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A New Model for Bed Load Sampler Calibration
to Replace the Probability-Matching Method

ROBERT B. THOMAS AND JACK LEWIS

Pacific Southwest Research Station, Forest Service, U.S. Department of Agriculture, Arcata, California

In 1977 extensive data were collected to calibrate six Helley-Smith bed load samplers with four
sediment particle sizes in a flume at the St. Anthony Falls Hydraulic Laboratory at the Umversnty of
Minnesota. Because sampler data cannot be collected at the samie time and place as “‘true’ trap
measurements, the ‘‘probability-matchirig method”” was used to derive surrogate pairs for calibration
analysis. The method is invalid since it implicitly assumes that sampler and trap data have no sampling
or measurement errors, it gives biased and highly variable results, and it does not contain information
enabling model specification. A new calibration model was developed that regresses transformed
individual sampler measurements on daily means of transformed trap data and incorporates within-day
variation in trap rates to explain part of the sampler variation. Three small-nozzle samplers performed
more umformly than three large-nozzle samplers did. There is evidence that samplers with higher
nozzle ratios collect more bed load in most particle size classes tested. However, between the two
small-nozzle samplers with ratios of 3.22 and 1.40, significant differences could be detected for only
one particle size. The standard sampler with a 76 X 76 mm nozzle trapped sediment less efﬁc1ent1y than
a similar sampler with a 152 X 152 mm nozzle in three of four particle sizes tested. Limitations in the
data restricted more definitive statements about the samplers, but the results of this study can be used

to design a more rigorous calibration experiment.

INTRODUCTION

Bed load samplers are usually calibrated by comparing
their ‘“‘catches’’ to measurements of “‘true’’ bed load trans-
port falling through openings (‘‘traps’’) installed in a
streambed or flume. Calibration is complicated because bed
load flux is episodic even under constant hydraulic condi-
tions, often with bed material formed into dunes [Gomez et
al., 1989]. This process produces sets of sampler and trap
measurements having marginal distributions with large pos-
itive skew ranging from zero to a level depending on the
hydraulic characteristics of channel and sampler.

Calibration is also hampered by the impossibility of making
matched individual sampler and trap measurements of sedi-
ment transport at the same time and place on a streambed or
flume. Investigators have therefore matched sampler and trap
averages made over time under stable hydraulic conditions
[Emmett, 1980]. De Vries [1973], however, pointed out that if
the calibration relationship is not linear, it cannot be inferred
“without error’’ using averages.

These problems prompted a flume study at the St. An-
thony Falls Hydraulic Laboratory over 10 years ago [Hub-
bell et al., 1987] to calibrate two standard and four modified
Helley-Smith samplers [Helley and Smith, 1971]. Instead of
matching trap and sampler means a method was developed
to derive surrogate pairs of individual measurements. We
show why this technique is invalid and develop a new model
to calibrate bed load samplers for this experimental protocol.

St. ANTHONY FALLS FLUME STUDY

Physical Setup and Operation
of the 1977 Experiment

Measurements were made in a 2.74 m wide, 1.83 m deep,
and 82.91 m long horizontal flume. Water was diverted from
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the Mississippi River and returned to the river after passing
through the flume. Water discharge was controlled at several
levels (‘‘runs”’) usirig a sluice gate at the head of the flume
and a weir at its downstream end.

Sieved bed material was recaptured after measurement at
a station 17.98 m upstream from the weir. It was moved by
an auger under the measurement devices to a sump at the
side of the flume; and pumped through a pipe to the head of
the flume and returned to the flow. Thus measurements
could be made over long periods under many hydraulic
conditions without requiring excessive amounts of sediment.
The moving layer of sediment was measured as it fell
through seven rectangular traps arrayed across the full width
of the flume floor. Sediment passing through each trap fell
into a submerged metal ‘‘weigh pan’ connected by struts
passing upward through the flow to a load cell mounted
above the flume, Material accumulating in the weigh pans
was measured over time by changes in voltage output of the
load cells. The bottom of each weigh pan had two hydrauli-
cally actuated doors that automatically opéned when the pan
was full, emptying sediment onto the auger below.

Four particle size distributions of bed material were used.
Three nearly uniform-sized materials of 2.1, 6.5, and 23.5
mm were prepared by sieving. The fourth material, a mixture
of the other three, formed a nearly lognormal distribution
with particles ranging from 1.4 to 32 mm.

Four to six runs (each lasting from 4 to 9 days) were made
under nominally constant hydraulic conditions for each
particle size distribution. The flume was run for a period
after each change in hydraulic or sedimentologic conditions
to attain a steady rate of sediment transport. A stationary
layer of sediment about 0.46 m thick formed in the flume just
upstream of the traps.

Measurements were taken with six designs of Helley-
Smith sampler (Table 1) from a movable platform spanning
the flume and positioned from 3.0 to 8.5 m upstream from the
traps depending on the run. From one to six sampler types
were used for a given run; they were operated in rotation so
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TABLE 1. Physical Characteristics of Helley-Smith Bed Load
Samplers Calibrated and Compared in This Analysis
Intake Nozzle
Size (Width Nozzle Exit
Times Height to Entrance Hydraulic
Sampler in Millimeters) Area Ratio Efficiency*
1 76 X 76 22 1.54
2 76 x 76 1.10 1.15%
3 76 X 76 1.40 1.357
4 305 x 152 1.10 1.15%
5 305 x 152 1.40 1.40%
6 152 x 152 3.22 1.54

Data are from Hubbell et al. [1987].

*Ratio of mean flow velocity through the sampler to that which
would have occurred through the same cross section without the
sampler.

tEstimated.

that repeat measurements for each sampler were distributed
fairly uniformly throughout each measurement day.

Measurements were taken of water stage, water surface
profile, bed material profile, particle size, and, for most runs,
bed material elevation at the sampling station and 1.52 m
upstream from the trap. The experiment is described and
information on access to data is given in the work by Hubbell
et al. [1987].

Data

Trap data were collected throughout the daily time periods
that the flume was considered to be operating at equilibrium.
The weights of accumulated sediment measured by the load
cells were recorded continuously on charts and at 6-s inter-
vals on magnetic tape. Differences in the 6-s pan weights
from magnetic tape were summed and converted to transport
rates for periods of the same length as the Helley-Smith
measurement times for that run (18-300 s). Transport rates
for trap and sampler were not calculated for the same actual
periods of time, but for periods of the same length in the
same run.

The trap data were essentially contiguous, while Helley-
Smith sampling was interrupted by raising and lowering the
devices, record keeping, and emptying and rotating samplers
among those used in that run. Because of this the trap data
sets were more than an order of magnitude larger than the
corresponding data sets for each of the six hand samplers.
The trap data therefore essentially represent complete daily
populations (except for a few missing values) with known
means and variances.

