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ABSTRACT. A linear discriminant function, developed to predict debris avalanches after clearcut
logging on a granitic bathalith in northwestern California, was tested on data from two batholiths.
The equation was inaccurate in predicting slope stability on one of them. A new equation based
on slope, crown cover, and distance from a stream (retained from the origina equation) predicted
stahility on al three batholiths with an overall accuracy of 83 percent. A procedure is described
that can be used to decide how to harvest slide-prone slopes. The procedure uses the manager's
estimates of contending resource values and environmental risks together with data from a pro-
posed harvest area. By the agorithm presented, the manager can determine the landslide risk
threshold to follow and achieve the greatest net benefit from a timber harvest. FOrRest Sci. 31:772-
784.

ADDITIONAL KEY WORDS. Debris avalanches, risk analysis, clearcutting, Klamath Mountains.

THE OBSERVATION that accelerated landsliding may follow logging is not new. In
1950, Croft and Adams (1950) observed a greater frequency of landslides in
second-growth timber than in old-growth timber in the Wasatch Mountains in
Utah. They attributed the increase in landdides largely to loss of mechanical
support by roots, assuming that old-growth stands had more extensive root sys-
tems than did second-growth stands. Similar findings have been reported through-
out the world (Bishop and Stevens 1964, Cappuccini and Bernardini 1957, Ka
waguchi and others 1959, Zaruba and Mencl 1969, Fugiwara 1970, Swanson and
others 1981). The hypothesis that the increase in landslide incidence is attributable
to root decay has been supported by the work of Endo and Tsuruta (1969), Swanston
(1969), and Ziemer (1981).

Increased erosion from debris avalanches appears to be a possible unwanted
side-effect of timber harvest on steep terrain. It is incumbent on the forest manager,
therefore, to attempt to estimate the risk of landslides and to strike an appropriate
balance between timber utilization and hazard to soil and water. If the hazardous
areas in a proposed harvest area can be identified, most of the timber can be
utilized with slight increase in the risk of landdides. Typicaly, only a small
proportion of a clearcut area will actually experience slides. Two studies in north-

The authors are, respectively, Principa Hydrologist, Pacific Southwest Forest and Range Experiment
Station, Forest Service, U.S. Department of Agriculture, Arcata, CA 95521; Head, Natura Resources
Management Department, California Polytechnic State University, San Luis Obispo, CA 93407; and
Geologist, Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department
of Agriculture, Arcata, CA 95521. Manuscript received 3 January 1984.

772 | FOREST SCIENCE



western California have found only 1.4 percent (Furbish 1981) and 2.7 percent
(Pillsbury 1976) of the harvest dopes scarred by landslides. Frequently, land
managers attempt to map high-risk areas on the basis of geomorphic and vege-
tative indicators of instability (for example: Hicks and Smith 1981). The mapping
procedures, however, are susceptible to two weaknesses. First, they may over-
estimate landglide risk. One study found that experts tended to overestimate the
risk of mass erosion by a factor of 2 or 3 orders of magnitude, presumably because
of their disproportionately large exposure to problem areas compared with the
norm (McGreer and McNutt 1981). A second weakness of the mapping approach
is the difficulty of constructing an objective test of its accuracy. We know of only
two instances in which mapping was objectively tested. A procedure for predicting
landslides after fire in chaparral was objectively tested (Kojan and others 1972),
and later the procedure was tested in another area (Foggin and Rice 1979). In
both instances, about 80 percent accuracy was achieved. These predictions, how-
ever, related to whether dlides would occur in second order basins (averaging
about 4.5 ha). Slide sites were not located.

Discriminant analysis (Fisher 1936) has been used as an objective method for
estimating landslide risk in grass and brush environments (Waltz 1971, Rice and
Foggin 1971). Recently, two studies used discriminant analyses to identify po-
tential landdlide sites after clearcut logging (Pillsbury 1976, Furbish 1981). The
equation used (Pillsbury 1976) correctly identified 80 percent of the sites in the
developmental data and another equation (Furbish 1981) achieved a 76 percent
accuracy. The accuracy dropped only dightly, to 74 percent, when Furbish's
eguation was used to classify 159 sites not used in its development. A subset of
Pillsbury's data was used to develop a new discriminant function having a log-
arithmic form (Rice and Pillsbury 1982). The new eguation had an overdl clas-
sification accuracy of 90 percent with the developmental data (Rice and Pillsbury
1982).

