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Estimating Erosion Risk on Forest Lands Using Improved Methods
of Discriminant Analysis
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A population of 638 timber harvest areas in northwestern California was sampled for data related to
the occurrence of critical amounts of erosion (>153 m> within 0.81 ha). Separate analyses were done
for forest roads and logged areas. Linear discriminant functions were computed in each analysis to
contrast site conditions at critical plots with randomly selected controls. Bootstrapping was used
extensively in the development and testing of the equations, in estimating prediction bias, and in
placing confidence limits around parameters and posterior probabilities. The resulting three-variable
equations had classification accuracy, corrected for prediction bias, of 77.7% for road plots and 69.2%
for loggead area plots. The use of linear discriminant functions facilitates the explicit consideration of
erosion risk when planning land-disturbing activities.

INTRODUCTION

Excess erosion resulting from logging and forest roads has
long been of concern to forest managers and the general
public. Such concerns have prompted a number of studies in
California. The findings of these studies [Dodge et al., 1976;
Rice and Datzman, 1981; McCashion and Rice, 1983, Peters
and Litwin, 1983] were somewhat different, but they all
concluded that most of the erosion occurring on timber-
harvesting areas was from large mass wasting events found
on a small fraction of the disturbed sites. Peters and Litwin
[1983] proposed that because more than 85% of the erosion
they measured was from sites yielding at least 100 yd> ac ™!
(189 m® ha™!), identifying those sites was the key to
reducing erosion from logged areas and forest roads. Rec-
ommendations [Western Ecological Services Company,
1983] growing out of that study led to the definition of a
critical site as any 2-acre (0.81-ha) square area enclosing
more than 200 yd? (153 m?) of erosional voids. This study
develops a method for estimating the risk that logging or
road construction will produce a critical site. Two data sets
were analyzed: one from logged areas and one from forest
roads (including landings).

DATA COLLECTION

Study Population

All of the sites used in the study were on private timber-
land in northwestern California (roughly, north of 37°N and
west of 122°W). Field measurements were made between
May 1985 and December 1986. The study population was
composed of all timber harvest plans (THPs) on which
logging was completed between November 1978 and Octo-
ber 1979 inclusive (638 THPs covering 22,922 ha). A THP in
this context refers to a geographic area within which logging
operations were performed under a written timber harvest
plan as required by California forest practice regulations.
Because of market conditions at the time, 1978-1979 was a
peak period of logging activity and thus provided a large
study population. These THPs were recent enough to see the
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logging disturbance and evaluate causes of failures, although
brush had grown quite high in many areas. The 7-8 years
which had elapsed after logging provided considerable time
for loss of root strength following tree cutting (Ziemer, 1981;
Kitamura and Namba, 1966; O’Loughlin, 1974] and for
weaknesses in the planning or execution of the THP to be
revealed by logging- and road-related mass wasting events.

Sample Selection

Access was requested from each landowner whose iden-
tity and address could be determined. The responses re-
sulted in a sampling frame of 415 THPs (17,233 ha) to which
landowners granted access. Most of the THPs to which we
did not obtain access were small nonindustrial holdings.

In 1984, all of the THPs had been classified by forest
practice inspectors as ‘‘critical’’ (thought to contain a critical
site), ‘‘questionable,”” or ‘‘noncritical.”” ‘‘Critical’’ and
‘“‘questionable’” THPs are a somewhat higher proportion in
THPs to which we were granted access than in the general
population. Thus it seems unlikely that uncooperative land-
owners were refusing access because of erosion problems.

Critical sites. The sample of critical sites was based on a
field reconnaissance of (1) all THPs which had been classi-
fied as ‘‘critical”” or ‘‘questionable,”” and (2) a random
sample of ‘‘noncritical”” THPs. All critical sites found in
logged areas became critical plots in the study. In the road
analysis, however, we expected to find more critical sites
than we could measure, so they were sampled. Sampling had
to begin before the entire population was enumerated, so a
selection probability was set at two-thirds (our best guess),
and decisions to sample critical sites were based upon
random numbers drawn when sites were encountered. The
sampling plan called for obtaining at least 40 critical and 40
control plots for each analysis; we finished with 106 road
critical plots as our selection probability turned out to be
higher than néeded.

Noncritical sites. Control plots were established at non-
critical sites sampled at random from all THPs using a
two-stage variable probability sampling method. Standard
sampling with probability proportional to (THP) size [Raj,
1968) was not possible because we were still in the process of
contacting landowners during the first field season. Conse-
quently, we did not know the composition of the sampling

1721



1722

frame (i.e., to which THPs we would have access and how
much noncritical area they contained). The sampling method
we used was nearly equivalent to simple random sampling
and allowed us to proceed with field work without violating
the requirement that each noncritical site in the population
have an equal probability of selection. The first stage in
selecting control plots, known as SALT (sampling at list time
[Norick, 1969; Thomas, 1985]), determined how many plots,
if any, each THP was to be assigned. A second stage of
simple random sampling was required to locate plots on
logged areas within the THPs.

In SALT sampling, a list of random numbers is created in
advance, based on the anticipated values of an auxiliary
variable related to the variable of primary interest. As the
auxiliary values become available, the random numbers
determine which population units should be sampled.

Logged areas. For logged plots, the auxiliary variable
was THP logged area from the THP work completion report
(a surrogate for the area in noncritical sites, since only a very
small proportion of any THP is occupied by critical sites).
An upper bound (Y*) exceeding the expected total number of
permitted acres (landowner access granted) in the population
was estimated in advance and a list of uniform random
numbers between 0 and Y* was then generated. When access
to a THP was granted, the logged area of the THP was added
to the cumulative total of logged area to which access had
been granted. If the cumulative area interval defined by the
addition of that THP contained n random numbers, then the
THP was assigned n plots, which were located using random
coordinates in a second stage of sampling.

Roads. For road plots, the auxiliary variable was length
of haul roads used or reconstructed in the THPs. This value
was determined from map measurements and by reading the
THPs. A second stage of sampling was not required for road
control plots. Instead, a set of rules for making an ordered
traversal of a road network was used to associate numbers
with road locations on the selected THPs. Then plot loca-
tions were determined by the random number positions
within the intervals defined by selected THPs in the cumu-
lative summation of road lengths.