The samplers were usually operated in the center of the
flume in line with pan 4. During several runs for the 6.5-mm
particle size material the samplers were also used in line with
traps 2 and 6.

PROBABILITY-MATCHING METHOD

Individual Helley-Smith sampler values could not be
matched in time or space with trap data, so the earlier
analysts derived surrogate pairs using the probability-
matching method (PMM) [Hubbell et al., 1981; Hubbell and
Stevens, 1986] hinted at by de Vries [1973]. The PMM
consists of forming marginal empirical distribution functions
from the different-sized trap and sampler data sets and
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making inverse estimates of sediment transport rates at 100
evenly spaced probabilities from 0.01 to 1. (The usual
step-function form of empirical distribution function could
not be used because it does not have unique inverses as
required by the PMM [Gibbons, 1971]. Instead, empirical
distributions were formed by connecting adjacent points
defined by probabilities at multiples of 1/n and their corre-
sponding transport rates with straight line segments.) Trap
and sampler transport rates for corresponding empirical
probabilities were then paired and plotted. Since the result-
ing curve is always monotonically increasing, it defines a
unique trap rate for every value within the range of the
sampler data set. No curve-fitting or smoothing algorithms
were applied to these often jagged PMM curves.

Consequences of Using the Probability-
Matching Method

General effects of applying the PMM are illustrated by
plotting computer-generated data pairs. Fifty bivariate pairs
with marginal distributions X ~ N(3.8, 1.21) and Y ~
N(4.1, 0.81) and correlation —0.7 were generated (Figure
1a). The results of a simplified PMM can be seen by plotting
pairs of identically ranked X and Y observations (Figure 15).
(In contrast, the general PMM matches percentiles instead of
observations, because the marginal sample sizes are usually
unequal.) Another set of Y values from the same marginal
distribution was selected for the same set of X values but
with correlation 0.0. (Figure 1¢), and the PMM applied again
(Figure 1d). )

The PMM changed negatively correlated and uncorrelated
data into sets of pairs with positive correlations of higher
magnitudes and lower variances. The models were distorted
and information available in the data that would enable
determining their forms and parameters was lost.

The effects of the PMM on positively correlated data are
similar if less dramatic. The set of power functions

Y =aXx?

with positive a and b comprises a rich set of possible linear
and curvilinear calibration models passing through the ori-
gin. Logarithmic transformation of this set of functions
forms a subset of linear functions with positive slopes.
Assuming that there are errors in both log X and log Y the
linear functions can be modeled as a bivariate normal
distribution. If the marginal distributions are log X ~ N(ux,
o%) andlog Y ~ N(uy, o'3) by standard multivariate theory
the calibration in log space is

Ty
Eflog Yllog X] = py+p — (log X — uy)
X

in which p is the correlation coefficient [Hogg and Craig,
1970]. The marginal means and variances define a subset of
models, but for given marginal parameters, 0 < p =< 1
describes an infinite set of possible calibration curves, each
in one-to-one correspondence with a unique power function.

The marginal means and variances can be estimated with
unpaired data, but marginal distributions do not contain
information needed to estimate the correlation. The cross
product is required to estimate p and real pairs are needed to
calculate the cross product. Using the PMM to form n
surrogate data pairs selects from the n! possible pairings the
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Computer-generated sets of data pairs with marginal normal distributions X ~ N(3.8, 1.21) and ¥ ~

N(4.1, 0.81). (a) Set of 50 pairs with correlation —0.7. (b) Results from transforming the data using the probability
matching method. (¢) Another 50 pairs using the same X values as in Figure 1a but with correlation of 0.0. (d) Results
from applying the probability matching method to the uncorrelated data.

one that maximizes the cross product and therefore the
correlation estimate for that data (inductive proof available
from authors).

The effects of the PMM on regression are illustrated by a
set of 50 bivariate normal pairs generated with correlation
0.6 and the same marginal distributions described earlier
(Figure 2). The untransformed data are plotted as open
circles and their least squares regression is shown by the
solid line. The PMM-transformed data are shown by pluses
and their regression by the dashed line. This estimated
regression line is steeper and the variance of the points about
the line is smaller as indicated by the narrower pattern of
pluses.

This result is seen to be general by expressing the esti-
mated regression slope j as

B =rg Y/ o X
in which the estimated standard deviations &y and &y are
not affected by the PMM [Weisberg, 1985]. Because it
maximizes the correlation estimate r, the PMM produces a
set of points that causes the regression line to rotate coun-

terclockwise around the means. The residual sum of squares
(RS.S) is minimized since

RSS = SYY(1 - %)

in which SYY is the sum of squared deviations of the Y
values from their mean and is also not affected by the PMM
[Weisberg, 1985]. Because the estimate of the regression
variance is proportional to the RSS, it, too, is minimized.
Therefore using the PMM on a set of bivariate pairs maxi-
mizes the slope and correlation estimates and minimizes the
variance estimates for that set of data. The intercept is
maximized or minimized according to whether the sample
mean of X is negative or positive respectively.

The PMM restores correct pairing from a set of ‘‘severed”’
pairs only when a data set is ‘‘monotonic,”” that is, when
every X value is associated with a Y value at least as large as
the Y values paired with all smaller X values. Monotonic
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Fig. 2. Scatterplot of 50 data pairs with marginal normal distri-
butions X ~ N(3.8, 1.21) and Y ~ N(4.1, 0.81) and correlation 0.6
are shown by open circles. The estimated least squares regression is
shown by the solid line. The pluses show the pairs after transfor-
mation by the probability-matching method and the dashed line
shows the regression on those data. The probability-matching
method increases the slope and correlation of the model and reduces
the variance.
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Fig. 3. Simulation of the 99 percentiles of X and Y estimated by the probability-matching method from 1000 samples
of 3000 Y and 60 X values sampled from the marginal distributions of a bivariate lognormal distribution. The pairs of
means of the corresponding percentiles were connected by straight-line segments. The 95% prediction intervals were
determined from the percentile estimates of rank 25 and 975 and were plotted as horizontal and vertical bars around
their mean percentiles. Four possible models with correlations of 0.7, 0.8, 0.9, and 1.0 are shown. Figure 35 shows only

the lower 88 percentiles.

data sets rarely occur; they are virtually always due to
chance and are promoted by low variance and widely spaced
X values. The PMM can be used without distortion only if
bed load calibration data are monotonic.

The PMM produces a quantile-quantile plot. Such plots
can be used to study relationships between distributions.

However, they cannot be used to develop functions to
predict one variate from another for specific values [Cham-
bers et al., 1983]. The information contained in the cross
product is essential for this purpose; it is information that the
PMM (or any other technique) cannot recover for unpaired
data.
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Conditions for the Probability-Matching Method

To avoid these problems Hubbell et al. [1985] assumed
three validating conditions which we restate here. The
variables ¢,, ¢,, and g, denote the true, sampler, and pan
transport rates, respectively.

