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ABSTRACT SALT (Selection At List Time) is a variable
probability sampling scheme that provides unbiased
estimates of suspended sediment yield and its variance.
SALT performs better than standard schemes which are

estimate variance. Sampling probabilities are based on
a sediment rating function which promotes greater
sampling intensity during periods of high sediment yield.
When preparing to monitor using SALT, the quality of the
existing suspended sediment rating data is an important
consideration. SALT variance, based on an intensive
data set from a river in northwestern California, showed
greater sensitivity to the SALT sample size than to the
quality of the calibration set.

INTRODUCTION

Probability-based sampling provides several advantages over
conventional schemes in collecting concentration data for estimating
suspended sediment yield in rivers. For one, the behaviour of the
estimator is known. If the estimator is unbiased, no systematic
distortion exists between estimated and actual values. Because
probability samples estimate variance, it is also possible to
estimate errors, set confidence intervals, test hypotheses, and
determine required sample sizes. Comparisons between treatments are
statistically valid only when estimates of variance are available.

These advantages notwithstanding, most suspended sediment data
are not collected according to any probability-based scheme.
Estimates often have a large but unknown bias and valid estimates
of variance cannot be made (Walling & Webb, 1981). This is due in
part to difficulties inherent in measuring suspended sediment and
to the sporadic nature of the processes producing it. The chief
problem, however, is the lack of a strategy for deciding when
measurements should be made so that estimators of the total and
variance have acceptable properties.

A new approach to sediment sampling has recently been developed
that provides unbiased estimates of total suspended sediment yield
and its variance (Thomas, 1985). The technique is called SALT,
an acronym for Selection At List Time, which derives from its
original application to sampling timber volume (Norick, 1969). The
technique is based on variable probability sampling and uses an
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estimate of the concentration given by a suspended sediment rating
to direct sampling. The method emphasizes the sampling of higher,
more sediment laden flows which is consistent with our understand-
ing of how such a sampling plan should work. Because the sampling
probabilities are known, they can be used to remove bias in the
estimators.

A theoretical link between the sampling protocol and the
estimating procedures also allows sample size to be set to obtain
sufficient precision of the estimators. Establishing sample size
usually requires some estimate of the variance. SALT is no
exception. Some preliminary sediment rating data are required to
set sample size (Thomas,      as well as to operate a SALT scheme.
This paper investigates the requirements for this calibration data
set.

USING SALT TO SAMPLE SUSPENDED SEDIMENT

Different probabilities can be assigned to the elements of a finite
population to make sampling more efficient, i.e., to reduce the
sampling variance. If our knowledge of the population allows higher
probabilities to be assigned to the more important elements (i.e.
those contributing more to the mean or total), we can either spend
less effort on the sampling for a given precision or obtain lower
variance for the same effort (Murthy, 1967). An easily measured
auxiliary variable which is a good predictor of a specified
variable can be used to establish the probabilities.

Such a variable is often available for sampling suspended
sediment populations. A reasonable prediction of concentration is
usually possible from an empirical sediment rating. This prediction
can be used as the auxiliary variable to define probabilities.
Significantly, the relationship between the variable of interest
and the auxiliary variable need not be deterministic. A
statistical relationship with appropriate properties is adequate.

The conceptual finite population to be sampled is formed by
dividing the monitoring period into N short sampling periods of
equal duration. (Period refers here to a portion of the time axis
on the suspended sediment discharge hydrograph). The investigator
can choose the duration of the periods to ensure that the finite
population is sufficiently similar to the continuous population.
from which it is formed. The elements of the population to be
sampled consist of a measure of suspended sediment yield from each
sampling period. For sampling period i, let yi be the total sus-
pended sediment yield, qi, the mid-interval water discharge,and ci
the mid-interval suspended sediment concentration determined from
an actual physical sample. Then

yi = qi ci ∆t K (1)

where ∆t is the time duration of the sampling period and K is a
constant to adjust units. Therefore, yi is a measure of the total
mass of suspended sediment during sampling period i. If yi was
known for all sampling periods, their sum would approximate the true
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SALT sampling scheme for sediment yield 81

total mass of suspended sediment in the monitored period. If
discharge is measured continuously, qi can be found for each
sampling period, but ci is available only for those periods actually
sampled. Therefore, yi is also only known for those relatively few
sampling periods for which an actual concentration sample was
collected.

Now define xi identically to yi, except that ĉi replaces ci.
That is,

x = q ĉ  ∆t Ki  i i

where ĉi is an estimate of concentration derived from a sediment
rating. Then xi is an estimate of the mass of suspended sediment
delivered during the ith sampling period. Because ĉi is derived
from a sediment rating as a function of discharge, it is available
for every sampling period, so xi can be used for defining the
probabilities of selection and to adjust the estimators to remove
bias.