Data Collection

The nominal sampling unit in the study was a 90-m square
plot. Control plots were centered on a randomly selected
point. Critical plots containing a single event of at least 153
m> were centered on the cavity left by the erosion. If the
critical plot was determined by two or three erosional
features (none contained more than three), the plot’s center
was the midpoint of a line segment or centroid of a triangle
defined by the centers of these features.

Rigid standards were established to ensure that each plot
was a valid sample from its subpopulation (e.g., a road
control plot). These standards related to the amount and
timing of disturbance, the timing and causes of erosion, and
topography in the plot. The following gives some of the more
important standards:

1. Harvest plots were required to have visible evidence
of yarding in or through the plot. If stumps were the only
evidence, at least three trees must have been felied and
yarded from the plot.

2. Failures that were part of erosion features predating
the THP were considered critical sites if 153 m? of additional
void volume formed during or after the THP operations.
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3. Erosion caused by a human disturbance other than
logging or road building (e.g., mining, public roads, or
building site development) could not qualify as a critical site.

4. Erosion from natural causes could qualify a site as
critical, because naturally unstable areas may be aggravated
by logging.

5. Areas relogged since 1979 were excluded from plots.

6. Terrain draining in a substantially different direction
(defined by a ridge or first-order stream) than the plot center
was excluded from plots.

As a result of deleting various portions of the plot due to
such adjustments, a few plots containing less than 0.4 ha
were disqualified from the study and 54% of the remaining
plots had boundary adjustments. This reduced the average
plot area from the nominal 0.81 ha to 0.72 ha.

In total, 172 variables were measured on each plot. Beside
the field measurements, these included a number of variables
determined from the THP report, county soil surveys, soil-
vegetation surveys, and topographic, geologic, and precipi-
tation maps. Only 44 of the 172 variables were intended for
statistical analysis, and 12 of these were later dropped due to
problems encountered in the field or in the analyses. The
remaining 32 predictors are listed and defined in the notation
section.

Field procedures. Each plot was investigated by two
crews. The “‘classification crew’’ categorized THPs as non-
critical or critical by locating critical sites. Classification
crews were composed of two persons trained in forestry,
geology, or hydrology. Crews worked independently
throughout the study area, with membership rotating every
two weeks to maintain consistency in methods and judg-
ments. In addition to finding critical sites, the classification
crews documented the reconnaissance, established plot
boundaries, and measured and mapped site features such as
roads, skid trails, landings, ridges, streams, and erosional
features displacing 10 m® or more of material. Debris flows
and debris slides were responsible for the majority of the
erosional features and volume (Table 1).

The second crew was an experienced *‘interdisciplinary
team’ composed of a forester, a geologist, and a soil
scientist. They conducted an intensive analysis of each piot
established by the classification crews and collected data on
the topography, hydrology, geology, soils, vegetation, and
management of the plot.

Point measurements at control plots (and at critical plots
with only one erosional feature) were made at or near the
plot center. Soil and geologic characterizations of critical
sites were made at exposures representing the material that
failed. However, when there was more than one feature of at
least 10 m? on the plot, a measurement feature was selected
at random with probability proportional to void volume. This
procedure provided characterizations of erosional events
approximately in proportion to their contribution to total
erosion,

Sample sizes. Since there were not enough critical sites
in the interior forests to conduct separate analyses, interior
plots were combined with plots on the coastal slopes.
Stratified samples of control plots were chosen to represent
both areas in proportion to their respective sizes (Table 2).

ANALYSIS

A three-step model selection procedure (Figure 1) was
bootstrapped (bootstrapping is described below) before se-
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lecting the final models. The steps in the bootstrapped
procedure were (1) elimination of all but 12 sets of variables
using automatic interaction detection (AID) [Sonquist et al.,
1973] (a ‘“‘set” may be a single variable or a group of
categorical dummy variables such as geologic type), (2)
selection of the five best models of sizes one to five using
all-possible-subsets regression with a dummy dependent
variable, and (3) selection of the best discriminant model of
each size based on their jackknifed classification accuracy
(JCA). The data set was augmented with unrelated random
variables (see the notation section) to help expose variables
selected because of spurious correlations. Bootstrapping
facilitated selection of an overall best model and provided
estimates of variance and of the models’ prediction bias. It
also enabled us to place confidence limits about erosion risk
estimates.

Automatic Interaction Detection

AID is an exploratory data analysis procedure developed
at the University of Michigan’s Institute for Social Research
[Sonquist et al., 1973]. AID produces a binary decision tree
(essentially a dichotomous key) for predicting a continuous
or dichotomous variable and is capable of uncovering very
general kinds of predictor interactions. It is best used as a
preliminary technique to other methods [Green, 1978]. We
found it to be an excellent tool for screening out variables
before performing all-possible-subsets regression, which is
generally impractical to run with more than about 12 to 16
predictors.

The AID algorithm partitions a sample by locating a
cutpoint on a selected predictor that best divides the sample
into distinct groups (e.g., into critical and control plots). In
the program we developed, each predictor is treated as an
ordinal scale variable. Thus if a variable takes nine values in
the sample, the cutpoint could be at any of eight locations.
The process is repeated on each of the resulting groups in
turn until some stopping criterion such as the total number of
splits is exceeded. At each step, the split (group, predictor,
and cutpoint) is chosen that maximizes the among-groups
sum of squares of the dependent variable over the resulting
more homogeneous groups.

AID analysis is a unique screening tool because each
predictor is tested over numerous subgroups of the data as
well as over the entire sample. In techniques such as

TABLE 1. Distribution of Erosion Among Failure Types
Critical Road Plots Critical Harvest Plots
Failure Percentage Percentage Percentage Percentage

Type* by Number by Volume by Number by Volume
Debris flow 17.0 18.4 35.3 45.4
Debris slide 43.4 31.5 47.1 41.7
Earthflow 2.8 21.0 2.0 0.6
Slump 12.3 4.1 2.0 0.8
Gully 9.4 2.8 0.0 0.0
Translational/ 6.6 18.2 39 7.2

rotational
Rotational 0.9 0.6 2.0 0.8
Translational 7.5 34 39 1.9
Stream bank 0.0 0.0 3.9 1.5
erosion

*Categories adapted from Bedrossian [1983]. See Appendix.