First, the number n of sampled rates and rates measured at
the weigh pans is sufficiently large so that the cumulative
relative-frequency distribution, F,(q,) or F,(q,), of g, and
q, values, respectively, are equivalent to the probability
distribution functions Fy(q) of their populations. That is,

Fx(q) = lim F,(q) = F,(q,) or F,(q,)

n—

in which Fy(q) is the probability that either g, or g, is less
than or equal to any real rate q.

Second, for any given flow condition, true rates at all
longitudinal locations along the flume and rates at the weight
pans are identically distributed. That is,

Plg,=ql=Plq,=q]
or, equivalently,
Fola)=F, (q)

in which P denotes probability.

Third, the relative position (order) of each sampled rate in
its distribution is the same as the relative position of the
corresponding true rate in its distribution. That is, for every
sampled rate g there is a corresponding true rate g, that
would have occurred at the time and place of sampling had
the sampler not been there, such that

Plg,=q,] = Plq, = q,]

The mathematical statement of the first condition requires
that the piecewise linear empirical distribution functions (of
trap or sampler data) be equal to their corresponding popu-
lation distributions. (The descriptive assertion requiring
“‘equivalence” has no clear operational meaning so is not
discussed.) The first condition effectively prohibits sampling
error in either trap or sampler transport rates. But sampling
variation is present in all sampling procedures; a major task
of calibration is to estimate its magnitude and effects on the
estimates.

The intended meaning of the first condition is probably
that the sample sizes are large enough to achieve approxi-
mate equality. While the condition of equality is essentially
impossible to meet, we shall see (Figure 3) that even the less
stringent requirement of approximate equality, although
vaguely defined, is most certainly not satisfied with the
Helley-Smith sample sizes in the St. Anthony Falls data.

The second condition equates the distributions of bed load
transport rates at the pans and true rates at any of the
Helley-Smith sampling stations for the same run. Although
true rates at the sampling stations are not known, the
presence of negative trap rates (see the section on transfor-
mations) proves they are different. Under steady state con-
ditions, the means of these distributions are likely to be
equal, but conditions at the traps suggest that their shapes
are different.

The presence of traps alters the bed material profile
immediately upstream. Downstream sediment support re-
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Fig. 4. Typical transformed bivariate plot of Helley-Smith and
trap means illustrating linearity (showing sampler five with the
mixed particle size).

moved by material falling into the traps forms an ‘‘avalanche
face’’ exposing the nonmoving stratum under the dunes. The
shape of the dune approaching the traps is also altered by
loss of support downstream, changing hydraulic and sedi-
mentologic factors controlling sediment movement into the
traps. If pan measurements are a function of bed elevation
(as Hubbell et al. [1985] suggest in their discussion of the
third condition), changing the dune shape should alter the
distribution of pan transport rates. Sediment moving off the
dunes was observed to accumulate on the avalanche face
and then to slough off into the pans at irregular intervals (J.
V. Skinner, personal communication, 1991). Such deposits
are unlikely to have the same distribution as bed load flux
through a vertical cross section in the absence of traps.
Measurement errors may also result from pressure waves
due to falling sediment, hydraulic eddies, vertical flow
components, pan emptying, and the load-cell transducer
system. These processes differ from those at the sampling
site so it would be remarkable if the distributions were
identical.

Since the second condition requires the distribution of pan
rates to be identical to the distribution of true rates every-
where in the flume, the condition effectively requires that
there be no measurement errors in sediment transport rates
determined at the traps. Errors are present in all physical
measurements. To find a situation with no measurement
errors (especially in a process as difficult to measure as bed
load transport) would be especially startling. A basic pur-
pose of calibration is to use observed variation of matched
pairs to specify calibration model form and to estimate
prediction error.

The third condition is the crux of the PMM, requiring that
there be no measurement errors in the sampler rates. While
the true and sampler rates do not have to equal each other,
a given true rate must always be matched with a particular
sampler rate. Therefore the Helley-Smith sampler must
behave identically under any combination of local hydraulic
and sedimentologic conditions that produce a given true
transport rate. It disallows obvious sources of measurement
error from such factors as positioning and maintaining the
sampler on the dune, timing errors, and errors in emptying
the sampler bag.

None of the three ‘‘PMM validating’” conditions is accept-
able. Sampling and measurement errors occur in all data and
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response (y = x). Lines extend to the extremes of the individual Helley-Smith data used in each calibration. Circles

are daily means of the transformed Helley-Smith and trap data.

difficulty in pairing does not justify assuming that they donot  Simulation
exist. The PMM implicitly denies these universal properties
of empirical measurement and therefore should not be used
with any data.

Finally, computer simulation was used to investigate the
performance of PMM under sampling variation. Sampler 6
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from run 4 with the 6.5-mm material was selected because
the distributions of both sampler and pan data were approx-
imately lognormally distributed and typical of the data
collected. The sample mean of the log-transformed trap data
was —3.146 with sample variance 1.568 and corresponding
values for the sampler data were —3.065 and 1.918 respec-

(continued)

tively. We generated 3000 trap and 60 ‘‘sampler’’ values for
each simulation and estimated the 99 percentiles of the
marginal distributions by interpolation between the ordered
sample values (the hundredth percentiles of the marginal
distributions are infinite). The simulation was repeated 1000
times and the percentile estimates of rank 25 and 975 were



590 THOMAS AND LEWIs: BED LoAD SAMPLER CALIBRATION

.08+

.06

Relative Frequency

0 0.4 0.8 1.2 1.6 2
Cube Root Trap Bed Load Transport Rate
-1)1/3

(kg m's

Fig. 6. Typical histogram of cube root transformed daily trap
transport rates showing stack of points at zero. Particle size is 23.5
mm.

used to estimate 95% confidence intervals for each trap and
sampler percentile, which are plotted as vertical and hori-
zontal bars around the means of the corresponding percen-
tile pairs (Figure 3). By varying the correlation coefficient we
show five models that could have produced the sampled
marginal distributions.

Mean PMM coordinates for the top 15 percentiles lie
above all of the underlying models (Figure 3a) and, for the
lower 83 percentiles, lie below all models except the one
with correlation 1.0 (Figure 3b). Because the PMM does not
respond to different values of correlation that describe the
true model, it returns the same set of estimates for each of
the five models. Most striking, however, is the high variabil-
ity in the placement of the mean pairs as indicated by the
lengths of the confidence bars. Sample sizes much larger
than 60 are needed to precisely estimate percentiles, partic-
ularly in the upper tail. Not only is the PMM insensitive to
the underlying model, but it produces highly erratic results
with practicable sample sizes.