Although linear discriminant functions seem to be effective in the identification
of dlide-prone sites, their use is not without problems. Whether they are used for
prediction or as an interpretive tool, their reliability depends on how well they
describe the operable processes and conditions affecting slide occurrence. The
greatest weakness in a linear discriminant function lies in the ridigity and sim-
plicity of the model: the effect of all variables in the equation must be considered
either additive or multiplicative. Thresholds in variables are aso difficult to deal
with. We feel that the advantages of a linear discriminant function outweigh its
weaknesses. If variables are carefully chosen, they can be acceptable surrogates
for the processes they represent. The relationship between the variables is explicit
and it is possible to estimate the relative magnitude of their roles in dide gen-
eration. Lastly, and most importantly, a linear discriminant function leads to a
prediction procedure with estimatable precision and accuracy.

This paper reports a study to test how successfully the Rice and Pillsbury (1982)
eguation can be applied in other areas and explores how its performance is altered
by differences between areas. It aso describes a method for utilizing the results
of a discriminant analysis, together with quantitative estimates of the values and
risks at stake, to arrive at an optimum management strategy.

STUDY AREAS

The discriminant function we are testing was developed from data collected from
62 ha of clearcut patches on the English Peak Batholith, 7 km northwest of Sawyers
Bar, California (Table 1). The two test data sets also come from granitic batholiths
of the Klamath Mountains. One is the White Rock Batholith, 12 km south of
Tiller, Oregon; the other is the Ashland Batholith, 8 km south of Ashland, Oregon.
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TABLE 1. Variables defining conditions on three batholiths.

Batholiths
Variable and units English Peak Ashland White Rock All
Study area (ha) 62.00 162.00 119.47 343.47
Slide area (ha) 1.68 .78 134 3.80
Slide area (pct) 2.73 48 112 111
Number of dlides 68 20 43 131
Frequency (ha®) 1.10 012 0.36 0.38

Average condition Stable Slide Stable Slide  Stable  Slide  Stable® Slide®

Number of sites 66 68 25 20 44 43 135 131
Slide area (m?) 304.0 391.2 311.2 319.7
Slide volume (m®) 395.9 644.4 671.4 524.3
Slope

(SLOPE) (pct) 415 830 433 53.7 48.1 66.8 440 732
Distance to stream

(HORSTM) (m) 472 392 174.6 153.8 88.4 68.6 84.2 66.3
Crown cover

(DOM) (pct) 629 874 430 63.0 465 65.3 53.9 76.4
Drainage area

(DRAREA) (m?) 645 209 1,438 6,115 1,445 1,388 10526  1,497.7

& Each batholith's contribution to the average is weighted by its number of study sites.

Granitic plutons make up about 17 percent of the Klamath Mountains. The slopes
of al three study areas were steep (Table 1), soil depths were shallow, generally
less than 1 m, but were often underlain by 1 m or more of weathered parent
material. On the English Peak Batholith (the only one we studied in the field) a
gradient of weathering of the parent rock exists, beginning with relatively un-
weathered rock high on the slopes and ending in areas of deep laterized soil near
the stream (Durgin 1977). All of the slides were found on the 62 percent of the
study area on intermediate weathering stages beginning with the development of
core stones and ending with deep decomposed granite (Pillsbury 1976).

The histories of the three batholiths are similar. Shortly after each study area
was logged it was struck by a storm exceeding Caine's (1980) landslide threshold
for rainfall duration of 24 h or more. It has been proposed (Rice and others 1982)
that storm severity as a producer of landslides could be indexed by its distance
from Caines threshold in two dimensional space bounded by log (intensity) and
log (duration) (Fig. 1). On that scale, the Ashland storm had a severity (S) of 0.05,
the English Peak batholith storm (measured at Sawyers Bar, CA) 0.05, and the
White Rock storm (measured at Glendale, OR) 0.09. The mean severity of the
storms in Caine's data was 0.40, a value which suggests that these were only
marginally severe landslide producing storms or that logging had greatly reduced
the stability of the slopes. Shallow snow may have been on the ground in each
area and, if that were the case, the rate at which water entered the soil may have
been considerably above that indicated by the rainfall intensities.