1723

TABLE 2. Sample Sizes

Roads and
Logged Areas Landings
Critical Control Critical Control
Coastal plots 46 34 96 39
Interior plots 5 15 10 15
Total for analysis 5t 49 106 54

stepwise discriminant analysis that assume an additive
model, a factor may be important for some subgroup of the
sample, but if the factor is ineffective for the sample as a
whole it will be bypassed. With AID, however, if a predictor
can account for a substantial fraction of the variance over
any of the various subgroups created by the partitioning
process, that predictor will be retained.

The number of variables and sets to be considered at the
all-possible-subsets regression phase was reduced to 12 after
examining each variable’s explanatory power over every
subgroup created during the AID partitioning process. A
variable’s explanatory power over a subgroup was measured
as the reduction in sum of squares of the dependent variable
that could be attained by splitting on that variable. The
criterion for keeping a variable was its maximum possible
explanatory power over any subgroup. Sets of variables
were evaluated according to the power of the best variable in
the set.

All-Possible-Subsets Regression

Capitalizing on the fact that linear regression may be used
to calculate discriminant functions [Flury and Riedwyl,
1982], all-possible-subsets regressions were computed with
an adaptation of a program called WINNOW [Norick and
Sharpnack, 1977). WINNOW treats sets of categorical vari-
ables as inseparable and uses Mallows’ C, [Daniel and
Wood, 1971] to select ‘‘best’’ models. The five ‘‘best”
models of each size up to five sets (for a total of 25 models)
were retained for further analysis.

Discriminant Analysis

Two-group discriminant analysis has been used effectively
in several past studies of the slope stability classification
problem [Rice and Pillsbury, 1982; Furbish and Rice, 1983;
Rice et al., 1985; Rice and Lewis, 1986). The theory and
application of this method are well known {[Fisher, 1936].
Our methodology is unique, however, in the model selection
process and in its use of bootstrapping.

Discriminant functions were computed for each of the 25
WINNOW models. Then, each function’s JCA (jackknifed
classification accuracy) was estimated using the procedure
first presented by Lachenbruch and Mickey [1968]. In com-
puting the JCA, individual observations are successively
omitted from the calculation of a discriminant function. That
function is then used to classify the omitted observation,
continuing the procedure until all observations have been
classified. The JCA of the model is the percentage of the
observations classified correctly by these functions. The
model of each size with the highest JCA was retained for
evaluation as a best model.

The JCA typically increases with model size up to a point,
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Fig. 1. Flow charts showing the discriminant model selection and evaluation procedure.

then tapers off or declines with the addition of more vari-
ables. Past experience [Furbish and Rice, 1983; Rice et al.,
1985; Rice and Lewis, 1986] has shown that there is a
tendency to overfit when adding variables which provide
only marginal improvement to the model. Therefore choice
of the best size model was necessarily subjective, depending
on the JCAs and the stability of the models as demonstrated
by bootstrapping (see next section). The selected model
usually was the smallest model of several with similar JCAs.

Bootstrapping

Bootstrapping was used to determine the reliability of the
various models. Would a slightly different sample have
resulted in a different set of variables? If not, how precise are
the coefficients? How reliable are estimates of the models’
power to discriminate between stable and unstable sites? It
is possible to explore such properties numerically through a
technique called bootstrapping [Efron and Gong, 1983;
Efron, 1982). The bootstrap performs substantially better
than the jackknife and cross validation for complicated
prediction models [Gong, 1986] and is more versatile. The
method mimics the process of selecting many samples from
the population without measuring new data. Confidence
intervals associated with a wide variety of parameter esti-
mates from bootstrap samples usually closely match those

from real samples [Diaconis and Efron, 1983]. Bootstrapping
also does not depend upon any distributional assumptions
about the data.

Bootstrap samples are generated by drawing observations
from the full sample with replacement. The bootstrap sam-
ples are the same size as the full sample but may lack some
observations and contain muitiple copies of others. To
minimize simulation error, we used a balanced bootstrap
[Davison et al., 1986], in which each observation is con-
strained to occur equally often in the aggregate of all
bootstrap samples.

Estimators of interest (such as classification accuracy for
stable and unstable sites) were calculated for each bootstrap
sample, and their sample variance was calculated. Since the
variable selection process was repeated for each bootstrap
sample, the variance due to variable selection was accounted
for as well as that due to sampling.

Stability of the model specification itself was examined by
looking at the frequency with which each variable or suite of
variables was chosen. Stable models include only variabies
which are consistently selected, so we used the bootstrap
selection frequencies to help choose the final models.

After selection of each final model, another bootstrap was
performed in which the process was constrained to the same
variables for each bootstrap sample. This bootstrap pro-
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TABLE 3. Classification Accuracy of Final Discriminant Modeis
Bootstrap Bootstrap
Site Jackknifed Apparent —  Corrected
Type Accuracy  Accuracy s.d.* Bias Accuracy
Roads
Critical 84.9 84.9 3.7 3.2 81.7
Nongcritical 70.4 74.1 5.3 4.2 69.9
All 80.0 81.2 3.1 3.5 77.7
Logged Areas
Critical 82.4 82.4 5.7 7.3 75.1
Noncritical 71.4 71.4 5.8 8.1 63.3
All 77.0 77.0 3.8 7.8 69.2

*Standard deviation.

duced estimates of sampling variance for the discriminant
function coefficients.

Overall Best Models

Two similar three-variable functions were selected as the
most effective discriminators of erosion risk. The discrimi-
nant function for forest roads was

DS = —0.0281 — 0.1142*SLOPE
+ 22.91*HCURVE + 1.0075*HUE (1)
and for logged areas it was

DS = 5.032 - 0.1633*SLOPE
+ 20.69*HCURVE - 1.215*WEAKROCK 2)

In these models, the discriminant score (DS) increases
with slope stability. Both models seem stable and efficient.
Tables 3 and 4 show the bootstrap statistics for the selected
models. No other road model had a greater JCA than the
80.0% achieved with (1). Equation (2)’s JCA of 77.0% was
exceeded in larger models, but we chose the three-variable
function as a guard against over fitting the data, since only
three variables consistently entered the bootstrap models.