The value of xi must be known on a realtime basis and it must
be calculated for all sampling periods in the population. For
small streams of highly varying concentrations where ∆t must be set
quite short (e.g. 5-30 minutes),it is necessary to automatically
control the sampling process. Stations for measuring sediment in
small streams usually have a water stage recorder and a pumping
sampler. The SALT procedure additionally requires a transducer
to sense stage, a field computer to store and perform the sampling
algorithm, and an interface circuit board to connect the equipment.
For larger more stable rivers, where ∆t is of the order of a day or
so, it may be possible to calculate and manually measure discharge
and calculate ĉi.

The SALT sampling scheme depends on the magnitude of xi values
to set probabilities. Because the xi values are not known until
real time, a method is required to select random sampling numbers
prior to the measurement period. A high estimate is made of the
total yield expected during the period to be monitored using an
excess of random numbers. Let Y' be an estimate of the upper limit
of yield expected in the period to be monitored. Then multiply Y'
by a factor W (say W = 10  or so) to obtain Y∗ = W Y'. Y∗ is
therefore larger than the expected mass of suspended sediment for
the period monitored.

Thomas (1385)  describes a method to determine n∗, the number of
random numbers needed for adequate performance of SALT estimators.
Consider the Y∗ axis containing n∗ uniform random numbers between   
zero and Y∗ (Fig. 1). For each of the equal duration sampling
periods on the time axis of the suspended transport hydrograph,
exactly one sampling interval is placed on this axis, its length
equal to the estimated suspended sediment yield, xi, for the
period. Therefore, the Y∗ axis is also the sampling interval axis.

Sampling can begin once Y∗ is established and the n∗ random
numbers are selected, sorted, and stored in the calculator. In
the middle of each sampling period, the calculator reads the
water stage and calculates the values of qi, ĉi and xi. A
sampling interval of length xi is placed on the sampling-interval
axis immediately after the sampling interval formed from the
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T i m e

SAMPLING INTERVAL (Y*) AXIS x=Σ
N
xi

FIG.1 Suspended sediment transport hydrograph and
corresponding sampling interval axis for SALT sampling.
The correspondence is between the equal duration sampling
periods on the time axis and the variable length intervals
of estimated suspended sediment discharge on the sampling
interval axis. Ticks on the sampling interval axis
denote random sampling numbers.

previous period (Fig. 1). If no random number is within this
interval, the calculator stores needed information and waits for
the next period. If, however, one or more random numbers fall in
the interval, the period is sampled by operating the pumping sampler.

At the end of the period monitored, the values of ci and qi are
known for the periods actually sampled so the corresponding values
of yi can be calculated. Because xi was calculated for all sample
periods, the total estimated suspended sediment yield X = ΣNxi is
also known. Letting pi indicate the probability that period 1 is
sampled, we have pi = xi/X, because uniform selection of random
numbers over the interval 0 to Y∗ ensures that the numbers are
also distributed uniformly over 0 to X, provided X < Y∗.

Let N be the total number of sampling periods in the period
monitored, ri the number of random values in the ith sampling
interval, and n the number of random numbers on the sampling
interval axis up to X. The sample size is n, which equals the sum
of the ri across all N sampling periods. The value of n is random,
its magnitude depending on the density of random points on the Y*
axis and on the level of discharges in the river during the
monitored period. Occasionally, more than one random number falls
in a sampling interval (i.e. ri > 1). In this case only one
concentration sample is taken, but its value is included ri times in
the estimators.

Knowing the pi for the sampled periods enables the estimators
to be adjusted, making them unbiased. Let Y be the true total
suspended sediment during the monitored period (i.e., Y = ΣNyi and
Ŷ its SALT estimate. Then,

Ŷ  = 1 ΣN yiri -n p i (3)
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Denote the SALT estimate of the variance of Ŷ by S2 (Ŷ) Then,

S2 (Ŷ) =   1 
n(n-1)

  
N   

ri( pi
yi 

  - Ŷ )
(4)

Equation (4) estimates only the sampling variance. Other sources
contributing to the total variance include measurement error and
error due to approximating the true population with a finite set of
intervals (Thomas, 1983). Estimators are more completely discussed   
in Norick (1969)(1969)  and Thomas (1985).

