

(r �	)�d8 =

Z
�

(	 � n)�d��

Z
8

(	r�)d8 (2:4:10)
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Application of Green's Theorem to the second term yields,

�

Z
8

�
r �

� d�
kkr�

�

�
� (rp� �g)

��
�i(x; z) d8 = � � �

� � � �

Z
�

" d�
kkr�

�

�
� (rp� �g)

#
� n �i(x; z) d� � � �

� � � +

Z
8

" d�
kkr�

�

�
� (rp� �g)

#
� r�i d8 (2:4:11)

where n is the unit vector normal to the three-dimensional surface bounding the

region to be simulated, and � is the surface of the region. The basis function in

global coordinates is denoted, �i(x; z). The �rst term on the right of Equation

(2:4:11) is exactly the 
uid mass out
ow, Oi(t), across the region's boundary at

node i.

Oi(t) = �q�A = ��Swv
�
�A � � �

� � � = ��Sw

"�
kkr

�Sw�

�
� (rp� �g)

#
�A = �

�
kkr�

�

�
� (rp� �g)A

Oi(t) = �

Z
�

" d�
kkr�

�

�
� (rp� �g)

#
� n �i(x; z) d� (2:4:12)

This term is used to specify 
uid 
ows across system boundaries.

The second term on the right of Equation (2:4:11) is approximated using a

combination of elementwise and nodewise discretizations. The permeability tensor,

k, is expressed in matrix notation as,

k̂L =

24 kL
xx

kL
xy

kL
xz

kL
yx

kL
yy

kL
yz

kL
zx

kL
zy

kL
zz

35 (2:4:13)

where the discretization of k is elementwise and is indicated by k̂L. A simpli�cation

of the permeability tensor is made with the assumption of a two-dimensional model.
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Within the third dimension, or y coordinate direction, the kxy, kyx, kyy, kyz, and

kzy components of the permeability tensor are eliminated.

k̂L =

�
k
L

xx
k
L

xz

k
L

zx
k
L

zz

�
(2:4:4)

The �nite approximation of 
uid pressure is discretized nodewise:

p(x; z; t) �=

NNX
i=1

pi(t) �i(x; z) (2:4:15)

where NN is the total number of nodes in the mesh. Integration of the pressure

derivative over the total spatial volume gives,

Z
8

rpd8 =

NNX
i=1

Z
8

r

�
pi(t) � �i(x; z)

�
d8 =

NNX
i=1

pi(t)

Z
8

r�i(x; z)d8 (2:4:16)

Relative permeability, kr, depends on saturation which, in turn, depends on

pressure. Relative permeabilities depend on saturation and are evaluated at each

Gauss point during numerical integration. Viscosity, �, is constant throughout

space and time.

The second term on the right of Equation (2:4:11) is further developed as

follows: Z
8

�
k̂Lkr�

�

�
rpi � r�i d8 �

Z
8

�
k̂Lkr�

�

�
�g � r�i d8 (2:4:17)

Substituting for
R
rpd8 in Equation (2:4:16) gives,

NNX
i=1

pj(t)

Z
8

�
k̂Lkr�

�

�
r�j � r�i d8 �

Z
8

�
k̂Lkr�

�

�
�g � r�i d8 � � �

� � � =

NNX
i=1

pj(t)

Z
8

��
(k̂L)

�
kr�

�

�
� r�j

�
r�i d8 � � �
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� � � �

Z
8

��
(k̂L)

�
kr�

�

�
�

�
�g
���

� r�i d8 (2:4:18)

The element volume is expressed as,

d8 = dy dz dx = B(x; z)dzdx (2:4:19)

where B(x; z) is the thickness of the mesh within the y-coordinate direction. The

thickness is assumed equal to one throughout space and time. Substitution for d8,

in Equation (2:4:18), gives

NNX
i=1

pj(t)

Z
8

��
(k̂L)

�
kr�

�

�
� r�j

�
r�iB(x; z)dzdx � � �

� � � �

Z
8

��
(k̂L)

�
kr�

�

�
�

�
�g
���

� r�iB(x; z)dzdx (2:4:20)

where (kr�
�
) is a term based on nodewise discretized values of pressure, p.

