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ABSTRACT SALT (Selection A List Tine) is a variable
probability sanpling schenme that provides unbiased
estimtes of suspended sedinent yield and its variance.
SALT perforns better than standard schemes which are

estimate variance. Sanpling probabilities are based on
a sediment rating function which pronmotes greater
sanpling intensity during periods of high sedinment vyield.
When preparing to nonitor using SALT, the quality of the
existing suspended sedinent rating data is an inportant
consideration. SALT variance, based on an intensive
data set from a river in northwestern California, showed
greater sensitivity to the SALT sanple size than to the
quality of the calibration set.

| NTRODUCTI ON

Probability-based sanpling provides several advantages over
conventional schemes in collecting concentration data for estimating
suspended sediment yield in rivers. For one, the behaviour of the
estimator is known. If the estimator is unbiased, no systematic
distortion exists between estimted and actual values. Because
probability sanples estimate variance, it is also possible to
estimate errors, set confidence intervals, test hypotheses, and
determine required sanple sizes. Conparisons between treatnents are
statistically valid only when estimtes of variance are available.

These advantages notwithstanding, nmost suspended sediment data
are not collected according to any probability-based schene.
Estimates often have a large but unknown bias and valid estimates
of variance cannot bhe made (Vlling & Vebb, 1981). This is due in
part to difficulties inherent in measuring suspended sedinent and
to the sporadic nature of the processes producing it. The chief
problem however, is the lack of a strategy for deciding when
measurenents should be nade so that estimators of the total and
variance have acceptable properties.

A new approach to sediment sanpling has recently been devel oped
that provides unbiased estinmates of total suspended sedinent vyield
and its variance (Thomas, 1985). The technique is called SALT,
an acronym for Selection At List Time, which derives from its
original application to sanpling tinber volume (Norick, 1969). The
technique is based on variable probability sanpling and uses an
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estimte of the concentration given by a suspended sedinment rating
to direct sanpling. The nmethod enphasizes the sanpling of higher,
more sedinent laden flows which is consistent wth our understand-
ing of how such a sanpling plan should work. Because the sanpling
probabilities are known, they can be used to remove bias in the
estimators.

A theoretical link between the sanpling protocol and the
estinmating procedures also allows sanple size to be set to obtain
sufficient precision of the estimators. Establishing sanple size
usual ly requires some estimate of the variance. SALT is no
exception. Some prelinmnary sedinent rating data are required to
set sanple size (Thomas, 1985),as well as to operate a SALT schene.
This paper investigates the requirements for this calibration data
set.

USI NG SALT TO SAMPLE SUSPENDED SEDI MENT

Dfferent probabilities can be assigned to the elements of a finite
popul ation to make sanpling more efficient, i.e., to reduce the
sanpling variance. If our know edge of the population allows higher
probabilities to be assigned to the nore inportant elenents (i.e.
those contributing more to the mean or total), we can either spend
less effort on the sanpling for a given precision or obtain |ower
variance for the same effort (Mrthy, 1967). An easily nmeasured
auxiliary variable which is a good predictor of a specified
variable can be used to establish the probabilities.

Such a variable is often available for sanpling suspended
sedi ment popul ations. A reasonable prediction of concentration is
usual ly possible from an enpirical sediment rating. This prediction
can be used as the auxiliary variable to define probabilities.
Significantly, the relationship between the variable of interest
and the auxiliary variable need not be determnistic. A
statistical relationship with appropriate properties is adequate.

The conceptual finite population to be sampled is formed by
dividing the nonitoring period into N short sanpling periods of
equal duration. (Period refers here to a portion of the time axis
on the suspended sedinent discharge hydrograph). The investigator
can choose the duration of the periods to ensure that the finite
population is sufficiently sinilar to the continuous population.
from which it is formed. The elenents of the population to be
sanpled consist of a neasure of suspended sedinent yield from each
sanpling period. For sanpling period i, let y; be the total sus-
pended sediment yield, ¢q;, the md-interval water discharge and c;
the md-interval suspended sedinment concentration determined from
an actual physical sanple. Then

yi=¢a ¢ Dt K (1)

where DX is the tinme duration of the sanpling period and K is a
constant to adjust units. Therefore, y; is a neasure of the total
mass of suspended sediment during sanpling period i. If y;, was
known for all sanpling periods, their sumwould approxinate the true
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SALT sanpling scheme for sedinment vyield 81

total mass of suspended sediment in the nonitored period. If
discharge is measured continuously, ¢; can be found for each
sanpling period, but c; is available only for those periods actually
sanpl ed. Therefore, yi is also only known for those relatively few
sanpling periods for 'which an actual concentration sanpl e was
col | ected.