Equation (1) occurred 264 times in 500 road bootstrap
trials. The next most frequent three-variable model occurred
only 28 times. Equation (2) occurred only 74 times, but its
closest three-variable competitor occurred only 16 times and
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the most frequent four-variable model occurred only 18
times. The individual variables in the two equations showed
even greater robustness. The variables in the road function
occurred 486, 363, and 381 times, respectively, in three-
variable models. The next most frequent road variable
appeared in only 47 three-variable models. Comparable
figures for the logged area equation were 383, 181, 233, and
67. Similarly, the selection frequencies in four-variable mod-
els do not expose a fourth consistent variable for either roads
or logged areas. In summary, the bootstrap seems to say that
(1) and (2) are the best discriminant models that could be
developed from our variables.

Bootstrap Estimate of Prediction Bias

Bootstrapping also provides several methods of estimating
the prediction bias of the model {Efron, 1983]). We used the
ordinary bootstrap estimator of bias. For that estimator, the
difference is calculated between the classification accuracy
of each bootstrap model on the full sample and on its
bootstrap sample. The average of these differences is the
ordinary bootstrap estimator of overoptimism (bias) for the
classification accuracy.

Efron examined bootstrap estimates of bias in linear
discriminant analysis, using small samples from simulated
populations. He found that the ordinary bootstrap estimator
of bias was usually an underestimate of the true bias,
especially in highly overfitted situations, such as fitting a
five-parameter model to samples of 14 observations. When
fitting a two-parameter model to samples of size 20, down-
ward bias was not exhibited by the bootstrap estimator.

Ours was a much more complicated analysis, in which we
generally selected a three-parameter model from a sample
containing 100 to 160 observations of 29 to 35 variables. We
decided to continue Efron’s investigations with a problem
closer to our own. We simulated a multivariate normal
population with the same means and covariance structure as
the road data set. We performed 100 trials of sampling 50
observations of 29 predictors from each of two discriminant
groups. In each trial, we selected a three-variable model
using the three-step algorithm of Figure 1, bootstrapped it,
and calculated its true prediction error rate (on the known
population) and its apparent error rate (as measured by the
sample). The mean difference between the 100 true and

TABLE 4. Coefficients of Final Road and Harvest Area Models

Discriminant Coefficient

Bootstrap Bootstrap Structural
Variable Raw Standardized Mean s.d. Coefficientt
Roads
CONSTANT ~0.0281 -0.0317 0.9636
SLOPE -0.1141 -1.125 -0.1191 0.0242 —0.660
HCURVE 22.9089 0.784 24.4221 6.7185 0.471
HUE 1.0075 0.842 1.0496 0.2644 0.624
Logged Areas
CONSTANT 5.0317 5.3054 1.0846
SLOPE -0.1633 -1.431 -0.1725 0.0358 —0.686
HCURVE 20.6886 0.728 22.2159 8.1749 0.369
WEAKROCK  —1.2148 -1.136 —1.2968 0.3518 ~0.468

*Standard deviation.

tSimple correlation of predictor with the discriminant scores.
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apparent error rates is the mean true bias, to which we
compared the mean of the ordinary bootstrap bias estimates.

The mean ordinary bootstrap estimate of bias was 0.0562,
compared to the mean true bias of 0.0584, and the mean
squared error (MSE) of the estimator was 0.0023. Over 93%
of the MSE was due to variation in the true bias or
covariance between the true and estimated bias. The appar-
ent downward bias of 0.0022 is inconsequential, contributing
only 0.000005 to the MSE. The standard deviation of the
bootstrap bias estimate was 0.0113 and only 35% of that was
due to within-trial variation. (The mean of the standard
errors calculated from individual bootstraps was 0.0039.)
Thus for a given sample the standard error of the bootstrap
bias estimate is about 7% of its mean. These simulation
results give us confidence that for our data the ordinary
bootstrap is a reliable method of estimating the bias which
might result from using the same data to develop the models
and estimate their classification accuracy.

The overall bootstrap-corrected accuracy of (1) is 77.7%,
adjusted from an apparent accuracy of 81.2% (Table 3). The
bootstrap corrected accuracy of (2) is 69.2%, adjusted from
an apparent accuracy of 77.0%. Both of these corrected
values seem high enough to make the functions useful tools
for estimating the erosion risks associated with logging and
road construction in the forests of northwestern California.

Posterior Probabilities

Posterior probabilities are the probabilities that new sites
being classified by a discriminant function belong to a
particular population (in our case, that they are critical
sites). Before classifying a new site with the discriminant
function, Bayesian classification procedures require us to
consider the prior probability of a critical site. The prior
probability is usually taken to be the relative frequency of
such sites in the entire population. Prior probabilities are
especially important in this problem, because the probability
of a random site being critical is very low. In calculating
classification accuracy up until now, we have considered
that critical and control sites were equally likely in the
population. The discriminant cutpoint was at 0, halfway
between the mean discriminant scores of the two groups.
Knowing that noncritical sites are much more common than
critical sites, we should move the cutpoint closer to the
smaller group in order to reduce the probability of misclas-
sifying members of the larger group. Basing decisions on the
posterior probabilities automatically makes such adjust-
ments for the priors. The posterior probability (PP) of a
critical site, given a particular discriminant score (DS), is

PP =[1+((1 - p.)ip.) exp (DS)] ! 3)

where p_ is the prior probability of a critical site. (This
formula applies only when DS is computed without normal-
ization [Green, 1978, p. 176].) The cutpoint in many prob-
lems is chosen at a posterior probability of 0.50, because that
choice minimizes the overall expected probability of mis-
classification. However, the cutpoint might be chosen at a
different probability if the costs of misclassification or ben-
efits of correct classification are not of equal magnitude for
all outcomes. When the costs and benefits can be quantified,
the cutpoint may be objectively determined. Alternative
methodologies are described in the discussion and by Rice et
al. [1985].
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The prior probabilities of a critical site on a road or harvest
area were determined by the proportion of area occupied by
critical sites. For example, 21.5 km (an estimated population
total of 239 sites X 90 m) in critical road sites out of an
estimated 1212 km in the population gives a prior probability
of 0.0177 for roads. Applying a similar procedure to the area
of logged plots gives a prior probability of 0.0050.

We used the bootstrap to calculate DS standard deviations
for each observation in the data set from which the model
was developed. For any observation, the DS was calculated
once for each bootstrap model generated. The parameters in
the model were free to change, so the variance is over many
different model specifications. The discriminant scores from
the final models, plus or minus one standard deviation, were
projected onto the PP axis using the above equation and
plotted at the DS computed from the full data set to show the
expected variability of PP at a given DS (Figure 2). Clearly,
the errors associated with risk estimates increase markedly
as the estimated risk increases.