The last two terms of Equation (2:4:6) are approximated cellwise. Both the


uid mass source term, Q̂p, and conductance, �p, are averaged over the volume of

a cell i.

Q̂p =

NNX
i=1

�
Qi

8i

�
(2:4:21)

�p =

NNX
i=1

�
�i

8i

�
(2:4:22)

A single cell representation, with substitutions made for Q̂p and �p, gives the last

two terms of Equation (2:4:7) as,

�

Z
8

�
Qi

8i

�
�i(x; z)d8 �

Z
8

��
�i

8i

�
(p̂BCi

� pi)

�
�i(x; z)d8 � � �

� � � = �

�
Qi

8i

�Z
8

�i(x; z)d8 �

��
�i

8i

�
(p̂BCi

� pi)

�Z
8

�i(x; z)d8 � � �
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� � � = �

�
Qi

8i

�
8i �

��
�i

8i

�
(p̂BCi

� pi)

�
8i � � �

� � � = Qi � �i(p̂BCi
� pi) (2:4:23)

By combining and rearranging the evaluations of approximate terms of Equa-

tion (2:4:7), the following weighted residual relation is obtained:

AFi
dpi

dt
� BFi +

NNX
j=1

pj(t)CFij �DFi �Qi �

�
�i(p̂BCi

� pi)
�
= 0

i = 1;NN (2:4:24)

or

AFi
dp

dt
i+

NNX
j=1

pj(t)CFij + �ipi = Qi + �ipBCi
+ BFi + DFi

i = 1;NN (2:4:25)

where:

AFi =

�
Sw�Sop + ��

@Sw

@p

�
i

8i

BFi =

Z
�

"�
kkr�

�

�
� (rp� �g)

#
� n �i d�

CFij =

Z
x

Z
z

���
k̂L
��

kr�

�

��
� r�j

�
� r�i Bdzdx

DFi =

Z
x

Z
z

���
k̂L
��

kr�

�

��
� [�g]

�
� r�j Bdzdx

The integrals requiring Gaussian integration are BFi, CFij , and DFi. The other

terms, except for those involving �i, are evaluated cellwise.
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Temporal Discretization

The time derivatives in the spatially discretized and integrated equation are

approximated by �nite di�erences. The pressure term is approximated as,

dpi

dt
�=

pn+1
i

� pn
i

�tn+1
(2:4:26)

where

pn
i
= pi(t

n)

pn+1
i

= pi(t
n +�tn+1) = pi(t

n+1)

�tn+1 = tn+1 � tn

The current time step, �tn+1, begins at time tn and ends at time tn+1. The

previous time step for which a solution has already been obtained at time tn is

denoted �tn. Temporal de�nitions are given in Figure B.7, where p0 is the initial

pressure distribution at t0 = 0 seconds.

t

tn-1t0 tn

p0 pn-1 pn pn+1

tn+1

∆tn+1∆tn

Figure B.7:  Temporal definitions.

All other terms in Equation (2:4:25) are evaluated at the new time tn+1 for

the solution of the present time step, �tn+1. For each time step, coe�cients are
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based on a projected value of 
uid pressure, p. The projected pressure, p
proj

i , is

an estimation of p at the end of the present time step, �tn+1, based on the linear

extrapolation of the two previous values of p. The projected pressure is determined

with a linear extrapolation between (tn�1; pn�1) and (tn; pn).

pi � p
n
i =

�
p
n
i � p

n�1
i

tn�1 � tn

�
[t� t

n] =

�
p
n
i � p

n�1
i

�tn

�
[t� t

n]

pi =

�
p
n
i � p

n�1
i

�tn

�
[t� t

n] + p
n
i (2:4:27)

At t
n+1 the projected pressure, p

proj

i , is given as

p
proj

i =

�
p
n
i � p

n�1
i

�tn

�
[tn+1 � t

n] + p
n
i =

�
p
n
i � p

n�1
i

�tn

�
�tn+1 + p

n
i � � �

� � � = p
n
i +

�
�tn+1

�tn

��
p
n
i � p

n�1
i

�
(2:4:28)