Now define x; identically to y;, except that é‘i repl aces c;.
That is,

x;=q & DK (2)
where ¢ is an estimate of concentration derived from a sedinent
rating. Then x; is an estimte of the mass of suspended sediment
delivered during the ith sanpling period. Because ¢ is derived
froma sedinent rating as a function of discharge, it is available
for every sanpling period, so x, can be used for defining the
g(obabilities of selection and to adjust the estimtors to remove
i as

The value of x; nust be known on a realtine basis and it nust
be calcul ated for all sanpling periods in the population. For
small streans of highly varying concentrations where Dt nust be set
quite short (e.g. 5-30 mnutes),it is necessary to automatically
control the sanpling process. Sations for neasuring sediment in
small streans usually have a water stage recorder and a punping
sanpler. The SALT procedure additionally requires a transducer
to sense stage, a field conputer to store and perform the sanpling
algorithm and an interface circuit board to connect the equipnent.
For larger nore stable rivers, where Dt is of the order of a day or
so, it my be p035| ble to calculate and manual |y neasure discharge
and calculate c

The SALT sarrpllng schene depends on the nagnitude of x; values
to set probabilities. Because the x; values are not known until
real time, a method is required to select random sanpl ing numbers
prior to the measurement period. A high estimate is made of the
total yield expected during the period to be nonitored using an
excess of random nunbers. Let Y' be an estimate of the upper limt
of yield expected in the period to be nonitored. Then miltiply Y
by a factor W (say W= 10or so) to obtain Y* = WY . Y* is
therefore larger than the expected mass of suspended sediment for
the period nonitored.

Thomas (1985) describes a method to deternine n*, the nunber of
random nunbers needed for adequate performance of SALT estimators.
Consider the Y* axis containing n* uniform random nunbers between
zero and Y* (Fig. 1). For each of the equal duration sanpling
periods on the time axis of the suspended transport hydrograph,
exactly one sanpling interval is placed on this axis, its length
equal to the estimted suspended sedinent yield, x, for the
period. Therefore, the Y* axis is also the sanpling interval axis.

Sanpling can begin once Y* is established and the n* random
nunbers are selected, sorted, and stored in the calculator. In
the niddle of each sanpling period, the cal c/ql ator reads the
water stage and calculates the values of g;, ci and xj. A
sanpling interval of length x; is placed on the sanpling-interval
axis immediately after the sanpling interval formed from the



82 R B. Thonas

‘g Monitoring Period
L
c
©
-
-
c
o
£
o
o
o -
Time
12 i Samplin N
Period
Indices
Xy Xy X; Xy
] -
ol e #VVEL'{H-——H%Q—-—V
N
SAMPLI NG | NTERVAL (Y*) AXIS X:SXi

FIG1 Suspended sedinment transport hydrograph and
corresponding sanpling interval axis for SALT sampling
The correspondence is between the equal duration sanpling
periods on the time axis and the variable length intervals
of estimated suspended sediment discharge on the sanpling
interval axis. Ticks on the sampling interval axis
denote random sanpling nunmbers.

previous period (Fig. 1). If no random nunber is wthin this
interval, the calculator stores needed information and waits for
the next period. If, however, one or nore random nunbers fall in
the interval, the period is sanpled by operating the punping sanpler.

At the end of the period nonitored, the values of c¢; and ¢ are
known for the periods actually sanpl ed so the correspondi ng val ues
of y; can be calculated, Because x; was cal cul ated for all sanple
periods, the total estimated suspended sediment vyield Nx
also known. Letting Pi indicate the probability that per|od 1 |s
sanpled, we have p. = x /X because uniform selection of random
nunbers over the hterva 0 to Y- ensures that the nunbers are
also distributed uniformy over 0 to X, provided X < Y*

Let N be the total number of sanpling periods in the period
monitored, rj the nunber of random values in the ith sanpling
interval, and n the nunber of random nunbers on the sanpling
interval axis up to X. The sanple size is n, which equals the sum
of the rj across all N sanﬁling periods. The value of n is random
its magnitude depending on t ensity of random points on the Y
axis and on the level of discharges in the river during the
monitored period. Cccasionally, nore than one random number falls
in a sanmpling interval (i.e. rij > 1). In this case only one
concentration sanple is taken, but its value is included r; times in
the estimtors.

Knowing the p, for the sanpled periods enables the estimtors
to be adjusted, ' maki ng them unbiased. Let Y be the true total
suspended sediment during the nonitored period (i.e., Y = SY%; and

its SALT estimate. Then,

Y=1 Ny
m S r| _ypi_l,_

(3)
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SALT sanpling schene for sedinment yield 83

Denote the SALT estimate of the variance of ¢ by SZ(% Then,

2 = N (_yl_ - )
S (9} Wln_l) ri' o ¢ ()

Equation (4) estimates only the sanpling variance. O her sources
contributing to the total variance include neasurenent error and
error due to approximating the true population with a finite set of
intervals (Thomas, 1983). Estimators are more conpletely discussed
in Norick(1969) and Thomas (1985).