NEw MODEL

Because the PMM is problematic, other approaches to
analysis were attempted. Efforts to match the data statisti-
cally using lagged correlations and time series analysis were
unsuccessful. These attempts probably failed due to large
changes in dune size and shape during movement, the
distance separating the sampling station and the traps (from
3.05 to 8.54 m), and differences in hydraulic conditions at the
two stations.

A solution to de Vries’s [1973] problem of using means
with curvilinear data is to transform the data to linear form
before averaging. Linearly related daily sampler means
could be regressed on trap means using weighted regression to
account for different Helley-Smith sample sizes and the fitted
equations adjusted to predict individual measurements. Unfor-
tunately, this model distorts the error from individual measure-
ments and cannot be used. The following sections investigate
these problems in detail and develop a new model to fit the
necessary bed load data calibration protocol.

Transformations

Daily distributions of trap transport rates contain large
proportions of zero values (including negative values that
had been coded to zero in the summarized data that were

available to us) and daily distributions of both sampler and
trap data show pronounced positive skew. Both of these
factors were considered in choosing a transformation to
approximate the assumptions of linearity and normality (see
the calibration model section).

Linear pairs of mean values do not, in themselves, imply
that the pairs of individual measurements comprising them
are linear. With a monotonic set of three or four aligned
means, it is possible to devise examples (e.g., sigmoid
curves) where the individual measurements do not follow a
linear relationship. However, with normality of the marginal
distributions, and where enough means are available to
produce a ‘‘linear cloud’’ on a scatterplot, realistic coun-
terexamples become difficult to imagine. Most plots of the
St. Anthony Falls data could be described as linear clouds,
but some are more like a pair of circular clouds which result
when only two widely separated sets of hydraulic conditions
were used in the flume. We speculate that if a wide and
uniform range of conditions had been used as we recom-
mend, these clumpy plots would look much like the others.
We therefore assumed that having linear means was ade-
quate evidence that the individual observations would also
be linear if they could be paired.

After transformation of the data, the new model we
propose requires normal marginal distributions and linearity
between Helley-Smith values and the daily mean trap trans-
port values. The data were transformed using the ‘‘family”’
of power functions x* in which the value of A controls the
“‘strength’’ of the transformation and logarithms are used in
place of A = 0 [Box and Cox, 1964; Hoaglin et al., 1983].
These transformations are widely employed in statistical
analysis in general and for bed load sampler calibration in
particular [Emmett, 1980]. Several values for A were tried
and daily means of transformed sampler and trap observa-
tions plotted and judged for linearity. The best general value
of A over all 24 plots of means was one third (Figure 4). (A
few plots may appear slightly curvilinear (Figure 5), but in
every case this impression depends on one or two outlying
points which could easily result from high variances due to
small Helley-Smith sample sizes:) The cube root transfor-
mation also resulted in reasonably symmetrical marginal
distributions overall, except for the ‘‘stacks’ of zeros to
which we turn next (Figure 6).

High proportions of zero rates were not present in most of
the sampler data (Table 2). The high rates of zeros for two
samplers with the 2.1-mm particle size, especially for Hel-
ley-Smith sampler 4, may have resulted from small sample
sizes and relatively low stream power. But, even for sampler

TABLE 2. Percentage of Zeros in Trap and Helley-Smith
Sampler Transport Rates for Four Particle Sizes

Particle Size, mm

Device 2.1 6.5 23.5 Mixture
Trap 7.2 8.6 6.2 7.7
HS 1 0.0 0.3 1.3 0.0
HS 2 3.4 0.6 1.9 0:4
HS 3 1.1 0.0 2.1 0.0
HS 4 13.6 0.8 0.0 0.0
HS 5 6.2 0.0 0.0 0.0
HS 6 0.6 0.0 0.0 0.0

HS, Helley-Smith.
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4, almost 40% of the days had no zeros, while the traps had
zeros every day.

Although data removal should be approached warily, we
determined the nonpositive trap rates likely arose from
problems peculiar to their measurement. Our reasoning for
eliminating zeros from all trap data sets follows. The few
zeros in the sets of sampler values were not removed since
there was no similar justification for their removal.

While the highly variable nature of sediment flux suggests
that true zero trap rates can occur, they are probably rare,
especially under high stream power or when the length of the
sampling time is increased [Gomez ef al., 1989]. Yet from 2.4
to 10% (median 6.8%) of trap rates on any given day were
nonpositive. Stacks of these nonpositive flux values (e.g.,
Figure 6) seem to result from the contamination of the
distribution of true trap rates by some external process. Two
mechanisms were identified that could account for this
contamination.

One mechanism comes from the additional water supplied
to the sump to facilitate pumping sediment to the head of the
flume (J. V. Skinner, personal communication, 1991). This
water was added to prevent the high-capacity sediment-
return pump from removing too much water from the flume
resulting in downward velocities around the weighing pans
and causing positive bias in their readings. To minimize this
bias and the risk of ‘‘starving’’ the pump, a separate water
supply was introduced into a constant-level water tank
above the sump. Occasional manual adjustments were made
to a weir to match the level in this tank to the water level in
the main flume. Precise adjustment was difficult, however,
and the press of work during data collection resulted in
occasional downward or upward vertical velocities around
the pans until readjustments could be made.

The vertical velocities would have affected rates of any
magnitude and could have been responsible for producing
negative transport rates of varying sizes. In the summarized
data available to us these negative rates had been set to zero,
so the measured zeros could not be distinguished from
negative values that had been changed to zero. These
negative values could account for the stacks of zero flux.

Another mechanism for zero trap transport rates is the
behavior of sediment moving onto the avalanche face just
upstream from the traps. Sediment was observed to move
onto the face more or less continually, accumulate there, and
then to slough off into the pans in larger amounts, but less
frequently, than movement onto the face (J. V. Skinner,
personal communication, 1991). This could account for some
of the legitimate zeros. Again, this mechanism would affect
rates over the entire spectrum of flux. Accumulation of
sediment on the avalanche face was supported by a runs test
showing greater ‘‘clumping’’ of zero transport rates than
would be expected in a random sequence. However, the
clumps tended to be followed by lower than average pan
transport rates, not the higher ones this process would seem
to imply. '

Effects on the trap observations of measurement errors
due to vertical velocity currents and avalanche face accu-
mulation are complex and cannot be determined from these
data. The major effect of the errors is to increase the
variance estimated from the daily trap observations (identi-
fied in the new model as sampling variance), although
omitting the zero values will counter that effect to some
unknown extent. We believe it is likely that trap measure-
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Fig. 7. IHlustration of difference between true and apparent
residuals (from fitted regression) due to lack of matching individual
measurements.

ment errors are relatively small and had modest effects on
the results.