DiscussioN

Through this investigation we have developed a method-
ology that can be used to better balance the interests in
forest products and environmental protection. We have
provided objective functions which can be used to compute
the probability that logging or road construction on a given
site in northwestern California will cause severe erosion.
Before using such functions as guides, however, it is impor-
tant to understand their capabilities and limitations.

Physical Basis

Within the limitations imposed by the form of the analy-
ses, we are confident that the variables in the discriminant
functions are valid surrogates for physical processes af-
fecting the occurrence of critical sites. The variables in the
models seem reasonable measures of risk for mass move-
ments. Slope is crucial to the balance of forces promoting
and resisting failure at a site. Horizontal curvature is very
likely indexing two important aspects of slope failures: the
accumulation of potentially unstable amounts of colluvium
in swales [Dietrich and Dunne, 1978] and the convergence of
subsurface water, leading to destabilizing pore water pres-
sures [Sidel, 1986]. The third variable in both of the equa-
tions was some expression of the strength of the soil or rock
at the site. The association of soil color with slope stability is
probably related to soil drainage and age. Mottled subsur-
face g horizons, with matrix colors of low chroma and
generally yellow hues, are commonly found in poorly
drained soils. Such soils were identified with 88% of the
debris flows occurring in Redwood National Park during
1981 and 1982 [LaHusen, 1984]. In contrast, well-drained
soils, especially on stable older surfaces, often have a
reddish hue due to the formation of unhydrated iron oxides.
In summary, the variables in the equations are reflections of
the parameters necessary for slope stability computations,
and we consider it unlikely that the models are based on
spurious correlations.

Climatic Effects

Granting that the variables are appropriate, what other
extraneous influences should be considered? The weather
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Fig. 2. Posterior probability of critical erosion: (a) road plots, in which the prior probability is 0.0177 and (b) logging
area plots, in which the prior probability is 0.005. Vertical bars represent posterior probability plus or minus one
bootstrapped standard deviation. Confidence bands were fitted with logistic regression. Beneath the confidence bands,
T symbols represent the location of control plots on the discriminant axis and inverted T symbols indicate critical plots

(erosion >153 m? within 0.81 ha).

during the study period (i.e., after harvest or road construc-
tion and before the site visits) is probably the condition most
capable of skewing the study results. If the plots had been
subjected to exceptionally low environmental stresses, the
models would probably have underestimated risks of critical
erosion. If, on the other hand, there had been very severe
weather during the study period, the models could have
identified factors associated with relatively stable sites and

overestimated erosional hazards. It appears that neither of
these conditions prevailed.

The estimated mean annual precipitation during the study
period at study THPs was compared to estimated long-term
averages. The study period mean was 11.5% greater than the
long-term average (with 95% confidence limits of +2.1%).

Short period rainfall intensities are probably a better index
of erosional stress than annual precipitation [Sidel, 1986).



1728

One of our variables was the return period of the largest
24-hour storm occurring in the study period at the nearest
precipitation station. Although the estimated return periods
spanned a range from 0.5 years to 38 years, the median
return period of the largest storm occurring on THPs during
the study period was only 2.2 years. The true return periods,
however, would be larger since we were forced by spotty
rainfall records to use maximum calendar-day rainfall in
place of maximum 24-hour precipitation.

To get an idea of what the true return periods might be, we
collected data from weather stations in the study area which
had records of both maximum 24-hour and daily precipita-
tion. We gathered 83 data pairs from three of the wettest
months during the study period (February 1980, January
1982, and February 1986). The mean ratio of maximum
24-hour to maximum daily precipitation for these data was
1.188, with a standard error of 0.021. Multiplying maximum
post-harvest calendar-day rainfall by 1.188 increased its
median by 2.5 cm and increased its median return period
from 2.2 to 5.0 years. Thus most of the study plots appear to
have experienced only slightly smaller stresses than might be
expected over a ‘‘typical” 7- to 8-year period.

The return-period variable had very little predictive value
in the analyses. In the road analysis bootstraps, its fre-
quency of occurrence in the best models was 20th out of 29
variables and it occurred about one-fifth as often as one of
the random variables. In the harvest area analyses, the
return period variable was tied for last place and was well
behind all of the random variables.

In summary, mean annual precipitation was slightly higher
than usual, while maximum storm intensities were a little
below normal; there was a poor correlation between maxi-
mum (24-hour) storm return period and the occurrence of
critical sites. These results indicate that the study was not
appreciably influenced by abnormal weather.

Sampling

Discriminant analysis requires that both groups be a
simple random sample from their respective populations.
Although the control sites very nearly constituted a simple
random sample, the sample of critical sites was stratified by
the forest practice inspectors’ ‘‘critical,”” ‘‘questionable,”
and ‘‘noncritical’’ THP classifications. Consequently, we
estimate that about 78% of the critical sites on “*critical’” and
‘‘questionable’” THPs were sampled, but only about 45% of
the critical sites on ‘‘noncritical’” THPs. Critical sites from
“‘noncritical’’ THPs were therefore underrepresented in the
sample. If they are different from other critical sites, then the
sample is biased.

To test this hypothesis statistically, we contrasted critical
plots on ‘‘critical’’ and “‘noncritical” THPs. A T? test
[Hotelling, 1931] based on 56 variables produced a probabil-
ity of 0.047 that the multivariate group means were equal.
Individual variables with the most significant differences
were ANNLPPT, CABLE, TRACTOR, HUE, and MM.
Since soil type and precipitation were used in the erosion
hazard rating (EHR) system at the time, and logging method
is probably correlated with EHR, it appears that the inspec-
tors who made the preliminary classifications of the THPs
generally classified THPs as ‘‘critical’’ when they contained
areas meeting the criteria of the EHR in use at the time. That
rating, however, has been found to be a poor predictor of
erosion [Rice and Datzman, 1981].
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We continued the investigation by conducting two addi-
tional analyses, one for roads and one for harvest areas. For
these analyses, unbiased data sets were created by randomly
discarding 30 critical road plots and 16 critical harvest plots
from ‘‘critical’” and ‘‘questionable’” THPs. The discriminant
analysis model selection procedure (Figure 1) was then run
and bootstrapped for each of these new samples.