The weighted residual relation, Equation (2:4:25), is then written in a form

which allows for the solution of pressures at nodes, pn+1i , at the end of the present

time step,

AFn+1i

�
p
n+1
i � p

n
i

�tn+1

�
+

NNX
j=1

p
n+1
j (t)CFn+1ij + �ip

n+1
i � � �

� � � = Q
n+1
i + �ip

n+1
BCi

+ BFn+1i +DF
(n+1)�

i i = 1;NN (2:4:29)

or �
AFn+1i

�tn+1

�
p
n+1
i +

NNX
j=1

p
n+1
j (t)CFn+1ij + �ip

n+1
i � � �

� � � = Q
n+1
i + �ip

n+1
BCi

+ BFn+1i +DF
(n+1)�

i +

�
AFn+1i

�tn+1

�
p
n
i i = 1;NN (2:4:30)

where the superscript involving (n) or (n+ 1) indicates the time of evaluation.



APPENDIX C: Scenario 1 Sensitivity

Pressure RMSE = Root Mean Squared Error = SQRT{SUM[(p_base - p)^2]/NN}
COMP TIME = Computational time required to complete a given simulation.

RATE OF CHANGE = Mass budget, rate of change in total stored fluid due to pressure change [kg/m].
Net Inflow (+) / Net outflow (-)

TOTAL OF FLOWS = Mass budget, total of fluid flows at points of specified pressure [kg/m].
Net Inflow (+) / Net outflow (-)

Base = Base case value.

INTRINSIC PERMEABILITY
PRESSURE SATURATION ANGLE MAGNITUDE COMP TIME RATE OF TOTAL OF

PERM RMSE RMSE RMSE RMSE (min) CHANGE FLOWS
1.E-13 17842 0.509 63.7 7.74E-05 25.7 -0.001 -0.001
1.E-12 16783 0.489 62.5 6.73E-05 25.6 -0.010 -0.010
5.E-12 10198 0.353 56.6 3.95E-05 25.8 -0.048 -0.049

Base 1.E-11 0 0.000 0.0 0.00E+00 26.1 -0.058 -0.062
5.E-11 7057 0.352 46.9 7.86E-05 26.9 0.000 0.000
1.E-10 7053 0.355 52.5 7.86E-05 27.0 0.000 0.000

POROSITY
PRESSURE SATURATION ANGLE MAGNITUDE COMP TIME RATE OF TOTAL OF

POR RMSE RMSE RMSE RMSE (min) CHANGE FLOWS
0.01 4249 0.25 52.0 4.1E-04 26.18 -0.029 -0.029
0.05 2224 0.18 47.0 6.0E-05 26.14 -0.077 -0.047

Base 0.10 0 0.00 0.0 0.0E+00 26.07 -0.058 -0.062
0.15 2275 0.18 46.8 2.7E-05 26.02 -0.086 -0.076
0.20 4266 0.24 50.4 3.8E-05 26.08 -0.106 -0.084
0.25 5465 0.26 49.6 4.4E-05 26.15 -0.081 -0.087
0.30 7627 0.31 54.2 4.8E-05 25.90 -0.091 -0.091

TEMPORAL STEP SIZE
PRESSURE SATURATION ANGLE MAGNITUDE COMP TIME RATE OF TOTAL OF

DT RMSE RMSE RMSE RMSE (min) CHANGE FLOWS
2 3228 0.206 51.9 3.7E-05 129.8 -0.078 -0.079
5 1318 0.126 48.1 2.0E-05 52.1 -0.031 -0.070

Base 10 0 0.000 0.0 0.0E+00 26.1 -0.058 -0.062
20 854 0.110 41.7 1.5E-05 13.1 -0.085 -0.057
40 1041 0.121 42.1 1.7E-05 6.7 -0.061 -0.054

100 877 0.118 42.8 1.3E-05 2.7 -0.052 -0.057
200 879 0.107 38.6 8.5E-06 1.4 -0.101 -0.059
500 2086 0.147 47.5 1.9E-04 0.6 -0.093 -0.065