Why Least Squares Regression Is Inappropriate

Since the cube root transformation normalizes and linear-
izes the data, we considered using least squares regression
on the means of the transformed values to obtain calibration
lines and prediction bands. The more highly variable means
of the transformed Helley-Smith transport rates would be
regressed on trap means which can be treated as known
without error due to their very large sample sizes. Weighted
least squares regression would be used to account for
differing numbers of individual rates (and the resulting
differing variances) comprising the sampler means. The
estimated regression could then be solved for the trap
variable and reverse prediction intervals calculated using the
standard calibration model [Miller, 1981; pp. 117-120].

However, the regression mean squared error cannot be
used to estimate the variance needed for prediction bands
because the error term in conventional least squares models
does not correctly model regression on means. Because
individual sampler and trap observations cannot be matched,
variation in individual rates comprising the trap means leads
to distorted “‘residuals” in the means model.

To see this, consider the unobserved true transport rate x*
corresponding to a Helley-Smith observation y (Figure 7).
Assume this rate is what would have been observed if a trap
had been in the flume at the time and location that the
Helley-Smith sample was taken. The y values for the rate x*
are assumed to be normally distributed with mean pf; and
variance o?. The true regression line passes through u’;,
while the estimated regression (based on the means) passes
through another point $,,. The true residual from the
estimated regfession isy — 9,4 (shown by the shorter heavy
vertical line segment). Since x* is unknown, y must instead
be matched for analysis with £, the mean daily trap value. At
X, the true regression line passes through ,u& and the
estimated line passes through y.. The apparent residual
(shown by the longer heavy vertical line segment) is theny —
$¢, which differs from the true residual by |§,x — 94 =
ﬁ(x* — %)|, where B is the estimated regression coefficient.
The difference is due to within-day variation in equilibrium
trap transport rates. This difference should be included in the
explained variance due to regression, rather than the error
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TABLE 3. Estimates of Model Parameters &, B, and &2 and Their Variances and Covariance for Making Predictions of Trap
Transport Rates and Estimating Inverse Prediction (i.e., Discrimination) Intervals for Each Sampler and Particle Size
Particle X Coy
Size, mm Sampler & B &2 Var [&] Var [B] [&,p]
2.1 HS 1 0.0393 0.965 0.0111 0.00122 0.00990 —0.00337
2.1 HS 2 0.0243 0.770 0.0118 0.00121 0.00974 —0.00334
2.1 HS 3 0.00887 0.930 0.00798 0.00093 0.00777 —0.00261
2.1 HS 4 0.1620 0.144 0.0212 0.00928 0.05694 —0.02284
2.1 HS S 0.1057 0.443 0.0160 0.00703 0.04385 —0.01742
2.1 HS 6 —0.0147 1.125 0.00892 0.00106 0.00874 —0.00294
6.5 HS 1 0.0562 1.051 0.00745 0.00016 0.00085 —0.00032
6.5 HS 2 0.0102, 0.883 0.0102 0.00062 0.00178 —0.00098
6.5 HS 3 —0.00568 1.029 0.00605 0.00054 0.00158 —0.00084
6.5 HS 4 —0.1068 1.124 0.00148 0.00047 0.00139 —0.00073
6.5 HS S 0.00435 1.180 0.0000* 0.00023 0.00052 —0.00027
6.5 HS 6 0.0550 1.327 0.0000* 0.00006 0.00024 ~-0.00009
23.5 HS 1 -0.0129 1.042 0.0202 0.00188 0.00321 —0.00230
23.5 HS 2 —0.0260 0.945 0.0197 0.00172 0.00280 —0.00207
235 HS 3 0.0383 0.926 0.0251 0.00177 0.00288 —0.00212
23.5 HS 4 —0.0827 1.006 0.0000%* 0.00059 0.00092 —0.00064
23.5 HS 5 0.0851 0.890 0.00278 0.00089 0.00157 —0.00110
23.5 HS 6 0.1249 0.991 0.00536 0.00118 0.00196 —0.00141
Mixed HS 1 0.0210 1.072 0.0000* 0.00059 0.00152 —0.00082
Mixed HS 2 0.1215 0.674 0.0171 0.00435 0.01352 —0.00755
Mixed HS 3 0.1122 0.782 0.0165 0.00515 0.01624 —0.00901
Mixed HS 4 —0.0729 0.885 0.00442 0.00284 0.00876 —0.00488
Mixed HS 5 0.1129 0.770 0.00673 0.00261 0.00765 —0.00437
Mixed HS 6 0.1947 0.889 0.0000* 0.00085 0.00255 —0.00138

HS, Helley-Smith.

*These cases maximized the prlmary likelihood function with negative values of &2, so they were recalculated with another hkellhood

function that found values for & and 8 while assuming that o = 0.

variance. The model we introduce next includes a term for
the daily variation in trap rates.

Calibration Model

Because of the large numbers of daily trap observations
we assumed that the sample means and variances were the
true parameters for normally distributed populations of
transformed trap transport rates. A model was developed
that matches unobservable trap rates belonging to these
populations with individual Helley-Smith rates. This model
can be expressed in terms of the known means and variances
which eliminates the unobservable quantity. The resulting
model is then solved using maximum likelihood to estimate
parameters.

For day i of a given run and particle size, let y;; be the jth
transformed Helley-Smith observation corresponding to an
unobservable transformed trap rate x . The x% is assumed
to be the trap measurement that would have been obtained at
the Helley-Smith sampling station if a trap had been there
under conditions identical to those existing when the Helley-
Smith sample was obtained. Suppose, also, that the Helley-
Smith observation is a linear function of x7}; with measure-
ment error £; ~ N(0, o?) in the form

yij'_a+Bx +5u (1)

Now let u; be the mean trap rate for day i and assume that
x’?j has sampling error e;; ~ N(0, 8,-2) independent of g; SO
that

V=Mt ey (2)

Now substitute the expression for x’}‘j into (1) to obtain

yi=a+Buitey)+ey (3)
Then, because
Ely;l=a+ Bu; C))
Var [yl = %87 + o (3
we have
~N(a + Bp;, B*87 + ) (6)

The values of u; and 6,-2 are assumed known and, based on
the assumption of normality of the y;;, maximum likelihood
[Hogg and Craig, 1970] was used to estimate the model
parameters o, B3, and 0. A computer program was written to
solve the maximum likelihood equations which used closed-
form expressions for the derivatives and the Newton-
Raphson method [Chapra and Canale, 1988] for optimiza-
tion.