The frequency and volume of dliding differed considerably among the study
areas on the three batholiths (Table 1). On the English Peak Bathalith, where the
prediction equation was developed, there was a little more than 1 slide per ha,
while on the White Rock Batholith there was 1 slide per 2.8 ha and on the Ashland
Batholith 1 dlide per 8.1 ha. The shorter distances from sample points to streams
and smaller drainage areas above points on the English Peak Batholith (Table 1)
suggest that it was more dissected than the two test batholiths. The greater disparity
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Ficure 1. Rainfall duration and intensity related to shallow landslides (Caine 1980), with contours
of storm severity (S) (Rice and others 1982) superimposed.

in slopes between stable and slide sites on the English Peak Batholith also suggests
a more broken terrain. Also, the forest cover (Table 1, DOM) was considerably
heavier on the English Peak Batholith than on the two test batholiths.

TEST OF ENGLISH PEAK EQUATION
The test of the Rice and Pillsbury (1982) equation has two aspects. The first
addresses the question of whether the relationships developed on the English Peak

Batholith have sufficient generality to be useful on other granitic batholiths. The
second has to do with methodology. Pillsbury (1976) collected his data using a
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stereocomp rator that is capable of considerably greater accuracy and precision
than are likely to be available in most instances. The test data were collected with
a paralax bar and scanning stereoscope of 4.5-power magnification. All test data
were collected on prelogging photographs at a scale of 1:12,000 or less, whereas
some of Pillsbury's (1976) data were taken from postlogging photographs at a
scale of 1:6,000. The tests evauate, therefore, both the generality and the practical
utility of adiscriminant analysis approach to evaluating landdlide risk.

The Rice and Pillsbury (1982) equation was based on four variables

X=13.24 - 4.6310g(SLOPE) - 3.04 log(DOM)
- 1.03 log(HORSTM) + 0.69 log(DRAREA) Q)

in which X is the discriminant score of a site: SLOPE is terrain slope of the dide
or a 60 m slope segment centered on a stable site, expressed as a percent; DOM
is the ground cover provided by the crowns of the dominant vegetation within a
0.405 ha circular plot, expressed as a percent; HORSTM is the horizontal distance
in meters from the stream to the centroid of the dide or to the stable site; and,
DRAREA is the tributary surface drainage area above the dlide scarp or stable
sampling pint in square meters (Fig. 2).

The variables in the equation seem plausible. SLOPE indexes the magnitude
of the force of gravity promoting failure. DOM is more complicated. Its coefficient
indicates that sites supporting heavier timber are more prone to failure after
logging. Possible causal factors include: (a) The timber may be indexing high
moisture conditions and greater probability of high pore water pressures that may
promote slope failure; (b) slopes with heavier forest covers may depend more
upon the structural support of tree roots to maintain their stability; and, (c) they
may depend more on transpiration to dispose of excess soil water than slopes
with lighter stands. HORSTM indexes the prevalence of dlides at the head of
"zeroth order” basins (Tsukamoto and others 1982). Such sites have been iden-
tified (Diet rich and Dunne 1978) as the critical interface between gradual, and
more or less continuous, processes of weathering, creep, and surficial erosion and
episodic mass wasting processes. DRAREA seems to be indexing the same con-
ditions as HORSTM because small drainage areas are indicative of instability. It
may be, however, that small drainage areas aso index the possibility of subsurface
delivery of water from the slope on the other side of the ridge.

In each of the study areas, only slides unrelated to roads, landings, or stream-
channel undercutting were included in the analysis. These restrictions were im-
posed so that we might study a relatively homogeneous population of slides
resulting from logging and unaffected by other disturbing influences. Stable sites
were characterized by data collected from the nodes of a randomly oriented square
grid (61 m x 61 m). On the English Peak Batholith, the grid was randomly located
with the restriction that no point fall on a slide. On the two test batholiths, the
first grid orientation was accepted and points falling on slides ignored. We collected
data from approximately the same number of stable sites as there were slide sites
on each of he batholiths.

The first statistical test of the data was a Chi-square (X%) goodness of fit test
addressing he question of whether the distributions of discriminant scores in the
two test areas can be considered as coming from the same population of discrim-
inant score as those collected on the English Peak Batholith. The discriminant
scores for al stable and unstable sites were computed for al batholiths. A prob-
ability distribution of scores was then generated by weighting stable and unstable
scores by the proportion of the area in each of the batholiths that was either stable
or unstable The weighting was necessary because al slide sites were measured
but the stable areas were only lightly sampled in the data collection. On both test
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FiGuRE 2. Obligue and planimetric views of a debris slide showing the location of variables used in
equation (1).

batholiths we accepted the hypothesis that their discriminant scores came from
the same population as those from the English Peak Batholith. The probability
of our observed X* due to chance alone was 0.31 for the Ashland Batholith and
0.49 for the White Rock Bathalith.