PARTIALLY SATURATED PARAMETERS
PRESSURE SATURATION ANGLE MAGNITUDE COMP TIME RATE OF TOTAL OF

Soil Type RMSE RMSE RMSE RMSE (min) CHANGE FLOWS
Sandy loam 3547 0.272 58.0 4.2E-05 26.47 -0.033 -0.036

Silt loam 586 0.077 39.4 1.3E-05 26.18 -0.052 -0.067
Loam 483 0.070 38.8 9.2E-06 26.25 -0.250 -0.066

Base Sandy clay loam 0 0.000 0.0 0.0E+00 26.07 -0.058 -0.062
Silty clay loam 2199 0.175 47.9 2.9E-05 26.23 -0.072 -0.074

Clay loam 3048 0.218 50.9 3.9E-05 26.17 -0.046 -0.039
Beit Netofa Clay 3847 0.233 46.9 4.2E-05 25.96 -0.080 -0.081

a [1/m] n Ssat Swres

Sandy loam 2.77 2.89 0.44 0.00 (Shao and Horton, 1998)
Silt loam 10.92 1.18 0.50 0.00 (Shao and Horton, 1998)

Loam 17.81 1.16 0.50 0.00 (Shao and Horton, 1998)
Sandy clay loam 0.58 1.59 0.54 0.09 (Shao and Horton, 1998)

Silty clay loam 1.36 1.24 0.56 0.00 (Shao and Horton, 1998)
Clay loam 1.25 2.38 0.56 0.07 (Shao and Horton, 1998)

Beit Netofa Clay 0.152 1.17 0.446 0.00 (van Genuchten, 1980)
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Total Number of Elements 105
Num. of PRESSURE SATURATION COMP TIME RATE OF TOTAL OF Position X Position Z
Elements RMSE RMSE (min) CHANGE FLOWS 2.5126 96.6291

7157 1475 0.043 186.7 -0.066 -0.066 11.102 98.8522
4186 966 0.010 63.6 -0.099 -0.063 16.6289 101.839

Base 2696 0 0.000 33.7 -0.079 -0.065 25.4377 101.728
1877 1127 0.040 34.3 -0.061 -0.064 34.0224 105.791
1404 1552 0.012 9.1 -0.058 -0.063 46.9804 111.61

Note:  The RMSE analysis was conducted with the following 51.6938 115.052
nodal positions (X, Z). 57.176 112.97

64.0599 113.45
68.2611 116978
79.0315 112.309
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APPENDIX D: Sample SUTRA.d55 Input File 
 
 
 