In five runs of the maximum likelihood program, o
converged to negative values. To ensure that we had not
found local maxima due to poor starting values in these
cases, we plotted the log likelihood function for maximum
likelihood and least squares estimates of a and 8. In every
case we found a smooth well-behaved function with a single
maximum. Since o cannot be negative, another version of
the program was written that maximized the likelihood by
choosing optimal values for & and 3 while assuming ¢ = 0.
This process introduces some bias, but avoids absurd values
of 2. Final parameter estimates for the 24 combinations of
particle size and Helley-Smith sampler are shown in Table 3.

The fitted line for each sampler and particle size can be
written as

2
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Fig. 8. Transformed calibration lines for all Helley-Smith samplers for each particle size.

y=a+pBx ™
in which the subscripts on x and y are dropped because we
are no longer in the flume environment. Then for the cube
root yo of a Helley-Smith measurement the cube root of the
corresponding trap vahue is estimated by solving (7) for x to
obtain

2= (yo— &)/IB (8

Equation (8) is the calibration relationship to be fit for each
of the 24 samplers and particle sizes. The actual estimated
trap rate is the cube of %3; no correction is needed for
transformation bias because individual transport rates (and
not means) are being predicted.

Estimated ‘‘discrimination intervals’’ (i.e., inverse predic-
tion intervals) surrounding the calibration curves in (8) can
be obtained by simultaneously solving the equations of the
confidence bands (for predicting one additional point)
around (7) and the line y = y, [Miller, 1981, pp. 117-120].
Approximate intervals can also be computed using the delta
method to estimate the variance of a function of random
variables [Bishop et al., 1975]. Discrimination intervals
based on the delta method are presented since they are
easier to compute and except for two pathological cases
were almost identical to the ‘‘exact’ intervals. The method
requires estimates of the variances of &, 8, the measured
Helley-Smith value y,, and all covariances which were
available from the maximum likelihood process. Because y,
is a future observation, its covariances with & and B are both
zero so that terms containing these factors drop out of the
equation. Also, in a prediction situation, 8,~2 = () since we are
only interested in the predicted trap rate x, at the instanta-
neous true rate. We do not care about variation in the true
transport rates that might exist over some period of time in
which hydraulic equilibrium might persist as in the flume.

Therefore Var [ yq] = o2. Then, an estimate of the variance
of the predicted trap transport rate is given by

1

Var [1,] = =
0 5’

a\2
Var [&] + (y__o‘éza) Var [3]

&’ Yo—a&\ .
+E§+2 N Cov[a&, Bl (9

The square root of the Var [ %] multiplied by the cutoff point
of the normal distribution for the desired confidence level is
added and subtracted from %, in (8) for particular values of
yo- That is, for approximate 95% discrimination intervals,
the bands are at

%o = 1.96(Var [%,])

Estimated values of ¢ and the variances of & and B and
their estimated covariances are given in Table 3. Plots of the
calibration lines, their 95% discrimination intervals, the line
of equal response (y = x), and the mean daily Helley-Smith
and trap data are given for all six samplers and four particle
sizes in Figure 5. The lines are plotted to the extremes of the
individual Helley-Smith data used in each calibration. Plots
of all samplers for each particle size give another view for
comparison (Figure 8).

Helley-Smith Comparisons

Four sets of formal comparisons were made to assess
differences between samplers. The null hypotheses tested
were Hy: o; = a; and Hy: B; = B; and, for the fourth set of
comparisons, Hy: a; = 0 and Hy: B; = 1. We assumed for
these tests that the maximum likelihood estimators are
normally distributed, which is always true asymptotically
[Kendall and Stuart, 1967]. Since estimates of the parame-
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TABLE 4. Statistics for Testing Equality of Calibration Parameters Among Uniform Particle
Sizes and Between the Average of the Uniform Particle Sizes and the Mixed Particle Size

Helley-Smith Sampler

Particle Size

Contrast Parameter 1 2 3 4 5 6
2.1/6.5 a —0.454 0.329 0.379 2.722 1.190 -2.082
B —0.834 —-1.052 —1.024 —4.058* —3.497* -2.137
2.1/23.5 a 0.937 0.928 —0.566 2.462 0.232 —2.949*
B -0.677 -1.556 0.043 —3.583* —2.098 1.293
6.5/23.5 @ 1.529 0.748 -0.915 —-1.112 —2.413 —1.985
B 0.139 —1.268 1.784 2.658 6.331* 7.170*
Average/mixed a —0.211 1.722 1.325 —1.009 0.806 4.201*
B 0.959 —1.564 —1.355 1.021 —0.597 —4.207*

*Significant at the 0.05/8 = 0.00625 level (two-tailed critical value is 2.73).

ters in all comparisons are independent, their variance
estimates were added to obtain test variances. The Bonfer-
roni procedure was used to control for multiple testing by
dividing the ‘‘experimentwise’’ error rate of 0.05 by the
number of tests to determine the significance level [Miller,
1981, pp. 67-70]. Each set of formal comparisons for a
specific particle size or sampler was considered to be ‘“‘an
experiment.’’

In the first set of tests, we investigated, for each sampler,
whether calibrations are the same across particle sizes
(Table 4). The a and B values were compared to correspond-
ing parameters among each of the uniform particle sizes
(three tests each for « and B); and the average of the uniform
particle size parameters was compared to the corresponding
mixture parameter (one test each for a and ). The eight
tests in this experiment dictated a significance level for each
test of 0.05/8 = 0.00625, with a corresponding two-tailed
critical value of 2.73.

In the second set of tests, we investigated, for each
particle size, whether samplers with larger nozzle ratios
collect more sediment (Table 5). Samplers with larger ratios
of exit to entrance area have higher hydraulic efficiency
(Table 1) and are expected to have augmented sediment-
trapping efficiency. Again, the test variances were estimated
by adding the component independent variance estimates.
Six comparisons were made for this experiment with an
overall error rate of 0.05, an individual error rate of 0.05/6 =
0.00833, and a one-tailed critical value of 2.39.

The third set of tests was conducted to investigate whether
samplers 3 or 6 have higher sediment-trapping efficiency
than sampler 1 (Table 6). Sampler 3 has a higher nozzle ratio

TABLE 5. Statistics for Comparing Calibration Parameters for
Helley-Smith Samplers With Different Nozzle Ratios for
Each of the Four Particle Sizes

Nozzle Particle Sizes, mm
Ratio
Contrast Parameter 2.1 6.5 23.5 Mixture
1.10/1.40 o 0.527 —2.208 —3.291% —1.443
B —1.332 —2.770% 1.490 0.031
1.10/3.22 a 1.431 —5.738% —-3.011* —1.799
B —4.021 —5.677* —0.872 —2.484*
1.40/3.22 a 0.890 —3.574%  -0.151 0.097
B —2.702* -—-3.001* —2.212 —2.451*

(3.22 versus 1.40) and sampler 6 has a larger nozzle (152 X
152 mm versus 76 X 76 mm). One experiment was done for
each particle size giving an error rate for each test of 0.05/4
= 0.0125 and a one-tailed critical value of 2.24.