In our second, and more crucia test, we used BMD-P4F to compare the correct
and incorrect classifications in each of the test areas in a three-way contingency
table (Dixon and Brown 1981). The test addressed the questions of whether
equation (1) yielded accurate predictions and consistent patterns of correct and
incorrect predictions on the test batholiths. The test revealed a highly significant
association between predicted and observed values even though there was also a
highly significant association between prediction accuracy and batholiths. In-
spection of the data (Table 2) confirmed that the prediction equation was not
accurately classifying the Ashland sites. Only 25 percent of the dlide sites were
correctly identified. This result was not unanticipated. While collecting the data
we observed that the relationship between stability and the drainage area variable
was reversed in the Ashland Batholith. The drainage areas of the slide sites, rather
than being smaller, were four times larger than the drainage areas of the stable
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TABLE 2. Observed and predicted conditions and percent correct classifications
in three batholiths as determined from equations (1), (2), and (3).

Predicted condition Correct
Equation and Observed classifications
batholith condition Stable Unstable percent
Equation (1)
English Peak Stable 57 9 86
Slide 5 63 93
Tota 82 12 20
Ashland Stable 18 7 72
Slide 15 5 25
Tota 33 12 il
White Rock Stable 34 10 77
Slide 13 30 70
Tota 47 40 74
Equation (2) -
English Peak Stable 53 13 80
Slide 6 62 91
Tota 59 15 86
Ashland Stable 17 8 68
Slide 3 17 85
Total 20 25 L6
White Rock Stable 28 16 64
Slide 6 37 86
Tota 34 53 5
Equation (3)
English Peak Stable 52 14 79
Slide 5 63 93
Tota 57 ey 86
Ashland Stable 17 8 68
Slide _4 16 80
Tota 21 24 73
White Rock Stable 34 10 77
Slide 3 40 93
Tota 37 50 85

sites. Because DRAREA was the least significant variable in the discriminant
function, we eliminated it and recomputed the discriminant function, till using
English Peak Batholith data

X = 17.08 - 5.67 |0g(SLOPE) - 3.21 log(DOM) - 1.19 log(HORSTM). )

The new three-variable discriminant function greatly improved prediction on
the Ashland Batholith. There was no longer a significant association between
prediction accuracy and batholith. Overal, 65 percent of the stable sites on the
two batholiths were correctly identified and 86 percent of the unstable sites were
correctly identified, yielding an overall accuracy of 75 percent (Table 2). The X
goodness of fit test now indicated that the distribution of discriminant scores in
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the White Rock Batholith was significantly shifted toward smaller values than
was the distribution of scoresin the other two batholiths, indicating less stability.

Our experience was not unlike that of Furbish (1981). When he tested an
equation developed in the Hurdy-Gurdy and Jones Creek watersheds on a random
sample of sites from the Six Rivers Nationa Forest in northern California, he
found that the least significant variable in his equation (aspect) was useless as a
predictor of stability. Apparently, in his study and ours, attempts to improve the
prediction capabilities of the discriminant functions led to inclusion of a variable
the utility of which was purely an artifact of the developmental data set and which
inadequately expressed the processes it supposedly represented.

As afina step in our analysis, we recomputed equation (2) using al of the data

X = 16.59 - 5.54 |0g(SLOPE) - 3.69 log(DOM) - 0.42 log(HORSTM). (3)

We thought it likely that an equation based on all of the data would perform more
accurately if used in still other areas. In comparison with equation (1), equation
(3) performed almost as well on the English Peak Batholith, somewhat better with
the White Rock Batholith, and was a considerable improvement on the Ashland
Batholith (Table 2). Equation (3) correctly identified 76 percent of the stable sites
and 91 percent of the unstable sites, for an overall accuracy of 83 percent. It is
the performance of this equation that is discussed in the remainder of the paper.

PREDICTING SLIDES IN OTHER AREAS

Equation (3) was developed from samples that included approximately equal
numbers of dlide and stable sites. We thought this sampling scheme could give
the best information characterizing the differences between stable and unstable
sites. On the batholiths sampled, however, the occurrence of stable and unstable
sites have a ratio of approximately 99:1. If equation (3) is to be applied to the
evaluation of any new area, that proportion must be factored into our predictions.
This we accomplished by using Bayes' theorem.