AUXILIARY VARIABLES

Because suspended sediment transport is a sporadic process, selecting
sampling periods with equal probabilities would give a very
inefficient sample, especially in small, rain dominated streams.
High flows are relatively rare; hence, most samples would be
collected during frequent, though unimportant low discharges.
Simple random sampling estimators would be unbiased, but the
variance of the estimates of the total would be high.

The SALT scheme has the advantage of setting probabilities for
the sampling periods using an auxiliary variable obtained from a
suspended sediment rating. As long as the selection probabilities
are known, however they are assigned, the SALT estimates are
unbiased. The variance of the estimates of the total, however, are
reduced in relation to how well the assignments of probability ref-
lect the true importance of the sampling periods in determining total
suspended sediment yield. The SALT scheme permits taking
advantage of what we know or can predict about the process to
improve sampling in a way that still allows valid estimates of
total and variance. Only those rating functions derived using
least squares regression are considered.

Presumably, SALT performs well when the variable of interest, y,
and the auxiliary variable, x, are highly correlated. This is true
in general, but it is possible to construct examples where x and y
have a correlation of one, yet variable probability sampling does
not perform as well as simple random sampling (Raj, 1968). For
SALT to have lower variance than simple random sampling, it is
necessary to have Corr (y2/x,x) > 0. This condition seems to hold
for most sediment rating data sets, but it should be verified for
rating data sets intended for SALT sampling. (The actual values
of y and x need not be calculated in order to compute this
correlation, because they both have the same factors which cancel
out in the formula. It is therefore sufficient to determine the
Corr (ci

2
/ĉi, ĉ i) for the n' rating points, where ci is the ith

measured concentration and ĉ i is the corresponding predicted
concentration from the rating regression). Our interest lies not
only in obtaining a variance lower than that in simple random
sampling, but in having an acceptable probability that the estimates
of total suspended sediment are accurate enough for the purpose
intended.

The true SALT variance for the estimate of total suspended
sediment yield, Y, is given for a sample of size n by
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var (Ŷ) = 1 [X ΣΝ
n i= 1

( y
2
i
/x

i) - Y
2]                                (5)

Equation (5) defines the component of variance due solely to random
selection of the set of sample periods in the SALT scheme. Var(Y)
is smaller as xi is closer to being proportional to yi. When the
proportion is exact, the variance is zero. This implies that all
information in y is contained in x, and because X is known, so is

Another component of variance associated with the SALT scheme
derives from determining the rating function. When setting up a
SALT sampling scheme, it is important to understand how this
additional component compares to the variance in equation (5).
It is unclear initially whether the hydrologist should try to
improve the rating function or collect a modest set of rating data
and reduce overall variance by increasing the SALT sample size. It
may be preferable to collect a larger set of rating data having a
better distribution of discharges. Conversely, it may be preferable
to increase the value of n to achieve the desired precision in the
estimators.

Data from a station on the north fork of the Mad River near
Korbel in northwestern California will be used to investigate this
question. This 10 442 ha basin is in highly erosive terrain and
receives about 1 270mm annual precipitation. A large set (933
discharge/concentration pairs) of rating data was collected before
a major 4 day storm during 15-19 December, 1983. During the storm
a continuous record of turbidity was collected, and estimates of
suspended sediment concentration were made at 5 minute intervals
using an excellent calibration between concentration and turbidity.
Values for yi are therefore available at 5 minute intervals
throughout the storm, and the large set of rating data available
for this station enabled high quality estimates of the rating
function parameters. The actual SALT variance for this storm
(conditional on realized sample size) can be calculated by assuming
that the estimated parameters of the rating model are true.

Consider a hypothetical set of n' rating points (q'i, c'i),
i = 1, ..., n', where

lnc'i = 1nA + B lnqi
' + e'i (6)(6)

in which 1nA and B are the coefficients of the underlying model and
e'1 ~ N (0,o-2). Regression estimates lna and b for 1nA and B give
concentration estimates for SALT sampling in the form

lnĉi = lna + lnqi (7)

or alternatively

^ b  
c  = a q i i (8)

where the q. are from the SALT population being sampled rather than
the calibration rating data set. Remember that X in equation (5) is
the sum of the xi. Substitute equation (8) in equation (2), and the
resulting expression for xi in equation (5). The variance is then
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Var(Ŷ) = n
1 [Σ

N
j=i  yi

2 b+l
- Y2]

(9)

(10)

where Y is the total of the yi over all N periods.
Because the yi are assumed fixed (that is, known) for this

particular population and we are conditioning on n, the only random
variable in equation (10) is b. But b is the rating regression
coefficient which has a normal distribution with mean B and variance
o-2/Q', where