In the last set of tests, we compared the calibrations for
samplers 1 and 3 to the line y = x (Table 7). In this set of
tests the estimated intercepts were compared to 0 and the
slopes were compared to 1. Again there was one experiment
for each particle size giving an error rate of 0.05/4 = 0.0125
and a two-tailed critical value of 2.50.

RESULTS AND Discussion

The plots in Figure 5 are inverses of the fitted lines in
transformed (i.e., cube root) space with a common scale (in
real units) to facilitate comparison. Also shown are the
discrimination bands; lines of equal response, y = x; and
daily means of the transformed Helley-Smith and trap trans-
port data. Each column contains plots for one Helley-Smith
sampler and each row for one particle size. Because the
calibrations are inverses of the fitted lines, experimental
errors are horizontal instead of vertical. The lines extend to
the extremes of the individual transformed Helley-Smith
transport rates for that calibration.

The back-transformed calibrations have different charac-
teristic features (Figure 9). Back-transforming (i.e., cubing)
the linear calibrations generaily produces curves (although
the curvature is small in these cases because 33 = 1). The
calibration lines and most discrimination bands have inter-

cepts much less than one, so cubing tends to yield near-zero

intercepts for zero Helley-Smith transport rates. At higher
Helley-Smith rates, trap and discrimination values exceed
one, making the bands widen rapidly.

Two subsets of plots (Figure 5) have distinctive appear-

TABLE 6. Statistics for Testing Equality of Calibration
Parameters Among Helley-Smith Samplers 1, 3, and 6

Particle Sizes, mm

Sampler '
Contrast  Parameter 2.1 6.5 23.5 Mixture
173 o 0.656 2.337%* —0.847 —1.203
B 0.260 0.446 1.491 2.180
1/6 a 1.131 0.081 —2.490* —4,578*
B —-1.172 —8.363* 0.713 2.870*

*Significant at the 0.05/6 = 0.00833 level (one-tailed critical value
is 2.39).

*Significant at the 0.05/4 = 0.0125 level (one-tailed critical value is
2.24).



TaoMAS AND LEWIS: BED LOAD SAMPLER CALIBRATION

TABLE 7. Statistics for Comparing Helley-Smith Samplers 1
and 3 to the Line of Equal Response (y = x)

Particle Sizes, mm

Sampler  Parameter 2.1 6.5 23.5 Mixture
1 a 1.125 4.440*  —0.297 0.865

B -0.357 1.748 0.743 1.856

3 a 0.291 —0.244 0.910 1.563

B —0.795 0.729 —-1.384 —1.712

*Significant at the 0.05/4 = 0.0125 level (two-tailed critical value is
2.50).

ances; one consists of samplers 4 and S for the 2.1-mm
sediment. These calibrations have large slopes (i.e., small
fitted values of ). Their discrimination bands were either off
scale or too wide to be usable, so they were not plotted.
These two samplers had the largest percentages of zero
Helley-Smith transport rates for any sampler and particle
size, and sampler 4 had a larger proportion of zeros than any
trap run. The values of B are the smallest and the associated
estimates of Var [B] the largest for any calibration.

These problems may have resulted partly from the narrow
ranges of transformed daily trap means available for these
calibrations. Ranges in trap means for the 2.1-mm data are
near the narrowest for any particle size and those for
samplers 4 and 5 are the smallest for all combinations of
sampler and particle size. Their values of &2 are large in spite
of low mean values; evidently due to the large number of
zeros. The estimates of regression slope therefore must be
based on highly variable Helley-Smith measurements made
over narrow ranges of trap means, conditions under which
slopes cannot be estimated with good confidence.

This is reflected by high estimates of Var [B] obtained for
combinations of sampler and particle size having narrow
ranges of trap means (Figure 10). There is a threshold at a
range of about 0.2, below which the variance of the esti-
mated slope rises precipitously. The 2.1-mm and mixture
particle sizes had ranges of trap means less than half those
for the 6.5- and 23.5-mm data and constituted all 10 of the
estimates of Var [B] above 0.005, with the values for
samplers 4 and 5 of the 2.1-mm data both above 0.044.

The other subset of unique plots originally gave negative
maximum likelihood estimates of &2; samplers 5 and 6 for
the 6.5-mm particle size, sampler 4 for the 23.5-mm data, and
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Fig. 9. Typical back-transformed calibration, discrimination
bands, line of equal response (y = x), and daily means of
Helley-Smith and trap data (showing Helley-Smith sampler three
and the 6.5-mm particle size).
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samplers 1 and 6 for the mixture data. For these five cases a
and B in Table 3 and Figure 5 were estimated by maximizing
a likelihood function which assumed that ¢? = 0. These
calibrations have unusually narrow discrimination bands
which result from generally low variances for & and Band a’
= 0, producing small variance estimates for %4 in (9). Using
o? = 0 to derive a likelihood function for estimating & and 3
does not imply zero variance, but is an obvious way to
enable estimation using the closest ‘‘tenable’” value for a?.

The reasons for the negative estimates of o are not clear.
The Newton-Raphson method was used to estimate param-
eters in the maximum likelihood equations because closed-
form expressions could not be derived. Therefore character-
istic features of the data that might have produced negative
variance estimates could not be identified.

Least squares estimates of variance are distributed X2, but
negative variance estimates for these five cases imply that
this variance estimator is not x? (the x? distribution is
defined only for nonnegative arguments). Since maximum
likelihood estimators are asymptotically normal, some neg-
ative estimates might be expected. It is not clear how the
experimental or estimation procedures can be changed to
avoid negative estimates of o nor how the estimates for
these five cases compare to the other calibrations.

Tests of performance of the Helley-Smith samplers across
particle sizes showed no differences for the three samplers
(1, 2, and 3) having 76-mm square nozzles (Table 4). That is,
the flume data do not justify making a distinction in the
responses of these three samplers between the pairs of
uniform particle sizes tested or between the average of the
uniform sizes and the mixture.

Samplers 4, 5, and 6 show a different pattern, however,
with seven significant differences out of 12 comparisons
(regarding calibrations as different if either « or B or both are
significant (Figure 5)). A likely reason for at least three of
these significant values is the low fitted values of 3 for
samplers 4 and 5 for the 2.1-mm data. Also, four of the five
‘“‘zero’’ variances are contained in the calibrations of the
three large-nozzle samplers which will tend to produce more
sensitive tests. Six of the seven differences are due to slopes
and only one to intercepts.

Another way to compare the Helley-Smith samplers is to
plot all calibrations on the same graph for each particle size
(Figure 8). Particle sizes 6.5 and 23.5 mm show less variation
among samplers than do the 2.1-mm and mixture data. It is
not clear from these data whether or not this distinction
results from the narrow ranges of the 2.1-mm and mixture
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data or from actual differences in sampler performance. This
question can be answered only by collecting additional data
for these particle sizes.