According to Bayes theorem, the posterior probability (P) of a slide occurring,
given aparticular discriminant value (x), is determined by

. _ A x|U)my
Alide ) = U mg = X g @

in which =, is the prior probability of an unstable site as determined by the
proportion of the study area in dides;, ns = 1 — w, is the prior probability of a
stable site; x is the computed value of discriminant function from equation (3);
U is the probability distribution of x's for the unstable sites in the developmenta
data; Sis the probability distribution of x's for the stable sites in the developmental
data.

Bayes theorem vyields rather disconcerting results (Fig. 3). We find that the
average discriminant score (-0.86) of the dlide sites on the three batholiths is
related to a posterior probability of only 0.05. The smallest computed value of
the discriminant function carried only a 0.33 posterior probability of failure. These
low probahilities reflect the fact that only a tiny fraction of the terrain fails at any
one time. Because of natural variability among the stable sites, and their preva-
lence, many will appear to be as unstable (i.e., have similar discriminant scores
and posterior probabilities) as potential dide sites. Although the unstable sites
may have a low probability of failure, the posterior probability (0.003) associated
with the average discriminant score (0.84) of the stable sites is much lower. A
site having a discriminant score equal to the mean of the scores of the unstable
sites, therefore, is estimated to be nearly 17 times more likely to experience a
dlide after clearcutting than the average stable site.
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Ficure 3. The probability that landslides will occur after clearcut logging of granitic terrain as
estimated b equations (3) and (4).

RISK ANALYSIS

To predict the probability of a slide after clearcutting is the first step in deciding
how to log dlide-prone area. Four possible results of each stability prediction
are A*-correctly identifying a stable site; B*-incorrectly identifying a stable site
as unstable; C*-incorrectly identifying an unstable site as stable; and D*-cor-
rectly identifying an unstable site.

The manager must decide upon the penalties and benefits associated with the
consequences of various correct and incorrect site classifications. By fixing payoffs
for each of these consequences, the manager can establish a value system that can
be used to decide how to manage timber on dide-prone sites. The overall payoff
of aparticular cutting rule can be estimated by

Y=aA+bB+cC+dD (5)

in which Y is a number that integrates the penalties and benefits derived from
the various correct and incorrect predictions and a, b, ¢, d are coefficients selected
to weight the consequence of conditions A*, B*, C*, D*. A, B, C, and D are the
corresponding proportions of correct or incorrect predictions. The payoff coeffi-
cients a, b, ¢, d may be monetary values if the analyst is fortunate enough to have
such estimates. If not, they may merely be subjective weights attached to each
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consequence. Even in this situation, we think that use of such quantities will lead
to improved decisions because of the discipline imposed by an explicit value
system. An explicit system also permits evaluating the effect of incremental changes
in the decision criterion.

Before equation (5) can be solved, it is necessary to estimate A, B, C, and D.
Their values, however, will depend on what posterior probability level is consid-
ered as the dividing line between sites that can be managed normally and those
carrying an unacceptably high risk of slope failure after logging. If P is the posterior
probability considered as dividing stable from unstable sites, the integrated payoff
iscalculated as

Y = aP{Cs+ b(1- P,)Cy + ¢(1 - Pg)Cst dP,C, (6)

in which Y is the integrated payoff resulting from the use of the criterion P; Cg
is the proportion of the area under investigation that is classified as stable using
the criterion P; C, is the proportion of the area under investigation that is classified
as unstable using the criterion P; Ps is the proportion of Cs that is correctly
classified. Psis estimated to be 1 minus the posterior probability of a slide cor-
responding to the average discriminant score of the sample points falling in Cg
and P, is the proportion of C, that is correctly classified as unstable. P is estimated
to be the posterior probability of a dide corresponding to the mean of the dis-
criminant scores of the points falling in C,.

Once the values of the coefficients a, b, ¢, d in equation (6) have been decided
upon, trial values of Y can be computed for different values of P until the max-
imum value of Y is approximated. The landslide risk probability corresponding
with that value of Y is the criterion that will result in the maximum net benefits
for the assumed value system. We used data from the three batholiths to explore
the application of equation (6). We created a data set of 500 observations by
sampling randomly (with replacement), taking 5 percent of our observations from
unstable site data and 95 percent from stable site data.