The same variables were selected as for the full samples,
and the bootstrap strongly corroborated their selection.
Moreover, the discriminant coefficients were all within one
bootstrap standard deviation of their values in the full
models. Chow’s test [Chow, 1960) showed no significant
differences between the models (p > 0.50 in both tests). Thus
critical plot sampling bias appears to have had minimal effect
on the results.

Acceptable Risk

A major difficulty to be overcome in the use of the
predictive equations is establishing levels of ‘‘acceptable’’
risk marking the boundary betweern critical and stable sites.
For any threshold used to trigger corrective actions, some
percentage of critical and noncritical sites are misclassified
(Tablie 5). The costs of such errors include erosional damage
at undetected critical sites and the treatment costs or loss of
timber revenues where corrective action is erroneously
applied to stable sites. The choice of a threshold should be
based on the economic, social and political ramifications of
expected outcomes.

If the payoffs of various outcomes are quantified, then a
simple method is available for computing a decision cutoff
value on the discriminant axis. Although such evaluations
may be subjective, we believe that use of such quantities will
lead to improved decisions because of the discipline imposed
by an explicit value system. For example, consider the
following matrix in Table 6 displaying payoffs arising from
interactions of predicted and actual outcomes at a logging
site.

Mitigation effectiveness may be defined as

D-d
V~v

E=

-1 4)

and let C(n|c) be the cost of misclassifying a potential critical
site, and C(c|n) be the cost of misclassifying a noncritical
site.

It is assumed that V > v, D > d, and that all quantities are
positive. £ will take only positive values for sensible miti-
gation measures whose cost (V — v) is less than the averted
environmental cost (D — d). Also, if the type of mitigation is
varied, d should decrease as v decreases. To maximize the
expected payoff, the quantities in the matrix should be based
on what is thought to be the most effective mitigation for the
site(s) being considered. When potential environmental con-
sequences are great and modifying the operation is unlikely
to affect the probability of failure, the most effective mitiga-
tion is to avoid disturbing the site. For the no-action alter-
native, we assume both v = 0 and d = 0. (Note that if D <
V, then E < 0 for the no-action alternative; but the no-action
alternative would not be a sensible mitigation measure in
such a situation.)

Given a particular site, the misclassification cost is simply
the difference between the payoffs of correctly and incor-
rectly classifying the site. Thus
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TABLE 5. Decision Table TABLE 5. (continued)
Decision Threshold Decision Threshold
. Percentage ] Percentage
. Posterior Classified Correctly o Posterior Classified Correctly
Discriminant Probability of Discriminant Probability of
Score* Critical Sitet Critical Noncritical Score* Critical Sitet Critical Nongcritical
Roads and Landings Harvest Areas (continued)
-6.0 0.88 0 100 3.6 0.00014 100 8
~50 0.73 0 100 4.0 0.00009 100 b
—4.0 0.50 1 100 5.0 0.00003 100 1
-36 0.40 2 100 6.0 0.00001 100 0
-3.2 0.31 5 99 )
_28 0.23 9 99 *Based on the equation DS = —0.02807 - 0.1142*SLOPE +
-2.4 0.17 15 98 22.91*HCURVE + 1.0075*HUE for roads and landings and based
-390 0.12 23 97 on the equation DS = 5.032 — 0.1633*SLOPE + 20.69*HCURVE —
~18 0.098 28 9% 1.21S*WEAKROCK for harvest areas.
-1.6 0.082 33 94 tAssumes the prior probability of a critical site = 0.0177 for roads
~1.4 0.068 39 93 and landings and 0.0050 for harvest areas.
-1.2 0.056 45 91
~1.0 0.047 51 89
-0.8 0.039 57 86
-0.6 0.032 63 84 Clnle)=(w—d)-(V-D)=D—-d~(V-u)
-0.4 0.026 69 81
-0.2 0.022 74 77 Clelm) =V —v
0.0 0.018 79 73 _ o
0.2 0.015 83 69 According to Bayes’ rule [Green, 1978], the discriminant
0.4 0.012 86 65 cutpoint (r,) which minimizes the expected cost is
0.6 0.0098 89 60
0.8 0.0080 92 56 | ( P. C(nc)
1.0 0.0066 94 51 t.=In{ ———
1.2 0.0054 9% 46 1-P.Clcln)
1.4 0.0044 97 41
L6 0.0036 98 37 ( P, (D~d)— (V- v))
1.8 0.0030 98 2 =lIn{-— -
2.0 0.0024 99 28 I=P. V-
2.4 0.0016 100 21 PE
238 0.0011 100 15 P L )
32 0.00073 100 10 1-P.
3.6 0.00049 100 6
4.0 0.00033 100 4 where P, is, as before, the prior probability of a critical site.
50 0.00012 100 : The cutpoint increases as the mitigation effectiveness in-
6.0 0.00004 100 0 . .. 8 .
creases, resulting in increased numbers of mitigated sites.
Harvest Areas This tends to happen when the potential reduction in envi-
‘gg gg; g :% ronmental damage is great relative to the costs of mitigation.
—4.0 022 1 100 If E is near (1 — P_)/P, (usually a large number), then ¢, is
~36 0.16 3 100 close to 0 and approximately equal percentages of critical
-3.2 0.11 6 9 and noncritical sites are classified correctly (Table 5). As
-2.8 0.076 10 9 potential environmental consequences decrease relative to
:%8 gggg ;Z g?, the costs of mitigation, r. decreases until nearly all sites are
18 0.030 31 9% classified noncritical. Because the prior probabilities of
-1.6 0.024 37 95 either road or logged area critical sites are so low, overall
~1.4 0.020 42 93 accuracy will always be approximately equal to stable site
RER L £ samy
08 0:0“ 61 87 Although site specific applications of the discriminant
-0.6 0.0091 66 85
-0.4 0.0074 72 82
-0.2 0.0061 77 79 TABLE 6. Payoffs Arising From Interactions of Predicted and
0.0 0.0050 81 75 Actual Outcomes at a Logging Site
0.2 0.0041 85 n
0.4 0.0034 88 67 Predicted Outcome
0.6 0.0027 91 63
0.8 0.0023 93 58 Actual Outcome Noncritical Critical
1.0 0.0018 95 54
1.2 0.0015 96 49 Noncritical v v
1.4 0.0012 97 44 Critical Vv-D v—d
1.6 0.0010 98 40
1.8 0.00083 99 35 V is value (profit) received from an unmitigated operation, v is
2.0 0.00068 99 31 value (profit) received from a mitigated operation, D is cost of
24 0.00046 100 23 environmental damage and repairs from an unmitigated operation,
2.8 0.00030 100 17 and d is cost of environmental damage and repairs from a mitigated
32 0.00020 100 11 operation.
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functions would be ideal, a broader approach can be taken.
If some general decision probability is chosen, the expected
accuracy will still be known, but the extent to which benefits
and risk are appropriately balanced at individual sites will be
unknown. Since an optimal balance will not be achieved at
most sites with the broader approach, it will reduce the
potential benefits of erosion risk assessment.