Comparing the response of samplers with different nozzle
ratios for each of the particle sizes produced nine out of 12
possible distinctions (Table 5). The 1.10 (samplers 2 and 4)
and 3.22 (samplers 1 and 6) nozzle ratios are different for all
particle sizes. The 1.10 and 1.40 (samplers 3 and 5) nozzle
ratios are significantly different only for the 6.5- and 23.5-mm
data. The 1.40 and 3.22 nozzle ratios are different for all
except the 23.5-mm data. These tests indicate that Helley-
Smith samplers with different nozzle ratios considered as a
group generally perform differently. This comparison may be
confounded by the possibility that sampler performance
differs more due to nozzle size than to nozzle ratio.

Two more specific comparisons were made between sam-
plers 1 and 3, and between 1 and 6, for each particle size
(Table 6). The two small-nozzle samplers were compared
because sampler 1 is the most widely used sampler and
sampler 3 has been recommended based on an earlier
analysis of these data (J. V. Skinner, personal communica-
tion, 1991). Figure 8 shows that sampler 1, which has the
higher nozzle ratio, trapped more sediment for all particle
sizes (except at very low transport rates for the mixture);
however, only one statistically significant difference was
detected.

Sampler 1 was compared to sampler 6 to see if the two
standard samplers with identical nozzle ratios but differing
nozzle sizes respond similarly. Figure 8 indicates that sam-
pler 6 trapped sediment more efficiently under most condi-
tions. Statistically different responses were shown for parti-
cle sizes 6.5 mm, 23.5 mm, and the mixture, but not for the
2.1-mm data.

The last formal tests explored the question of whether or
not Helley-Smith samplers 1 and 3 respond the same as the
trap if it were placed in the stream. That is, this tested if the
calibration line is equal to the line y = x. No significant
differences between the line y = x were found for sampler 3,
but one difference was found for the intercept of the 6.5-mm
data for sampler 1 (Table 7).

Several problems in the design of the calibration experi-
ment may have impaired the quality of the results. For
example, parameter variances for the model we recommend
could be reduced by operating the flume at more levels of
stream power over a wider range. More runs of shorter
duration could achieve this with no increase in cost. Also,
care should be taken to collect sufficient numbers of Helley-
Smith measurements on each day of operation (sample sizes
of three or four were not uncommon in these data). Finally,
extraneous variation would be reduced by operating all
samplers from a single station in the center of the flume.

SuMMARY AND CONCLUSIONS

The PMM cannot in general be used to determine the form
of a calibration model or estimate its parameters. The
process maximizes the correlation possible for a given data
set (even turning negative correlation positive) and yields
misleading ‘‘models”’ that do not respond to information
contained in the data about the true model. The three
conditions that have been proposed to justify applying the
PMM to the flume bed load data implicitly require that there
be no measurement or sampling errors in the trap or sampler
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data. Virtually all experience, however, indicates that such
assumptions are untenable for any real data. Investigation of
these conditions for the flume study shows that they cannot
hold, even approximately, for this situation in particular.
Calibrating bed load samplers is a difficult problem because
it is impossible to obtain simultaneous measurements of the
samplers and “‘truth” using presently available technology.
However, this does not justify assuming that errors in
measurement and sampling do not exist.

A nonstandard regression model (with parameters esti-
mated by maximum likelihood) was developed to account for
the physical inability of matching individual trap and Helley-
Smith bed load calibration measurements in time or space
and the consequent need to allow (curvilinear) calibrations
derived from averaged data.

Because the large set of flume measurements was not
collected specifically to be used with this model, its useful-
ness was limited. The ranges of regressor variables were too
narrow to define good relationships for most of the 2.1-mm
and mixture data. In these cases, variances of the estimated
slopes are large and the prediction bands so wide the
calibrations are useless. It was difficult to detect significant
differences between many of the calibration lines because of
large variances of estimated coefficients. Also, five calibra-
tions yielded negative estimates of the measurement error of
the Helley-Smith samplers which was set to zero to obtain
more reasonable estimates of the other parameters. The
tentative conclusions should be viewed in this context.

The three samplers with 76 X 76 mm nozzles performed
consistently across particle sizes. Analogous tests on the
three large-nozzle (152 X 152 and 152 X 305 mm) samplers
identified seven significant differences in the 12 comparisons
made. Several of these differences may be attributable to the
two poorly fitted calibrations noted above.

Comparisons between samplers with differing nozzle ra-
tios yielded nine significant differences out of 12 tests. These
comparisons may also have been influenced by the two
poorly fitted cases as well as the fact that each nozzle ratio
was represented by a large and a small sampler.

In two comparisons involving the standard samplers,
nozzle size seemed more important than nozzle ratio in
determining sediment-trapping efficiency. The sampler with
the larger nozzle collected sediment more efficiently.

Future attempts to collect calibration data for bed load
samplers can benefit from the lessons of this project. Al-
though not presently anticipated, the ideal solution would be
to develop a procedure to measure true sediment flux
“‘simultaneously’” with sampler measurements to obtain
truly matched individual observations. Then standard trans-
formation, calibration, and inverse estimation techniques
could be used to specify calibration models and estimate
parameters and variation.

Barring this solution, we recommend a more complex
model that matches sampler measurements with time-
averaged determinations of true transport rate. The model
incorporates a term which explains part of the variation in
sampler measurements using the variation in the data that
compose each true mean. In either case, there are several
recommendations that will help ensure a satisfactory out-
come of the calibration.

First, decide (in detail) on the analysis before collecting
data and structure the experimental procedures accordingly.
The importance of this obvious, but frequently ignored step,
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cannot be overemphasized; creating a model to fit data
collected without anticipating the details of analysis virtually
always requires substantial compromises.

Second, use a model based on established statistical
principles to better enable analysts to understand its behav-
ior, to specify model form, and to obtain valid estimates of
parameters.

Third, ascertain the source of idiosyncracies in the data,
such as outliers or large numbers of zero transport rates, to
obviate having to remove these data arbitrarily from the data
sets.

Fourth, collect data for enough hydraulic conditions to
produce a range of bed load transport rates adequate for
precise estimation of model parameters and spanning the
range expected under field conditions (e.g., emphasize more
levels of stream power with fewer days at each level).

Fifth, ensure that the range of transport rates is covered
approximately uniformly to enable proper assessment of
model fit.

Sixth, collect enough data in each hydraulic condition to
counter the high variability inherent in measuring and sam-
pling bed load transport and to precisely estimate model
parameters. This can be facilitated by limiting the scope of
the study to ensure that the specified goals can be achieved.
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