AUXI LI ARY VARI ABLES

Because suspended sedinment transport is a sporadic process, selecting
sanpling periods with equal probabilities would give a very
inefficient sanple, especially in small, rain domnated streans.
Hgh flows are relatively rare; hence, nost sanples would be
collected during frequent, though uninportant |ow discharges.
Sinple random sanpling estimators would be unbiased, but the
variance of the estimates of the total would be high.

The SALT schene has the advantage of setting probabilities for
the sanpling periods using an auxiliary variable obtained from a
suspended sedinment rating. As long as the selection probabilities
are known, however they are assigned, the SALT estimates are
unbi ased. The variance of the estimates of the total, however, are
reduced in relation to how well the assignments of probability ref-
lect the true inportance of the sanpling periods in determning total
suspended sedinent yield. The SALT scheme permits taking
advantage of what we know or can predict about the process to
inprove sanpling in a way that still allows valid estimates of
total and variance. Only those rating functions derived using
| east squares regression are considered.

Presumably, SALT perforns well when the variable of interest, vy,
and the auxiliary variable, x, are highly correlated. This is true
in general, but it is possible to construct exanples where x and vy
have a correlation of one, yet variable probability sanpling does
not perform as well as sinple random sanmpling (Raj, 1968). For
SALT to have lower variance than sinple random sanpling, it is
necessary to have Corr (y4x,x) > 0. This condition seens to hold
for nost sediment rating data sets, but it should be verified for
rating data sets intended for SALT sanpling. (The actual values
of y and x need not be calculated in order to conpute this
correlation, because they both have the same factors which cancel
out in the formula. It is therefore sufficient to determine the
Corr (ci2/ei 'c\i) for the n rating points, where cj is the ith
measured concentration and Cj is the corresponding predicted
concentration from the rating regression). Qur interest lies not
only in obtaining a variance lower than that in sinple random
sanpling, but in having an acceptable probability that the estinates
of total suspended sedinent are accurate enough for the purpose
i nt ended.

The true SALT variance for the estimate of total suspended
sediment yield, Y, is given for a sanple of size n hy
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= N 2 =
a () = L (X S'= 1l ¥ix) - ¥ (5)

Equation (5) defines the conponent of variance due solely to random
selection of the set of sanple periods in the SALT scheme. Var(Y)
is smaller as x; is closer to being proportional to y;. Wen the
proportion is exact, the variance is zero. This inplies that all
informtion in y is contained in x, and because X is known, S0 is
Y.

Another conponent of variance associated wth the SALT schene
derives from deternmining the rating function. Wen setting up a
SALT sampling scheme, it is inportant to understand how this
additional conponent conpares to the variance in equation (5).

It is unclear initially whether the hydrologist should try to
inprove the rating function or collect a nodest set of rating data
and reduce overall variance by increasing the SALT sanple size. It
may be preferable to collect a larger set of rating data having a
better distribution of discharges. Conversely, it may be preferable
to increase the value of n to achieve the desired precision in the
estimtors.

Data from a station on the north fork of the M Rver near
Korbel in northwestern California wll be used to investigate this
question. This 10 442 ha basin is in highly erosive terrain and
receives about 1 270mm annual precipitation. A large set (933
di scharge/concentration pairs) of rating data was collected before
a myjor 4 day storm during 15-19 Decenber, 1983. During the storm
a continuous record of turhidity was collected, and estinates of
suspended sedinent concentration were nade at 5 ninute intervals
using an excellent calibration between concentration and turbidity.
Values for y; are therefore available at 5 mnute intervals
throughout the storm and the large set of rating data available
for this station enabled high quality estimates of the rating
function paraneters. The actual SALT variance for this storm
(conditional on realized sanple size) can be calculated by assumng
that the estimated paraneters of the rating nodel are true.

- Consider a hypothetical set of n' rating points (q;, c';),
i =1 ..., n, where

Inc'i=1nA+BInqi + e (6)

in which InA and B are the coefficients of the underlying nodel and
€1~N(0,0). Regression estimates Ina and b for 1nA and B give
concentration estimates for SALT sanpling in the form

In§ = Ina + | ngj (7)

or alternatively

A b

C; = afq; (8)
where the gq. are fromthe SALT popul ation being sanpled rather than
the calibration rating data set. Renmenber that X in equation (5) is

the sum of the xj. Substitute equation (8) in equation (2), and the
resulting expression for Xxj in equation (5). The variance is then
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~ 1 1 .

var(¥) = LY obt E?ﬂ Vi ye (9)
n b+1
93
or
— N N . b+l

(=4 1§45 vi? 14" - v (10)

J=1 ai

where Y is the total of the y; over all N periods.