Implementation

These models are strictly applicable only to the timber-
lands of northwestern California. For other areas, it would
be wise to collect the data necessary to develop applicable
regional predictive equations. The following implementation
guidelines are recommended where discriminant models
have been developed to identify potential critical sites when
planning forest road construction and timber harvesting.

1. Determine the prior probabilities. These may be based
upon the population used to construct the predictive model,
or, if priors are available from subregions (such as coastal or
interior forests), use these more specific probabilities.

2. Evaluate the economic, social, and political values of
the four outcomes arising from identifying and failing to
identify potential critical and noncritical sites. Determine
what probabilities of misclassification are acceptable for
potential critical sites and noncritical sites. Such evaluations
are most valuable when done on a site-specific basis. If
completing a payoff matrix, base profit estimates on the most
cost-effective mitigation measures for the site. For a site
with highly valued resources at risk, this may be the no-
action alternative.

3. Choose a decision cutpoint compatible with the ex-
plicit value system arrived at in the previous step, using (4)
and (5), tables such as Table S, or the method described by
Rice et al. [1985].

4. Evaluate the discriminant function using the appropri-
ate predictive equation.

5. If the discriminant score exceeds the decision cut-
point, proceed with the operation using standard methods
applied in the population where the model was developed.

6. If the discriminant score is less than the decision
cutpoint, the operation should be restricted. Serious consid-
eration should be given to avoiding any disturbance of the
site, since similar sites used to develop the model failed
when disturbed, and mitigation measures were undoubtedly
applied to some of these. If the site must be disturbed,
extraordinary precaution should be used.

CONCLUSIONS

The variables in the equations we have developed appear
to be expressing three important site conditions related to
erosion risk: the force of gravity promoting instability (slope
steepness), the convergence of subsurface water (horizontal
curvature and soil color), and strength of materials (soil
color and parent rock strength). The road discriminant
function has bias-corrected prediction accuracy of 69.9% for
stable sites and 81.7% for critical sites. The bias-corrected
accuracy of the harvest area function is 63.3% for stable sites
and 75.1% for critical sites. These numbers, together with
the plausibility of the variables in the equations, suggest
these models can provide satisfactory estimates for the risk
of large erosion events.

LEwis AND RICE: ESTIMATING ErosioN Risk

The equations are quite simple and their variables fairly
easy to estimate in the field. Foresters routinely estimate
slope, and horizontal curvature can be computed from two
measurements of azimuth and distance. Some training in
evaluating rock strength and soil color may be necessary.
The calculation of the discriminant score or the posterior
probability of a critical site can be done on a pocket
calculator. Alternatively, tables have been developed to
estimate approximate posterior probabilities.

None of the steps required for the utilization of the
equations are particularly difficult, but they do require a
new, more rigorous approach to erosion risk analysis. The
difficult evaluations required to choose decision cutoff val-
ues can be viewed as a strength of the method. To a degree
not normally achieved, the use of risk evaluations with
discriminant models will expose the contending values in
forestry decisions. It will make it possible to examine
various balances between them by estimating the effects of
alternative decisions.

APPENDIX: DEFINITIONS

Mass Movement Types (Adapted From Bedrossian [1983])

Rotational. A deep-seated landslide with a curved slide
plane and a somewhat cohesive slide mass. Rotational slides
are characterized by a steep head scarp above an intact slide
mass that leads to an irregular, hummocky toe area. The
slope steepness of the intact slide mass is reduced relative to
the surrounding terrain, and the slope direction may be
reversed, which leads to the development of sag ponds.

Translational. A deep-seated landslide with a linear slide
plane and a somewhat cohesive slide mass. Translational
slides are characterized by vertical cracks in the ground
surface at the upslope margin of the slide and hummocky
downslope terrain.

Translationallrotational. A combination of slide move-
ments commonly involving rotational headward movement
with downslope translational or earthflow transport.

Slump. This is a localized failure that is commonly
rotational and associated with roads. It may occur on the fill
slope or cut sfope. It varies in size but the material usually
does not move very far.

Earthflow. A slow to rapid movement of saturated soil
and debris in a semiviscous, highly plastic state. Earthflows
are characterized by irregular, hummocky terrain with grass-
land or meadow vegetation.

Debris slide. A relatively shallow-seated translational
landslide that originates in unconsolidated rock, colluvium,
or soil materials. Debris slides are characterized by a steep
head scarp and jumbled toe deposits (when present).

Debris flowltorrent track. An erosion channel located on
sideslopes or in streambeds that is formed by an extremely
fast mass movement of water-laden soil, rock, and vegeta-
tive debris. Debris tracks are characterized by scoured
channels that commonly originate at debris slide or fill failure
sites.

Gully. An erosion channel resulting from the detachment
and transport of soil and rock fragments by concentrated
flows of surface runoff water. Gullies generally originate at a
point of concentrated runoff water and are characterized by
V-shaped or trapezoidal channel cross section shapes.

Undifferentiated. Small mass movement events, such as
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cut-bank failures, without well-defined slide mechanisms or
that do not fit any of the previously described failure types.

Parent Rock Strength

Plastic. Very low strength.

Friable. Specimen crumbles easily by rubbing with fin-
gers.

Low. An unfractured specimen will crumble under light

hammer blows.

Moderate. Specimen will break apart with moderate
hammer blows.

High. Specimen will withstand a few heavy ringing ham-
mer blows before breaking into large fragments.