Q' =Σn' (lnq'i - lnq')2 (11)

and

Σn' lnq'i
Also, the quantity

(qj/qi)
b+1 =   exp[(b+1)Rij] (13)

where,

Rij =  ln(qj/qi)

Now exp [(b + l)Rij] is distributed lognormally with the
associated normal distribution having mean (B + 1)Rij and variance
Rij2o-2/Q'. Taking the expected value of equation (13) gives

E[(qj/qi)
b+1] = exp [(B+1)Rij + Rij

2o-2/2Q'] (15)

and application to equation (1O) yields

E(Var(Ŷ)] ={ n
1 ΣNi=1 yi

2 ΣNj=1 exp[(B+l)Rij+Rij2 o-2  ]
 

2Q'
-Y2}     (16)f

The variation Var (Ŷ)due to the SALT sample is included the expected
value of equation (16)     as well as the variation in estimating the
regression coefficients A and B; that is, the variation due to
calibration. If we accept the values for A,B, and o-2 determined
in the rating regression, we can calculate estimates for E[Var(Ŷ)]
and Var(Ŷ) to evaluate their relative magnitude for this particular
stream and storm. To do so we need to choose values for q'i. The
range of the rating discharges, lnq'i, in the real rating set was
partitioned into five classes of equal length. Values of lnq'i
were selected at equal increments of discharge within each of the
five classes. The increment for each class was chosen to approxi-
mate four different distributions of rating discharges (Fig. 2).
Distribution A is uniform in the ln discharges, B is skewed to the
left, C to the right, and distribution D is symmetrical with most
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values in the center range of ln discharges. Calculations were
made for n' of  50, 100, 150,  and n of 24, 36 and 48.

44 55 66 77 00 99 44 55 66 77 68 99

Ln DISCHARGE
FIG. 2 Distributions of ln  discharge values in set of
artificial suspended sediment rating data.

The first results of this analysis show the variance due to
calibration, i.e., the differences between E[Var(Ŷ)] and Var(Ŷ),
as a percentage of E[Var(Ŷ)] plotted as a function of n' (Fig. 3).
Different curves are shown for each distribution of rating discharges
(Fig. 2). These quantities do not depend on n because the factor
1/n cancels when calculating percentage. As expected, the
percentages drop as n' increases. Using distribution A as an
example, the percentage when n' = 50 is about 3.65, it drops to
1.86  when n' = 100, and further drops to 1.24 when n'=150. By   
tripling the size of the calibration rating data set, therefore,
we can reduce the variance due to calibration by about two-thirds.

66-
                                        D I S T R I B U T I O N

C A L I B R A T I O N   S A M P L E  CALIBRATION  SAMPLE SIZES IZE  (n')
FIG. 3 Calibration variance expressed as percentage of
E[Var(Y)]and  related to the size of calibration data set
n'. Distributions A, B,C and D are as shown in Fig. 2.

The distributional form of the ln rating discharges also has an
effect on the calibration variance. Distribution A has the lowest
variance of the four distributions considered. The two skewed
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distributions, B and C, have somewhat larger variance, but are
similar to each other. The symmetrical distribution, D, with most
data in the center of its range, has the largest variance. At
larger values of n' the effect of the lnq'i distributions on
calibration variance decreases.

These results are consistent with the fact that collecting
regression data towards the extremes of the range provides the best
estimate of model parameters. If the regression model form is known
to be linear, the data are best collected only at the extremes.
Because linearity is not certain in the rating regression case, the
more or less uniform distribution (in ln discharges) is probably the
best pattern to strive for.

An overwhelming factor, however, is that the variance due to
estimating the regression rating function is a small part of E(Var(Ŷ)].
This fact is indicated not only by the small values of the
percentages, but also by plotting the values of E[Var(Ŷ)] (Fig. 4).
The variance axis was divided into three sections to expand the
vertical axis for the three values of n. In Fig. 4, the scale of the
variance axis is constant but the change in magnitude of the
variance between the three graphs for different values of n is very
large. It is obvious that the change in E[Var(Ŷ)] due to either the
distribution of rating discharges or their number is small relative
to the change produced by an increase in the SALT sample size.

EJ
V IV I  120          DISTRIBUTION

8 5

50 100 150

CALIBRATION SAMPLE SIZE (n')

FIG. 4 E[Var(Ŷ)]  as a function of the size of the
calibration data set, n', for various values of the SALT
sample size, n.

For this river and particular set of storm flows, some reduction
in the variance can be realized by improving the size and quality
of the rating function. A much greater reduction can be obtained,
however, by increasing the size of the SALT sample. It seems
reasonable to apply these results to other streams until futher
testing suggests otherwise.
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