SUTRA SOLUTE TRANSPORT 
SUTRA Model created using ArgusONE 
E-Road System Scenario 3 
 4183 3949   93    0  242    0  234    0    6  308 
    1    0    0   -1 1317 
        0.           0.01             1. 
99999           200.       5270400.      9999        1.           200.    1    1 
 1317    1    0    0    0    0    1    1 
         1        0.        0. 
 2.718e-06        1.    1.e-09     1000.        0.      700.     0.001 
  1.27e-06        0.        0.     1025. 
NONE              0.        0. 
        0.        0.        0.        0. 
        0.     -9.81 
NODE               1         1         1         1 
    1    0    87.333 127.28566        1.       0.1 
    2    0 87.054163 127.19016        1.       0.1 
    3    0    87.333 126.80432        1.       0.1 
    4    0 86.936639 126.86404        1.       0.1 
    5    0    87.333 127.52633        1.       0.1 
    6    0 87.109383 127.43238        1.       0.1 
    7    0 86.843822 127.25948        1.       0.1 
    8    0 86.954185 127.62555        1.       0.1 
    9    0  86.58868 127.02331        1.       0.1 
   10    0  87.06702 126.54291        1.       0.1 
 ****    * ********* *********        *        *** 
 ****    * ********* *********        *        *** 
 ****    * ********* *********        *        *** 
 4175    0     0.867    96.633        1.       0.1 
 4176    0 1.1565557 95.164978        1.       0.1 
 4177    0     0.867    95.333        1.       0.1 
 4178    0 1.2168073 95.020472        1.       0.1 
 4179    0 1.2566953 94.853684        1.       0.1 
 4180    0  1.110322 94.902296        1.       0.1 
 4181    0     0.867    95.033        1.       0.1 
 4182    0     0.867    94.883        1.       0.1 
 4183    0     0.867    94.733        1.       0.1 
ELEMENT            1         1         1         1         1         1         1 
    1    0    1.e-11    1.e-11        0.       0.5       0.5       0.1       0.1 
    2    0    1.e-11    1.e-11        0.       0.5       0.5       0.1       0.1 
    3    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
    4    0    1.e-11    1.e-11        0.       0.5       0.5       0.1       0.1 
    5    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
    6    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
    7    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
    8    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
    9    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
   10    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
 ****    *    ******    ******        *        ***       ***       ***       *** 
 ****    *    ******    ******        *        ***       ***       ***       *** 
 ****    *    ******    ******        *        ***       ***       ***       *** 
 3940    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3941    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3942    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3943    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3944    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3945    0    6.e-13    6.e-13        0.       0.5       0.5       0.1       0.1 
 3946    0    1.e-11    1.e-11        0.       0.5       0.5       0.1       0.1 
 3947    0    7.e-14    7.e-14        0.       0.5       0.5       0.1       0.1 
 3948    0    3.e-13    3.e-13        0.       0.5       0.5       0.1       0.1 
 3949    0    3.e-13    3.e-13        0.       0.5       0.5       0.1       0.1 
        -8             0.             0. 
       -15             0.             0. 
       -16             0.             0. 
       -18             0.             0. 
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       -27             0.             0. 
       -38             0.             0. 
       -51             0.             0. 
       -66             0.             0. 
       -83             0.             0. 
      -100             0.             0. 
     *****             *              ** 
     *****             *              ** 
     *****             *              ** 
     -4104             0.             0. 
     -4112             0.             0. 
     -4119             0.             0. 
     -4126             0.             0. 
     -4135             0.             0. 
     -4143             0.             0. 
     -4149             0.             0. 
     -4164             0.             0. 
     -4165             0.             0. 
     -4175             0.             0. 
00000000000000000000000000000000000000000000000000000000000000000000000000000017 
   -8                -80.                  0. 
  -15                -80.                  0. 
  -16                -80.                  0. 
  -18                -80.                  0. 
  -27                -80.                  0. 
  -38                -80.                  0. 
  -51                -80.                  0. 
  -66                -80.                  0. 
  -83                -80.                  0. 
 -100                -80.                  0. 
*****                ***                   ** 
*****                ***                   ** 
*****                ***                   ** 
-4165                -80.                  0. 
 4171  3641.6333523700741                  0. 
 4172  6678.7555682467064                  0. 
 4173  1820.8166761849675                  0. 
 4174  9715.8777841233386                  0. 
-4175                -80.                  0. 
 4177  12752.999999999973                  0. 
 4181  15695.999999999944                  0. 
 4182  17167.499999999862                  0. 
 4183  18638.999999999916                  0. 
00000000000000000000000000000000000000000000000000000000000000000000000000000019 
        86 
 1437 2009 2779 3267 3557 3739    0 
     1     6     5    15     8 
     2  4157  4171  4172  4159 
     3  4170  4174  4177  4168 
     4  4170  4159  4172  4174 
     5  4166  4168  4177  4176 
     6  4154  4155  4145  4144 
     7  4154  4166  4167  4155 
     8  4137  4138  4129  4128 
     9  4137  4144  4145  4138 
    10  4121  4122  4115  4114 
  ****  ****  ****  ****  **** 
  ****  ****  ****  ****  **** 
  ****  ****  ****  ****  **** 
  3940   608   611   609   591 
  3941   610   609   611   626 
  3942  1561  1530  1527  1559 
  3943   914   941   915   913 
  3944  1165  1167  1171  1181 
  3945  1150  1171  1167  1144 
  3946  4161  4146  4150  4163 
  3947  4178  4176  4177  4181 
  3948  2966  3005  3007  2971 
  3949  3008  3007  3005  3004 