Very high. Specimen will resist heavy ringing hammer
blows and will yield with difficulty only dust and small flying
fragments.

The test for rock strength is made on in-place specimens
found at the nearest representative exposure of parent
material. It is patterned after the strength element of the
““Unified Rock Classification System’’ (URCS) [Williamson,
1984] that is concerned with rock as an engineering material.
This system is directed toward evaluating weaker rocks
whose strength differences might affect slope stability. That
fact and the sampling problems associated with obtaining a
truly representative sample led us to relax the URCS re-
quirements concerning the type of hammer. We doubt that
such refinements are warranted for this application. In fact,
the flat end of a geologist’s hammer was used in this study.

NOTATION

The following are categorical dummy variables (deter-
mined in the field).

Bedrock origin class

FM Franciscan Melange.
FC Franciscan coherent (non-Melange
Franciscan).
HS hard sedimentary.
IE igneous extrusive.
II igneous intrusive.

MM metamorphic.

SS soft sedimentary.

Forest type

DF pure Douglas fir.
HW hardwoods and minor redwood/fir.
MC mixed conifers.

PI Ponderosa pine.

RW redwood with or without Douglas fir.
Logging method

CABLE cable yarded.
TRACTOR tractor yarded.
NOYARD not yarded (road plots only).

Other field measurements

AMTLOG estimated percentage of overstory crown
cover removed.

azimuth in degrees; coded for analysis: N
=], NE=2,NW=3 E=4,W=35,
SE=6,SW=7,S=8.

current percent woody plant crown cover

ASPECT

CURCOVER

DSURFH20
HCURVE

HUE

PREOVER

PRETOTAL

PREUNDER

ROCKSTR

SLOPE

SLPBRK

SOILAD

SOILCOMP

SOILRD

STRDIST

STRELEV

SURFSND
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(estimated overstory + understory); may
exceed 100%.

minimum of STRDIST and WDIST.
horizontal curvature (m~!) (concave is
negative); this was computed as the
inverse of the radius of a circle
circumscribing a triangle determined by
three points along a uniformly curved
segment of the topographic contour line.
subsoil moist Munsell hue coded 1 to 5
from yellow tored (1 = 5Y;2 = 2.5Y;3 =
10YR; 4 = 7.5YR; 5 = 5YR.); see
SUBSCLY for definition of subsoil.
adjacent (presumed preharvest) percent
overstory crown cover (visual estimate).
PREOVER + PREUNDER (may exceed
100%).

adjacent (presumed preharvest) percent
understory crown cover (visual estimate).
parent rock strength (see definitions): 1 =
plastic, 2 = friable, 3 = low, 4 =
moderate, 5 = high, 6 = very high.

slope steepness in degrees; average of
uphill and downhill slopes.

Distance in meters upslope to nearest
convex vertical slope break; defaulted if
none or >91 m.

average soil depth (cm) to firm or
unweathered bedrock; defaulted if >152
cm.

soil competency (numeric rating (0-100)
based on wet consistence, dry strength,
dilatancy, and toughness); SOILCOMP =
100 x (WC + DS + DIL + TUF)/16;
where WC = wet consistence: very plastic
= (); plastic = 8; slightly plastic = 8; not
plastic = 0. DS = dry strength: high = 2;
med = 1; slight = 1; none = 0. DIL =
dilatancy: none = 3; very slow = 2; slow
= 1; quick = 0. TUF = toughness: high =
3; med = 1; slight = 1; none = 0. Wet
consistence was determined according to
*“Soil Taxonomy'’ [USDA Soil
Conservation Service, 1975, p. 176]. Dry
strength, dilatancy, and toughness were
determined according to the Unified Soils
Classification System [Waterways
Experiment Station, 1953]. All evaluations
were based on subsoil (see SUBSCLY).
depth in centimeters to the first soil layer
or condition substantially restricting the
downward movement of water; defaulted
if >152 cm.

slope distance (along downhill gradient) to
nearest stream; measured from a
topographic map if >91 m.

elevation change in meters to nearest
stream; measured from topographic map if
STRDIST >91 m.

percentage sand in <2-mm fraction of the
surface soil horizon that lies between the
soil surface and the subsoil (see
SUBSCLY).
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SUBSCLY

VCURVE

WDIST

WEAKROCK

WELEV
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percentage clay in <2-mm fraction of
subsoil (defined as the B horizon, if it
occurs; otherwise it is the material that
underlies the surface soil and which is
differentiated from it by a change in
texture, color, structure, or percent coarse
fragments).

vertical slope curvature (m™") (concave is
negative); this was determined in the same
manner as HCURVE except: (1) the
points determining the triangle were taken
along a downhill gradient, and (2) on road
plots, curvature was averaged from
measurements taken above the road cut
and below the sidecast or fill.

slope distance in meters to nearest spring
or pond; defaulted if elevation change >61
m.

dichotomy for parent rock strength (see
definitions): 1 = plastic, friable, or low;
-1 = other.

elevation change in meters to nearest
spring or pond; defaulted if elevation
change >61 m.

Office measurements

ANNLPPT
LATDIS

PPTiHR
PPT24HR
PPTRP

SLOPOS

LOGNORM
NORMAL
UNIFORMI1

UNIFORM2

Other notation
AID

DS
JCA
MSE
P
PP
SALT

THP

mean annual precipitation, mm.

fateral dissection (number of first-order
drainages per 2400 m on a contour passing
through the plot center).

five-year 1-hour precipitation, mm.
five-year 24-hour precipitation, mm.
24-hour return period (years) of maximum
postharvest calendar-day precipitation (24-
hour precipitation records were not
generally available); this was determined
from isopluvial maps for the nearest
precipitation station with complete
postharvest records.

slope position; ratio of ridge-plot slope
distance to ridge-stream slope distance.
Random variables included in analyses
lognormally distributed random variable.
standard normal random variable.
uniformly distributed random variable on
©, .

uniformly distributed random variable on
o, 1).

automatic interaction detection (a data-
partitioning algorithm used for screening
variables).

discriminant score.

jackknifed classification accuracy.

mean squared error.

prior probability of a critical site.
posterior probability (of a critical site).
selection at list time (a variable probability
sampling method).

timber harvesting plan, or the area
covered therein.

WINNOW program for computing all-possible-subsets
regression.
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