Because the yj are assuned fixed (that is, known) for this
particular population and we are conditioning on n, the only random
variable in equation (10) is b. But b is the rating regression
coefficient which has a normal distribution with nean B and variance
02/Q, where

n' —

Q =5° (Ing’; - Ing)?2 (11)
and

Ing' = -;_' g I'ng" (12)

Al'so, the quantity

(0/6) " = expl(b+1)R; ] (13)
wher e,

R. _

= In(q;/qj) ()

Now exp [(b + )R] is distributed lognormally with the
associ ated normal di'stribution having mean (B + 1)R; and variance
Rij202/Q . Taking the expected value of equation (13J gi ves

H(gj/ai) D1 = exp [(B+)Rj + Rij202%2Q] (15)

and application to equation (10) vyields
s L N
(9] = sy of i e0l(BOR B2 0Ly (g

The variation Var (¥)due to the SALT sanple is included the expected
value of equation (16) as well as the variation in estimating the
regression coefficients A and B, that is, the variation due to
calibration. If we accept the values for AB, and 02 deternined
in the rating regression, we can calculate estimtes for FVar(9)]
and Var(Q) to evaluate their relative nagnitude for this particular
stream and storm To do so we need to choose values for g';. The
range of the rating discharges, Ingj, in the real rating set was
partitioned into five classes of equal length. Values of Ing i
were selected at equal increments of discharge within each of the
five classes. The increment for each class was chosen to approxi-
mate four different distributions of rating discharges (Fig. 2).
Dstribution A is uniform in the In discharges, B is skewed to the
left, C to the right, and distribution D is symetrical wth nost
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values in the center range of In discharges. Calculations were
made for n' of 50, 100, 150, and n of 24, 36 and 48.

40+ .
30 (@ (b)
20 1
10

0 T

PERCENT OBSERVATIONS IN CLASS

40
30] (c) j {d)
20 4
10 A __]
0 L“‘J 1
4 5 i 7 8 9 [ 5 6 7 8 9
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FIG 2 Dstributions of In discharge values in set of
artificial suspended sedinent rating data.

The first results of this analysis show the variance due t
calibration, i.e., the dié\()ferences between E[Var(Y)] and Var(g(),
as a percentage of E[Var(Y)] plotted as a function of n' (Fig. 3).
Dfferent curves are shown for each distribution of rating discharges
(Fig. 2). These quantities do not depend on n because the factor
1/n cancel s when calculating percentage. As expected, the
percentages drop as n' increases. UWsing distribution A as an
exanpl e, the percentage when n' = 50 is about 3.65 it drops to
1.86 when n' = 100, and further drops to 1.24 when n'=150.
tripling the size of the calibration rating data set, therefore,
we can reduce the variance due to calibration by about two-thirds.

GT
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Ny
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CALIBRATION VARIANCE (2 of E [Var(V)D)
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50 100 iy
CALI BRATION SAVPLE SI ZE (n')

FIG 3 Calibration variance expressed as percentage of

E[ Var (Y)] and related to the size of calibration data set
n. Dstributions A B C and D are as shown in Fig. 2.

The distributional form of the Inrating discharges also has an
effect on the calibration variance. Dstribution A has the |owest
variance of the four distributions considered. The two skewed
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distributions, B and C, have somewhat |arger variance, but are
simlar to each other. The symetrical distribution, D, with nost
data in the center of its range, has the largest variance. A
larger values of n' the effect of the Ingi distributions on
calibration variance decreases.

These results are consistent wth the fact that collecting
regression data towards the extrenes of the range provides the best
estimate of nodel parameters. If the regression model form is known
to be linear, the data are best collected only at the extremes.
Because linearity is not certain in the rating regression case, the
more or less uniform distribution (in In discharges) is probably the
best pattern to strive for.

An overwhelnming factor, however, is that the variance due to
estimating the regression rating function is a small part of E(Var(?)].
This fact is indicated not only by the small values of the
percentages, but also by plotting the val ues of E[Var(?)] (Fig. 4).
The variance axis was divided into three sections to expand the
vertical axis for the three values of n. In Fig. 4, the scale of the
variance axis is constant but the change in nmagnitude of the
variance between the three graphs for different values of n is very
large. It is obvious that the change in E[Var(?)] due to either the
distribution of rating discharges or their nunber is small relative
to the change produced by an increase in the SALT sanple size.
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FIG 4 E[Var(?)] as a function of the size of the

calibration data set, n', for various values of the SALT
sanmple size, n.

For this river and particular set of storm flows, sone reduction
in the variance can be realized by inproving the size and quality
of the rating function. A much greater reduction can be obtained,
however, by increasing the size of the SALT sanple. It seens
reasonable to apply these results to other streans until futher
testing suggests otherwi se.
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