We assumed that a, b, ¢, d had the values 1, -1, -5, 25 respectively, as proposed
by Pillsbury (1976). His rationale for those values was. “A weight of + 1 was used
as a bench mark from which to establish the relative weight of conditions A, B,
C, D. A prediction of condition B is an error. This means a loss of revenue since
timber resources available for harvest will not be utilized. Although undesirable
this is not a serious error. A prediction of C is a serious error since logging on
unstable slopes is permitted. This condition is the type of error aready committed
in the Little North Fork. Mass movement by landsliding will result in physical
damage to roads and culverts. Sedimentation may affect downstream users and
fish populations for years. A prediction of condition D is the most difficult and
was a major objective in this research. It allows the manager to design timber
sales aware of the impact of logging and road construction on soil loss, site
deterioration, and downstream problems. A decision not to log means a loss of
timber revenue and second growth potential. A successful prediction of condition
D was considered five times more important than the incorrect classification of
C.” The choice of a value system, however, will change with each situation,
depending on the relative importance of the timber and its competing resources.
By repeated trids, the optimum probability was determined to be about 0.06
(Table 3). The use of this criterion can be expected to yield the greatest payoff for
the assumed value system and database. In this instance, the payoff function
seems relatively insensitive to changes in the failure criterion. This results from
the fact that the highest posterior probability in our data was 0.33. Had the range
in posterior probabilities been greater, the range in the payoff function would
have increased a so.
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TABLE 3. Estimates of an integrated payoff function (equation (6)) using the
system of benefits and penalties proposed by Pillsbury (1976).

Probability Proportion Proportion Proportion
of failure Integrated of area Proportion of Cs of area of Cy
chosen as payoff classified assumed classified assumed
criterion function stable stable unstable unstable

P Y C Ps Cy Py
0.01 0.740 0.696 0.997 0.304 0.045
.02 961 .840 .995 .160 074
.03 1.017 .890 .99%4 110 .0%4
.04 1.052 .930 .993 .070 129
.05 1.055 .936 .992 .064 136
.06 1.061 .960 .991 .040 185
.07 1.061 .962 .991 .038 192
.08 1.060 .964 .991 .036 .198
.09 1.057 .968 .990 .032 212
.10 1.055 .970 .990 .030 .220

LIMITATION OF ANALY SIS PROCEDURE

A discriminant function for landslide prediction contains an explicit and severd
implicit assumptions. The explicit assumption is that the discriminant scores from
a new test area come from the same population of discriminant scores as those
that were contained in the developmental data. Implicit in this assumption is the
assumption that the variables included in the discriminant function, and all the
variables excluded from the function, have the same relative importance as they
had in the developmental data set. Our experience when using equation (1) on
the Ashland Batholith illustrates the errors resulting from violating this implicit
assumption

It is aso implicitly assumed that timber harvest will have the same environ-
mental effect in the area being appraised as in the area that produced the devel-
opmental data. This assumption may be risky. One study hypothesized that "Op-
erator performance may be as great a source of variation in logging-related erosion
as are site characteristics’ (Rice and Datzman 1981).

The last major implicit assumption is that the area being analyzed will expe-
rience the same storms after logging as did the area that produced the develop-
mental data The similarity of severities (S of the slide producing storms in each
of the areas ainvestigated (Fig. 1) suggests that this is likely to happen. Estimates
of the return periods of the slide producing storms ranged from as low as 5 years
at Tiller, Oregon, near the White Rock Batholith, to 25 years for the storm causing
dlides on the English Peak Batholith. A 1-day rainfall at Caine's (1980) landslide
threshold has a return period of about 4 years in northwestern California (Good-
ridge 1972). If the period during which logged slopes are vulnerable to landdides
is 15 years (Ziemer 1981), then the probability of having a storm that exceeds
Caine's landdlide threshold during that period is about 0.99. The probability of
experiencing at least one storm that has a return period of 25 years or more during a
15-year period is 0.46. It appears almost a certainty, therefore, that some postlog-
ging landslides will occur and about an even chance that severe dliding will be
experienced

If the analyst has meteorological information for the area being analyzed it may
be possible to estimate more accurately the appropriate probability criterion. This
can be done by comparing the probability of exceeding Caine's threshold in the
area under investigation with the storm probability in the area that produced the
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discriminant function. The posterior probability criterion then can be adjusted
either up or down, as indicated. On the other hand, it may be difficult to estimate
the effect of qualitative differences in how the logging is carried out or the effect
of excluded variables. Uncertainty about prediction will always be greater than
indicated by calculations.

CONCLUSIONS

A discriminant function can be a useful tool for estimating landslide risk after
clearcut logging.

A simple equation based on slope, crown cover, and distance to a stream showed
a greater reliability than an equation that included drainage area, when each was
applied to new data not used in the development of the equation.
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